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Abstract: In this paper the maximum sidelobe level (SLL) 
reductions for various designs without and with central 
element feeding in three-ring concentric circular antenna 
arrays (CCAA) are examined using two novel variants of 
particle swarm optimization techniques as (i) an improved 
particle swarm optimization technique (IPSO) and (ii) a 
novel particle swarm optimization technique (NPSO) to 
finally determine the global optimal three-ring CCAA 
design. Real coded Genetic Algorithm (RGA) is also 
employed for comparative optimization but it proves to be 
suboptimal. Among the various CCAA designs, the design 
containing 4, 6 and 8 elements along with central element 
feeding in three successive concentric rings proves to be 
such global optimal design with minimum SLL (-36.80  
dB) determined by IPSO and (-39.38 dB) determined by 
NPSO. 
 

Key words: concentric circular antenna array, non-
uniform excitation, sidelobe level, real coded genetic 
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1. Introduction  
An antenna array consists of multiple stationary 
antenna elements, which are often fed coherently. 
There are abundant open technical literatures [1-12], 
bearing a common target - bridging the gap between 
desired radiation pattern having nil SLL with what is 
practically achievable. The primary method in all 
these research works is improvement of array pattern 
by manipulating the structural geometry to suppress 
the SLL while preserving the gain of the main beam.  
Among the different structures of antenna arrays, 
CCAA [1, 6] have become most popular in mobile, 
and wireless communications, radar and sonar [7, 8].  
   In this paper optimization is performed for non-
uniform current excitation weights in various CCAA 
design sets each having uniform element separation. 
For optimization, two variants of Particle Swarm 
Optimization algorithms (IPSO and NPSO) [13-17] 
and conventional Real coded Genetic Algorithm 
(RGA) [9, 11] are adopted. The array factors due to 

optimal current excitation weights in various CCAA 
design sets are examined to find the best possible 
design set. 
   Regarding the comparative optimization 
effectiveness of the techniques, the proposed NPSO 
technique proves to be the best in attaining minimum 
SLL, reduction of major lobe beamwidth and hence 
near global minimum “Misfitness” objective 
function value in the optimization of each CCAA 
design.  
  The rest of the paper is arranged as follows: In 
section 2, the general design equations for the non-
uniformly excited CCAA are stated. Then, in section 
3, brief introductions for the RGA, IPSO and NPSO 
are presented. Convergence test of optimization 
Techniques are discussed in section 4. Numerical 
results are presented in section 5. Finally the paper 
concludes with a summary of the work in section 6. 
 
2. Design Equation  
Geometrical configuration is a key factor in the 
design process of an antenna array. For CCAA, the 
elements are arranged in such a way that all antenna 
elements are placed in multiple concentric circular 
rings, which differ in radii and in number of 
elements.  Fig. 1 shows the general configuration of 
CCAA with M concentric circular rings, where the 
mth (m = 1, 2, …, M) ring has a radius rm and the 
corresponding number of elements is Nm.  If all the 
elements (in all the rings) are assumed to be isotopic 
sources, then the radiation pattern of this array can 
be expressed in terms of its array factor only.  
Referring to Fig.1, the array factor, ( IAF , )φ  for the 
CCAA in x-y plane is expressed as:  
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where  denotes current excitation of the imiI th 
element of the mth ring, λπ= 2K ; λ  being the signal 
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wave-length, and θ  and φ  symbolize the zenith 
angle from the positive z axis and the azimuth angle 
from the positive x axis to the orthogonal projection 
of the observation point respectively. It may be 
noted that if the elevation angle is assumed to be 90 0 
i.e. θ = 90 0 then (1) may be written as a periodic 
function of φ  with a period of 2π radian. The angle 

miφ  is nothing but element to element angular 
separation measured from the positive x-axis. As the 
elements in each ring are assumed to be uniformly 
distributed, miφ  may be written as: 
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The residual phase term  is a function of angular 
separation  and ring radii r

miα
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where 0φ  is the value of φ  where peak of the main 
lobe is obtained.  
After defining the array factor, the next step in the 
design process is to formulate the objective function 
which is to be minimized. The objective function 
“Misfitness” (  may be written as (4): )MF
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Fig.  1.  Concentric circular antenna array (CCAA). 
 
