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Abstract- Recently, the Artificial Neural Network (ANN) can 
solve several problems in motor drives, this paper present a 
comparative study of Direct Torque Control (DTC)in closed loop 
based on ANN techniques in order to reduce torque and flux 
ripples producing by th hysteresis comparators in classical DTC, 
and to replace the traditional speed controlled Permanent 
Magnet Synchronous Motor (PMSM), Doubly Fed Induction 
Motor (DFIM) and Induction motor (IM). All techniques 
proposed in this paper are simulated and tested. Simulation 
results show that it is efficient and reliable . 
Keywords- ANN ;DFIM ;DTC; IM; PMSM.  

1. Introduction 
For a high-performance drive system, not only a fast 

response is required, but also the ability of quick recovery 
of the speed from any disturbances and insensitivity to 
parameter variation is essential [1]. To solve this problem, 
we propose a direct torque control which can provide a 
very quick and precise torque control response.  

Since the first developments of direct torque control 
(DTC) concept, it has been used in many ac drives 
applications. This is thanks to its fast torque response and 
robustness against machine parameter variations [2]. DTC 
method introduced first by Depenbrok and Takhashi for 
induction machines (IM) in 1980's, then developed for 
PMSM and recently some research works on using it for 
BLDC machines [3] and DFIM. 

The speed controller used in PMSM drive system plays 
an important role to meet all requires mentioned above. 
But conventional controllers such as proportional integral 
(PI) controller are unsatisfactory when the running 
conditions changed [1]. In the motor drive control, based 
on classical and modern control theory proposed control 
strategy is largely dependent on the motor model as IP 
speed controller, the dynamic changes when the model 
parameters or by external disturbance, the system 
performance will be affected [2]-[4]-[5].  
Neural network has good nonlinear approximation and 
self-learning ability, nonlinear system modeling, 
identification and control has been widely used [5]-[6]. 

Using hysteresis comparators and the switching vector 
table for both flux and torque control is the origin of its 
simple structure. However, a direct torque controlled 
motor suffers from great torque ripples due to the fast 
torque response. Many control algorithms have been 
proposed to reduce the torque ripple in DTC [8]. 
In this paper, we propose two ANN estimators; the first is 
used to reduce high torque ripple of the traditional DTC, 
the second is proposed to replace the traditional IP speed 
controller of three types of motors, permanent magnet 
synchronous motor, induction and doubly fed induction 
motors. 
 
2. Mathematical Motors Model 
2.1 Permanent Magnet Synchronous Motor 
PMSM mathematical model in d-q coordinate system is 
shown as follow [9]: 
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Where Ld is the d-axis inductance, f is the flux-linkage 
due to the permanent magnets, and Lq is the q-axis 
inductance. As d-axis is aligned with magnet’s axis, there 
is no contribution of the magnets to q-axis magnetic flux-
linkage f. The PMSM model is giving by: 
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Where Rs is the stator resistance, Id is the d-axis current, d 
is the total flux in the d-direction, q is the total flux in the 
q-direction, and Iq is the q-axis current.  
The motor torque expression with d–q magnitudes is [10]: 
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2.2 Doubly Fed Induction Motor 
The state all-current of the DFIM is giving by [11]: 
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This electrical model is completed by the mathematical 
equation. 
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2.3 Induction Motor 
The dynamics of the induction motor in the d-q motor 
reference frame, which is rotating by the following 
nonlinear differential [12]: 
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3. Classical Direct Torque Control 
The scheme of the classical DTC consists of two 
hysteresis controllers as shown the figure1. 

 
Figure 1 

 Schematic diagram of classical DTC control with speed regulation 
 
In the DTC, the stator flux vector is estimated by taking 
the integral of difference between the input voltage and the 
voltage drop across the stator resistance given by [13]:  
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Lets us replace the estimate of the stator voltage with the 
true value and write it as: 
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Sa, Sb, Sc, represent the state of the three phase legs 0 
meaning that the phase is connected to the negative and 1 
meaning that the phase is connected to the positive leg. 
The stator current space vector is calculated from 
measured currents ia, ib, ic: [14] 
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The component α and β of vector s can be obtained: 
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Stator Flux amplitude and phase angle are calculated in 
expression (12):  
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Once the two components of flux are obtained, the 
electromagnetic torque can be estimated from the 
relationship cited below: 
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The voltage plane is divided into six sectors so that each 
voltage vector divides each region into two equal parts. 
These vectors are shown in figure 2, where six active 
vectors of same magnitude are presented and two 
remaining vectors are zero. 
The DTC is based on selecting one of the voltage vectors 
that maximizes the necessary change to correct the flux 
and torque error producing the smallest number of 
commutations in the bridge inverter.  

 

 
Figure 2 

 Spacial voltage vectors as function of the state inverter 
 
The DTC is based on selecting one of the voltage vectors 
that maximizes the necessary change to correct the flux 
and torque error producing the smallest number of 
commutations in the bridge inverter.  
Depending on the area where the stator flux vector is, each 
vector will have a different effect. In Table 1 is presented 
the DTC selection algorithm [15][16][17].  

