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Abstract— In developing countries, recent trend is to 

adopt High Voltage Direct Current (HVDC) 

transmission in the existing AC transmission system 

to gain its techno-economical benefits. In restructured 

electricity market, accurate prediction of day-ahead 

electricity nodal prices have become an important 

activity to address the system operations and price 

volatility in the marketplace and also to facilitate the 

market participants to estimate the risk and have 

better market oriented decision making. In the paper, 

Electricity nodal price prediction in a day-ahead 

electricity market using Artificial Neural Networks 

(ANNs) is presented. The numerical results are 

presented and compared for a real transmission 

system of India to demonstrate the rationality and 

feasibility of the proposed methodology.  
 

Index Terms—AC-DC OPF, Electricity Nodal Pricing, Price 

Prediction, Artificial Neural Networks 

I.  INTRODUCTION 

Electricity restructuring of vertical integrated power 

systems brings new requirements in operation and control 

management. One of the challenging issues is pricing 

electricity services. Recently, the electric power industry 

has entered in an increasingly competitive environment 

under which it becomes more realistic to improve 

economics and reliability of power systems by enlisting 

market forces. Nodal or locational marginal pricing 

(LMP) in this environment has now become a important 

mode of energy pricing [1]. LMPs reveal vital 

information to the market participants and to the system 

operators to perform favourably.     

In order to address basic problems like ever increasing 

electricity demand, transmission congestion, 

infrastructure investment especially in transmission and 

distribution segment, few developing countries starts 

adopting High Voltage DC (HVDC) transmission in the 

existing AC system to gain techno-economic benefits of 

the investment and also to ensure consumer welfare. This 

trend has therefore needed to address in formulating 

nodal pricing scheme. Besides this, challenges involved 

in restructured electricity market is to provide accurate 

nodal price information to market participants to decide 

their bidding strategies and risk management, to facilitate 

system operator to perform market dispatch and clearing 

decisions in network congestion etc.  

Several hard computational techniques like time series 

models, auto regressive and auto regressive integrated 

moving average (ARIMA) models have been tried to 

predict electricity prices. Though these techniques are 

found accurate, but are limited to a large amount of 

historical information and the computational cost [2]. 

Apart from this, some soft computational techniques 

based on Artificial Intelligence approach also been 

proposed. As these techniques do not require modeling 

the system; instead, they find an appropriate mapping 

between the several inputs and the output i.e. electricity 

price, usually learned from historical examples, thus 

being computationally more efficient. 

Artificial Neural Networks (ANNs) techniques that have 

been widely used for short-term load prediction are now 

developed for electricity nodal price or LMP prediction 

due to its simple, flexible and more powerful tools. The 

performance of ANN based prediction is enhanced if 

there are enough data for training, an adequate selection 

of the input–output variables, an appropriate number of 

hidden units and enough computational resources 

available.  The advantages of ANNs of being able to 

approximate any nonlinear function and being able to 

solve problems where the input–output relationship is 

neither well defined nor easily computable, as ANNs are 

data-driven. 

In this paper, input variables i.e. historical real and 

reactive electricity demand, calculated power angle, bus 

voltages and real nodal prices using AC-DC OPF based 

nodal pricing methodology have been used to predict 

peak day-ahead price at various buses in a restructured 

electricity markets. NNs like FeedForward Neural 

Network (FFNN) with Backpropogation (BP) algorithm, 

and the generalized regression neural network (GRNN) 

are used to predict day-ahead nodal prices.  

This paper is organized as follows: with the above 

introduction, section II discusses the importance of 
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electricity price prediction and applications in 

restructured electricity market; Section III take review of 

background study concerning electricity price prediction; 

Section IV and V presented AC-DC OPF based nodal 

pricing methodology and day-ahead price prediction by 

ANNs respectively; Section VI evaluates the numerical 

results for a real 400 kV Maharashtra State Electricity 

Transmission Company Limited, India. Finally, 

conclusions are drawn of this paper. 

 

II.  IMPORTANCE OF ELECTRICITY PRICE PREDICTION 

APPLICATION 

The main objective of electricity restructuring in many 

developing countries is to attract investments capital, 

develop efficient wholesale electricity markets and 

competitions and serve demands at lower prices.  In 

restructured electricity market, electricity price is no 

longer set by the monopoly utility company, rather it 

responds to the market and operating conditions. Offering 

the right amount of electricity at right time with right 

price has become the key for utilities and market 

participants. Under such competitive environment, the 

most vital identified applications of LMP or nodal pricing 

for utilities, market participants and system operators is to 

accurately predict or forecast the electricity prices.  

In various time horizons, the applications of 

price prediction or forecasting are different. In the short-

term horizon, market participants use price forecasts to 

decide their bidding strategies to maximize their profits in 

the day-ahead or short-term forward market. Generating 

companies have to make decisions regarding unit 

commitment. They will only want their generators to be 

dispatched if it is profitable, and as these decisions are 

often required hours or days in advance, so they require 

price forecast in order to determine profitability. For the 

medium-term horizon, suppliers and consumers use price 

forecasts to optimize the proportion of forward market 

and bilateral contracts in their asset allocations. Price 

forecasts are also references in the negotiation of bilateral 

contracts. Also scheduled maintenance of generating 

plants have to be decided based on price forecast to 

manage offline period that will have the least impact on 

profitability. For the long-term time horizon, facility 

owners use the long-term price trends to ensure recovery 

and profitability of their investments in generation, 

transmission, and distribution.  

Also often forecast and models of nodal prices 

serve various applications in the operation of electricity 

markets. Many industries use and pay for electricity as an 

important input in their operations, they also require 

forecasts of prices to determine their own profitability. In 

many markets around the world, users are able to 

purchase contracts for electricity at a fixed price over a 

specified time. The valuation of such financial derivatives 

require estimation of both the likely levels and volatility 

of nodal prices in order to determine fixed and fair price 

for the contract itself. Market or independent system 

operator needs accurate prediction of energy prices for 

market monitoring because the exercise of market power 

and gaming behaviour can increase the volatility of 

electricity prices[6].  

Price forecasting can also be used to predict 

market monitoring indexes and measurements. The 

market power indexes such as the Herfindahl–Hirschman 

Index (HHI) is used to measure the concentration of 

market shares, the Residual Supply Index (RSI) is used to 

identify pivotal suppliers, and the price-cost margin 

index, i.e., Lerner Index, is used to calculate the markup 

of prices over marginal costs are commonly used indices 

by market operator[5].  

Electricity nodal prices are highly volatile due to 

congestions in transmission lines. Even though there 

always is a risk of volatility in almost every market, the 

degree of volatility is higher on electricity markets than 

other markets. As a result and the fact that electricity is a 

commodity that consumers need in their daily life to a 

great extent, need is to accurately predict electricity 

prices is of vital importance to both market participants 

and market operator in wholesale electricity markets. 
 

 

III. PRESENT STUDY 
 

A few literatures of electricity price prediction or 

forecasting have been reviewed as follows: [1] suggested 

Neural Networks (NNs) and fuzzy-c-means approach to 

forecast LMPs for bidding competition in deregulated 

electricity markets. The recurrent neural network and 

back-propagation algorithms are demonstrated for 

comparison. [3] gives a Wavelet Transformation (WT) 

based neural network model to forecast price. The 

historical price data is decomposed into wavelet domain 

constitutive sub series using WT and then combined with 

the other time domain variables to form the set of input 

variables to improve the forecasting accuracy. [4] 

suggested a two-stage hybrid methodology i.e. self-

organized map (SOM) and support-vector machine 

(SVM) for forecasting short-term electricity price. A 

SOM applied in the first stage to cluster the input-data set 

into several subsets in an unsupervised manner. In the 

second stage, a group of SVMs is used to fit the training 

data of each subset in a supervised way to predict the 

next-day hourly electricity prices. [5] presented a fuzzy 

inference system (FIS), least-squares estimation (LSE) 

and the combination of both to select correlated data to 

improve the short-term forecasting performance in 

wholesale electricity markets. [6] developed Bayesian 

framework to analyze the uncertainties involved in a 

Market clearing price (MCP) prediction. [7] gives a 

methodology to predict next-day electricity prices by 

ARIMA model. [9] used NNs extended Kalman filter 

(EKF) to predict MCP and confidence interval (CI) in a 

deregulated power market. A modified U-D factorization 

method within the decoupled EKF framework is used to 

provide smaller CIs, faster convergence, provides more 

accurate predictions than the BP-Bayesian method. [10] 

presented WT and ARIMA techniques to forecast day-

ahead electricity prices. The historical and ill-behaved 

price series is decomposed by WT. Then, these series are 

forecasted using ARIMA models. In turn, the ARIMA 



 