Table 1 
Switching table 

Flux Torque 
Voltage vectors 

N=1 N=2 N=3 N=4 N=5 N=6 

cflx=0 

ccpl=1 V5 V6 V1 V5 V6 V1 

ccpl=0 V7 V0 V7 V0 V7 V0 

ccpl=-1 V6 V1 V2 V3 V4 V5 

cflx=1 

ccpl=1 V3 V4 V5 V6 V1 V2 

ccpl=0 V0 V7 V0 V7 V0 V7 

ccpl=-1 V5 V6 V1 V5 V6 V1 
 
In this section, we propose an IP controller as presented 
the figure 3. 

 
Figure 3 

 Diagram of speed controller (IP) with anti-windup [18] 
 

4. Classical Direct Torque Control based on ANN 
The use of hysteresis comparators in the conventional 
Direct Torque Control caused a considerable torque 
ripples. To get better performance and to reduce the torque 
and flux ripples, we propose in this paper two estimators 
based on ANN, the first is used to replace the hysteresis 
controller and switching table, the second is used to 
replace IP speed controller  as shown figure 4. 
 

 
Figure 4 

 Schematic diagram of DTC control based on ANN 
 
This estimator is designed to have three inputs control 
variable (E, ETe, N) and the output is the Boolean 
switching controls (Sa, Sb, Sc),  
So structure of this first ANN of our work is 3-10-1: the 
first layer has three neurons that represent error of stator 
flux, error of electromagnetic torque and stator flux angle, 
the second layer has 10 neurons; and the last one with one 
neuron represents the output N (figure 5).  
One of the most popular programs is the back-propagation. 
So for our application, we use an ANN with a single layer 
and tansig activation function type. We analyzing the 
performance of our system and execute several tests. 
the second neural estimator is used to estimate rotor speed 
motor which has two inputs control variable the error 
between commanding value and real value, and its 
derivative (E, E) and one output represent 
electromagnetic torque command (Te

* ). 
So the structure of this estimator is 2-29-1: the first layer 
has two neurons that represent error of variation error of 
rotor speed as mentioned, the second layer has 10 neurons; 



 

and the last one with one neuron represents the torque 
command as shown figure 5. This estimator is based on 
back propagation technique. 

  

     
Figure 5 

 The structure of two estimators based on ANN 
The training process is repeated until the error is minimum 
with desired output; the trained weights of the ANN are 
obtained by training the proposed ANN offline with data 
selected from simulation of highly performance DTC.  
WEij means the weight between the input layer and the 
hidden layer, WOji means the weight between the hidden 
layer and the output layer.  
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4. Simulation results 
To verify the approaches proposed in this paper, digital 
simulation based on Matlab/Simulink have been 
implemented. In this simulation, the parameters of 
synchronous machine are: frequency: 50 Hz, stator 
resistance: 1.5 ohm, d-axis inductance : 0.05H, q-axis 
inductance : 0.05H, moment of inertia: 0.0030kg.m2, 
Friction Coefficient: 0.0009Nm/rad/s, Magnetic flux 
linkage: 0.314Wb, and pole: 2. 
The parameters of doubly fed induction machine are: 
frequency: 50 Hz, stator resistance: 1.75 ohm, rotor 
resistance: 1.68 ohm, moment of inertia: 0.01kg.m2, 
Mutual inductance: 0.165, stator inductance: 0.295H, rotor 
inductance : 0.104H, Friction Coefficient: 0.002Nm/rad/s, 
power: 1.5 Kw, and pole: 2. 
The parameters of induction machine are: frequency: 50 
Hz, stator resistance: 4.85 ohm, rotor resistance: 3.805 
ohm, stator inductance : 0.247H, rotor inductance: 0.247H, 
Mutual inductance: 0.258, moment of inertia: 0.031kg.m2, 
Friction Coefficient: 0.001136Nm/rad/s, power: 1.5 Kw, 
and pole: 2. 
 

 
Figure 6 

 Comparative response using traditional and neural DTC of Permanent Magnet Synchronous Motor 
 

 
To study the drive performance with a change in the 

command speed, a simulation test was achieved for three 
speed reference signals, respectively: +w/2, +w and –w 
rad/s with (w=126.66rad/sec applied to PMSM and IM, 

w=150rad/sec to FDIM). These results have been obtained 
with a load torque (Tr= 2N.m to PMSM and 10N.m to 
DFIM and IM) applied between 0.2sec and 0.4sec, 
between 0.7sec and 0.sec, and between 1.4sec and 1.6sec. 



 

It can be seen in figure 6 that estimated value track their 
references, torque and flux ripple is less by using Neural 
DTC compared to traditional DTC, rotor speed response 
follows the reference, rejects the disturbance quickly and 
efficiently and with no overshoot compared to classical 
speed controller. 

It can be also noticed that figures 7 and 8 have the same 
remarks; however, it can be found that estimators based on 
ANN gives better performance when we applied to PMSM 
compared to DFIM and IM 

 

 
 

Figure 7 
 Comparative response using traditional and neural DTC of Induction Motor 

 

 
Figure 7 

 Comparative response using traditional and neural DTC of Doubly Fed Induction Motor 
 

5. Conclusions 
In this paper, we have developed a neural network 
technique combined with direct torque control of PMSM, 
FDIM and IM to show the feasibility of these approaches, 

and also to evaluate the computation time required by the 
neural network estimators. The obtained results show the 
feasibility of the proposed techniques. 
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