   

forecasts allow through the inverse WT, reconstructing 

the future behavior of the price series. [12] introduced a 

panel model for hourly electricity prices in day-ahead 

markets. The result shows that hourly electricity prices 

exhibit hourly specific mean-reversion and that they 

oscillate around an hourly specific mean price level. [13] 

proposed two artificial neural network: the first to predict 

the day-ahead load and second to forecast the day ahead 

MCP. [14] presented a sensitivity analysis of similar days 

parameters to increase the accuracy of NNs and to 

forecast hourly electricity prices. The Mean Absolute 

Percentage Error (MAPE) obtained is smaller one and 

also accurate and efficient forecast. 

This study first calculates accurately the nodal prices 

using AC-DC OPF based nodal pricing methodology. 

The resulted nodal prices, bus voltages, power angles and 

active and reactive demands information are used as input 

to various NNs to accurately predict the peak day-ahead 

nodal prices on a given system. 

 

 

IV.  AC-DC OPTIMAL POWER FLOW BASED 

ELECTRICITY NODAL PRICE FORMULATION 
 

 

To induce efficient use of the transmission grid and 

generation resources by providing correct economic 

signals, a nodal price theory for the restructured 

electricity markets is developed [15]. It is a method to 

determine market-clearing prices for several locations on 

the transmission grid (node). The price at each node 

reflects cost of the energy and the cost of delivering it. 

The AC-DC OPF based electricity nodal pricing is 

formulated as follows 
 

4.1: AC System Equations 
 

Let P = (p1,…..,pn) and Q = (q1,…..,qn) for n bus 

system, where pi and qi be active and reactive power 

demands of bus-i respectively. The variables in power 

system operation to be X = (x1,….,xm), i.e. real and 

imaginary bus voltages. Then the operational problem of 

a power system for given load (P, Q) can be formulated 

as OPF problem  

Minimize  ƒ (X, P, Q)    for   X            (1) 

Subject to  S (X, P, Q)   =  0             (2) 

      T (X, P, Q)   ≤  0   (3) 
 

where S (X) = (s1(X, P, Q),…….,sn1 (X, P, Q))
T
 and T (X) 

= (t1(X, P, Q),……., tn2(X, P, Q))
T
 have n1 and  n2  

equations respectively, and are column vectors. Here A
T
 

represents the transpose of vector A.   

ƒ (X, P, Q) is a scalar, short term operating fuel cost. The 

generator cost function )(PGiif  is considered to have 

cost characteristics represented by 

 


GN

1i
Gi

2
Gi icPibPiaf                   (4) 

where, PGi  is the real power output; ia , ib  and ic  

is the cost coefficient of the i
th

 generator,  GN is the 

generation buses. 

The constraints to be satisfied during optimization are  

(A) Vector of equality constraint i.e. power flow balance 

and it is represented as 
 

PPPP LdcDG   and  QQQQ LdcDG    (5) 

where D is demand, G is generation, „ dc ‟is dc terminal 

and L  is the transmission loss.  
 

(B) The vector of inequality constraints includes upper 

and lower bounds of transmission lines, generation 

outputs, stability and security limits are gives as 

The maximum and minimum real and reactive power 

outputs of the generating sources, bus voltage limits, 

power flow limits are given by 

PPP GiGiGi
maxmin   and QQQ GiGiGi

maxmin     (6) 

VVV iii
maxmin     (i= 1,……,NB)            (7)   

PPP
max
ff

min
f

     (f= 1,…, Noele )         (8) 

Noele  is number of transmission lines.   

Then, operating conditions of a combined ac-dc electric 

power system may described by the vector 
tVX xx dc ],,,[                   (9) 

where,   and V are the vectors of the phases and 

magnitude of the phasor bus voltages; xc  is the vector of 

control variables and xd   is the vector of dc variables. 
 

4.2:  DC System Equations 
 

Using per unit (PU) system [16], the average value of the 

dc voltage of a converter connected to bus „i‟ is 

IrVaV diciiiidi  cos                (10) 

where,  i is the gating delay angle for rectifier operation 

or the extinction advance angle for inverter operation; 

rci is the commutation resistance, and ai  is the converter 

transformer tap setting. By assuming a lossless converter, 

the equation of the dc voltage written as 

iiidi VaV cos                 (11) 

where,  i  = δi - ξi, and  is the angle by which the 

fundamental line current lags the line-to-neutral source 

voltage. The real and reactive power flowing in or out of 

the dc network at terminal „i‟ may expressed as 

iiidi IVP cos    or   IVP dididi    

 iiidi IVQ sin    or   iiidi IVQ a sin  (12) 

Equation (12) can substitute in the equation (5) to form 

part of the equality constraints. Based on these 

relationships, the operating condition of the dc system 

can describe by the vector 
taIVX ddd ],cos,,,[                 (14) 

The dc currents and voltages have related by the dc 

network equations. In ac case, references bus usually the 

bus of the voltage controlling dc terminal operating under 

constant voltage (or constant angle) control is specified 

for each separate dc system. Equations (1) to (3) are an 

OPF problem for the demand (P, Q). In this study 

Newton‟s OPF method is used to optimize solution.  

 



 

   

4.3:  Electricity Nodal Price  
 

The real and reactive power prices at bus „ i ' is the 

Lagrangian multiplier value of the equality and in-

equality constraints and calculated by solving the first 

order condition of the Lagrangian, partial derivatives of 

the Lagrangian with respect to every variable concerned 

[17]. So the Lagrangian function (or system cost) of 

equation defined as 

),,(),,(),,(),,,,( QPXTQPXSQPXfQPXL  

  
                             (15) 

where, λ= (λ1, …….,λn) is the vector of Lagrange 

multipliers of equality constraints; ρ = (ρ1, ……….,ρn) 

are the Lagrange multipliers of inequality constraints. 

Then at an optimal solution ),,( X and for a set of 

given ),( QP , the nodal price of real power for each bus is 

expressed below for i = 1,…..…,n. 






pi
ip

QPXL ),,,,(
,


 = 











pipipi

TSf
         (16) 

 

Here  ip,  is active and reactive nodal price at bus „ i ‟, 

respectively. Equation (16) can be view as the system 

marginal cost created by an increment of real power load 

at bus i .  The above formulation is programmed in 

MATLAB 7.5. 

 

V. ARTIFICIAL NEURAL NETWORK MODEL 

Artificial neural networks are an interconnected group of 

artificial neurons that uses a mathematical or 

computational model for information processing based on 

a connectionist approach to computation. ANNs are 

highly interconnected processing units inspired in the 

human brain and its actual learning process. 

Interconnections between units have weights that 

multiply the values which go through them. Also, units 

normally have a fixed input called bias. Each of these 

units forms a weighted sum of its inputs, to which the 

bias is added. This sum is then passed through a transfer 

function. The prediction with neural networks involves 

two steps: training and learning. Training of neural 

networks is normally performed in a supervised manner. 

The success of training is greatly affected by proper 

selection of inputs. In the learning process, a neural 

network constructs an input–output mapping, adjusting 

the weights and biases at each iteration based on the 

minimization or optimization of some error measure 

between the output produced and the desired output. This 

process is repeated until an acceptable criterion for 

convergence is reached.  

The objective of this study is to predict day-ahead AC-

DC OPF based nodal prices for a real system using 

ANNs. The proposed model is shown in Figure 1.  

Neural networks like Feed-Forward Neural Network 

(FFNN) with Back-Propagation (BP) algorithm, and 

Generalized Regression Neural Network (GRNN), 

models are used to predict day-ahead electricity nodal 

prices. The architecture and mathematical modelling of 

these neural networks are explained as follows. 

Real Nodal Prices

Pg & Qg

Pd & Qd

Bus Voltages

Bus Angles

System
Operating
Conditions

OUTPUT

   I
N

  P
  U

T
  S

Real Nodal Price
     Prediction

 
Figure 1: NN for electricity nodal price prediction 

 
 

5.1: Feed-Forward neural network with Back-

Propagation algorithm 
 

A three layered feed forward neural network with BP 

training algorithm possesses the ability to classify mixed 

datasets and can be used effectively in obtaining the 

correct prediction. For generalization, the randomized 

data is fed to the network and is trained for different 

hidden layers. The number of processing elements in the 

hidden layer is varied. Input is passed layer through layer 

until the final output is calculated and it is compared with 

real output to find the error. The error is then propagated 

back to the input adjusting the weights and biases in each 

layer. BP learning algorithm is the steepest descent 

algorithm that minimizes the sum of square errors. To 

accelerate the learning process, two parameters of the BP 

algorithm can be adjusted: the learning rate and 

momentum.  Learning rate is the proportion of error 

gradient by which the weights should be adjusted. Larger 

values can give a faster convergence. The momentum 

determines the proportion of change of past weights that 

should be used in calculation of the new weights. Feed-

Forward neural network consists of an input, hidden and 

output layers as shown in Figure 2. Each neuron in a 

layer is connected to other neurons of the previous layer 

through adaptable synaptic weights w and biases b, 

shown in Figure 3.  

If inputs of neuron j are the variables (x1, x2, . . , xi, .. . , 

xN), then output uj of neuron j is obtained as 

)(
1

bxwu ji

N

i
ijj 





 

                                   (17) 

where wij is the weight of  connection between neuron j 

and i-th input; b j  is the bias of neuron j and  is  

transfer (activation) function of neuron j.  

Feed-Forward neural network is considered with N, M 

and Q neurons for the input, hidden and output layers, 

respectively. The input patterns of ANN represented by a 

vector of variables x = (x1, x2, . .  , xi, . . . , xN), submitted 

to  neural  network by  input layer are transferred to 

hidden layer. 

Using the weight of  connection between  input and  

hidden layer and the bias of  hidden layer, the output 

vector u = (u1, u2, . . . ,uj , . .. ,uM) of the hidden layer is 

determined. Output uj of neuron j is obtained as 

 

)(
1

bxwhidu
hid
ji

N

i

hid
ijj 



                       (18) 

 



 

   

 
Figure 2: Three layered Feed-Forward neural network 
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Figure 3: Information processing in a neural network 

 

where w
hid
ij is the weight of connection between neuron j 

in hidden layer and the i-th neuron of  input layer, 

b
hid
j represents the bias of neuron j and hid is the 

activation function of  hidden layer. Values of the vector 

u of hidden layer are transferred to output layer. Using 

weight of the connection between hidden and output 

layers and the bias of output layer, output vector y = (y1, 

y2, . . . , yk, . . . , yQ) of the output layer is determined. 

Output yk  of neuron k (output layer) is obtained as 

)(
1

buwouty out
kj

M

j

out
jkk 



                (19) 

where w
out
jk is  weight of the connection between neuron k 

in  output layer and the j-th neuron of  hidden layer,  

b
out
k

is the bias of neuron k and   is the activation 

function of  output layer. 

Output yk is compared with the desired output (target 

value) y
d
k .  Error E in output layer between yk  and 

y
d
k  ( yy k

d
k  ) is minimized using the mean square 

error at output layer (which is composed of Q output 

neurons), defined by 

 


Q

k
k

d
k yyE

1

2
)(

2

1
                           (20) 

In the first step, the network outputs and the difference 

between actual (obtained) output and desired (target) 

output (i.e., the error) is calculated for the initialized 

weights and biases (arbitrary values). In the second stage, 

these weights in all links and biases in all neurons are 

adjusted to minimize the error by propagating the error 

backwards (BP algorithm). The network outputs and the 

error are calculated again with the adapted weights and 

biases and this training process is repeated at each epoch 

until a satisfied output yk is obtained corresponding with 

minimum error. This is by adjusting the weights and 

biases of BP algorithm to minimize the total mean square 

error and is computed as 

w

E
www oldnew




     and  

b

E
bbb oldnew




                  (20) 

where    is the learning rate. Equation (20) reflects the 

generic rule used by BP algorithm. Equations (21) and 

(22) illustrate this generic rule of adjusting the weights 

and biases. For output layer,  

yww kk
old
jk

new
jk  

          

and  

 k
old
k

new
k bb                    (21) 

where   is the momentum factor (a constant between 0 

and 1) and  yy k
d
kk   

For hidden layer,  

yww jj
old
ij

new
ij     and   

 j
old
j

new
j bb                   (22) 

where  Q
k jkkj w and  yy k

d
kk   

This study uses the Levenberg-Marquardt algorithm to 

train a three-layered Feed-forward neural network. This 

neural network is specially suited for implementing 

nonlinearities using sigmoid function for hidden layers 

and linear function for output layer.  
 

5.2: Generalized Regression neural network (GRNN)  
 

It is a normalized Radial Basis Function (RBF) network 

for which a hidden unit is centered at every training 

sample. The RBF units are characterised by the Gaussian 

kernels. The hidden layer to output layer weights are just 

the target values, so that output is simply a weighted 

average of the target values of training cases close to the 

given input case. The first layer is just like a RBF 

network with as many neurons as there are input/target 

vectors. Choosing the spread/smoothing parameters of the 

RBF determines the width of an area in the input space, 

to which each basic function responds. Figure 4 shows 

the general regression neural network architecture.   
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Figure 4: Generalized Regression neural network 

 



 

   

If f(x, y) be the joint continuous probability density 

function of a vector random variable x and a scalar 

random variable y and X be a particular measured value 

of the random variable x then the regression of y given X, 

is presented by the conditional expectation (E) of y on X 

)23(

),(

),(

]/[














dyyXf

dyyXyf

XyE

 
In practice, the probability density functions are usually 

unknown. So it is estimated from sample values of Xi and 

Yi.  The general form of estimator is 

 






 




n

i

i
n

xx

n
xf

1

1
)(





               (24) 

Here, the kernel function estimator is used 
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1
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i

n
i

ii T
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     (25) 

where p  is the dimension of the vector variable x, n  is 

the number of observations,   is the width (spread) of 

the estimating kernel or smoothing factor, Y
i  is the 

desired scalar output given the observed input X
i . Now 

defining the scalar function Di
2

 

)()(2
XXXXD

ii T
i 

                 (26)
 

From equations (25) and (26), resulting kernel regression 

estimator can be presented by 

 














 













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1
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2

1
2

2

^

2
exp

2
exp

)(




               (27) 

The estimate )(
^

XY
 
 can be visualized as a weighted 

average of all the observed values, Yi, where each 

observed value is weighted exponentially according to its 

Euclidean distance from X. The neural network is 

implemented as follows. 

Let wij be the target output corresponding to input training 

vector X
i
 and j

th
 output, equation (24) can be expressed as 

follows 

;
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The topology of GRNN consists of four layers:  input 

layer, hidden layer, summation layer and output layer. 

The function of input layer is simply to pass the input 

vector variables X to all the units in hidden layer.  Hidden 

layer consists of the entire training sample X1….Xm.  

When an unknown pattern X is presented, squared 

distance D
2
i

 between unknown pattern and training 

sample is calculated and passed through the kernel 

function. The summation layer has two units A and B. 

Unit A computes the summation of 




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

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exp
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multiplied by Yi associated with Xi.  B unit simply 

computes the summation















 2

2

2
exp

Di . Output unit 

divides A by B to provide the predication result. 

 

5.3. Price Prediction by ANNs 
 

In a competitive electricity market, the objective of price 

formulation is either to minimize the generation cost or 

maximize the consumer benefits. So prices is most 

optimally obtained at various nodes or location of the 

network depending on the availability of low cost 

generation, real and reactive demands and availability of 

sufficient transmission capacity or no network 

congestion. This study evaluated AC-DC OPF based 

nodal pricing methodology to obtained electricity prices 

at several nodes at hourly peak demands obtained for 

several days. The obtained data are nodal prices, power 

angles, and bus voltages and available real and reactive 

demands are used as input to above neural networks to 

predict the day-ahead prices. The neural network toolbox 

in MATLAB is selected and trained for various NNs with 

the ANN parameters as shown in Table 1.  
 

Table 1: ANN parameters for best price prediction 
 

Particulars Method/Value Particulars Method/Value 

For FFNN  

Neural Network 

Architecture 

BP Learning and Training 

Method/Data 

Neural Network  „MLP‟ Training method 

„Trainlm‟  

(Levenberg-

Marquardt BP) 

No. of Input 

Neurons 
4 

Learning 

method 

„learngdm‟  
(Gradient decent  

function) 

No. of Output 
Neurons 

1 Learning rate 0.5 

No. of Hidden 

Layer 
1 Momentum 0.3-0.8 

  No. of iterations 100 

No. of Hidden 

Neurons 
16 

Data dividation 

method 
Dividerand 

Transfer 
Function 

„Tangent 

sigmoid‟, 

„Purelin‟ 

Training data  60% 

Validation data  10% 

Data used for 

Testing 
30% 

For GRNN 

Spread 0.01   
 

The accuracy of  price prediction is evaluated with root 

mean square error (RMSE) and mean absolute percentage 

error (MAPE) represented respectively, by 
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where N is the number of sample nodal prices. 



 

   

VI. PROBLEM SIMULATION: A REAL 400 kV 

MSETCL SYSTEM, INDIA 
 

This study considered a real network of 400 kV 

Maharashtra State Electricity Transmission Company 

Limited (MSETCL), India shown in Figure 5.  
 

 
Figure 5: A 400 kV MSETCL system, India 

 

It consists of 19 intra-state buses (i.e. Bus No. 1 to 19) 

and 8 inter-state buses. To fulfill power demand, 

Additional power is imported from inter-state generators 

namely BHILY, KHANDWA, SDSRV, BOISR, 

BDRVT, TARAPUR, and SATPR. The Real and 

Reactive demand variations are shown in Figure 6 and 

Figure 7 respectively. The voltages at all buses have 

bounded between 0.95 and 1.05 PU. A ±500 kV HVDC 

link is connected between CHDPUR and PADGE. 

CHDPUR selected as a reference bus. 

The AC-DC OPF based methodology is simulated for this 

real system. The resulted bus voltages variations and 

average real electricity nodal prices are shown in Figure 8 

and Table 2 respectively. 
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Figure 6: Real demand variation 
 

To accurately predict the day-ahead electricity nodal 

prices, the input variables are assigned to various Neural 

Networks. The parameters for various neural networks as 

shown in Table 1 are selected and simulated in MATLAB 

to obtain the accurate price prediction.  The comparison 

of average nodal price at various buses and predicted 

nodal prices as obtained by proposed NNs is shown in 

Table 2. 
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Figure 7: Reactive demand variation 
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Figure 8: Bus Voltage Variation 

 

Table2: Electricity nodal price and ANN prediction 
 

Bus 

No. 
Bus Name 

Average Electricity Nodal 

Prices (`/kWh) 

Real FFNN GRNN 

1 CHDPUR 1.79 1.78 1.81 

2 KORDY 2.20 2.20 2.21 

3 BHSWL2 2.42 2.43 2.42 

4 ARGBD4 2.43 2.43 2.45 

5 BBLSR2 2.62 2.63 2.60 

6 DHULE 2.19 2.19 2.23 

7 PADGE 2.47 2.48 2.46 

8 KALWA 2.45 2.45 2.48 

9 KARGAR 2.43 2.43 2.42 

10 LONKAND 2.85 2.85 2.82 

11 NGOTNE 2.36 2.37 2.37 

12 DABHOL 2.84 2.84 2.83 

13 KOYNA-N 2.81 2.82 2.84 

14 KOYNA-4 2.60 2.60 2.61 

15 KLHPR3 2.73 2.73 2.69 

16 JEJURY 2.84 2.84 2.86 

17 KARAD2 2.83 2.83 2.80 

18 SOLPR3 2.48 2.49 2.47 

19 PARLY2 2.40 2.39 2.36 
 

The FFNN attended more accurate nodal price prediction 

as compared to GRNN. The performance of proposed 

NNs is evaluated by computing RMSE and MAPE. The 



 

   

resulted values for various buses are shown in Figure 9 

and Figure 10. Compared to GRNN, the RMSE and 

MAPE in FFNN is attended a reasonably smaller value at 

several buses gives more accurate nodal price prediction. 
 

 
Figure 9: RMSE error comparison 

 

 
Figure 10: MAPE error comparison 

 

CONCLUSIONS 

In consideration with increase importance of accurate 

prediction of day-ahead electricity nodal prices in 

restructured electricity market, this paper presented an 

AC-DC OPF based day-ahead electricity nodal price 

prediction using artificial neural networks. The multilayer 

FFNN with a back-propagations algorithm attended 

reasonably smaller values for RMSE and MAPE as 

compared to other neural networks. The proposed scheme 

is more suitable to real power system as demonstrated in 

this paper. Price predictions obtained are accurate enough 

to be used by market participants to estimate the risk, 

formulating bidding strategy and other market oriented 

decision making. The proposed methodology is rational 

and more feasible for India and other similar developing 

countries to establish and maintain their wholesale 

electricity market. 
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