BWFN is an abbreviated form of first null 
beamwidth, or, in simple terms, angular width 
between the first nulls on either side of the main 
beam. MF  is computed only if 

 and corresponding 
solution of current excitation weights is retained in 
the active population otherwise not retained. 

 are the weighting 
factors. 
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0φ  is the angle where the highest maximum 
of central lobe is attained in [ ]ππφ ,−∈ . 1mslφ  is the 

angle where the maximum sidelobe ( )( )mimsl IAF ,1φ  is 
attained in the lower band and 2mslφ  is the angle 
where the maximum sidelobe ( )( )mimsl IAF ,2φ  is 
attained in the upper band.  are so chosen 
that  optimization of SLL remains more dominant 
than optimization of  and 
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computedBWFN MF  never 
becomes negative. In (4) the two beamwidths, 

and computedBWFN ( )1=miIBWFN  basically refer to the 
computed first null beamwidths in radian for the 
non-uniform excitation case and for uniform 
excitation case respectively. Minimization of MF  
means maximum reductions of SLL both in lower 
and upper sidebands and lesser  as 
compared to

computedBWFN
( )1=miIBWFN . The evolutionary 

optimization techniques employed for optimizing the 
current excitation weights resulting in the 
minimization of MF  and hence reductions in both 
SLL and BWFN are described in the next section. 
 
3. Evolutionary Techniques Employed 
 
3. A.   Real Coded Genetic Algorithm (RGA) 
GA is mainly a probabilistic search technique, based 
on the principles of natural selection and evolution. 
Steps of RGA [9, 11] as implemented for 
optimization of current excitation weights are: 

• Initialization of real chromosome strings of 
np population, each consisting of a set of 
current excitation weights. Size of the set 
depends on the number of excitation 
elements in a particular CCAA design    

• Decoding of strings and evaluation of MF  
of each string 

• Selection of elite strings in order of 
increasing MF  values from the minimum 
value 

• Copying of the elite strings over the non-
selected strings 

• Crossover and mutation to generate off-
springs 

• Genetic cycle updating 
 The genetic cycle stops when the maximum number 
of cycles is reached. The grand minimum MF  and 
its corresponding chromosome string having the 
desired current excitation weights are finally 
obtained. 
 
3. B.  Particle Swarm Optimization (PSO) 
PSO is a flexible, robust population-based stochastic 
search/optimization technique with implicit 
parallelism, which can easily handle with non-
differential objective functions, unlike traditional 
optimization methods. PSO is less susceptible to 

 



getting trapped on local optima unlike GA, 
Simulated Annealing etc. Eberhart and Shi [13] 
developed PSO concept similar to the behavior of a 
swarm of birds. PSO is developed through 
simulation of bird flocking in multidimensional 
space. Bird flocking optimizes a certain objective 
function. Each particle (bird) knows its best value so 
far (pbest). This information corresponds to personal 
experiences of each particle. Moreover, each particle 
knows the best value so far in the group (gbest) 
among pbests. Namely, each particle tries to modify 
its position using the following information: 
• The distance between the current position and the 
pbest. 
• The distance between the current position and the 
gbest. 
Similar to GA, in PSO techniques also, real particle 
vectors of population np are assumed. Each particle 
vector consists of components like required number 
of current excitation weights, depending on the 
number of excitation elements in each CCAA 
design.  
Mathematically, velocities of the particles are 
modified according to the following equation: 
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where  is the velocity of ik
iV th particle at kth iteration; 

w is the weighting function; and are the 
positive weighting factors;  and  are the 
random numbers between 0 and 1;  is the current 
position of i

1C 2C

1rand 2rand
k
iS

th particle at kth iteration;  is the 
personal best of i

k
ipbest

th particle at kth iteration;  is 
the group best of the group at k

kgbest
th iteration. The 

searching point in the solution space may be 
modified by the following equation: 
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The first term of (5) is the previous velocity of the 
particle. The second and third terms are used to 
change the velocity of the particle. Without the 
second and third terms, the particle will keep on 
‘‘flying’’ in the same direction until it hits the 
boundary. Namely, it corresponds to a kind of inertia 
represented by the inertia constant, w  and tries to 
explore new areas.  
 
3. B. i. Improved Particle Swarm Optimization 
(IPSO) 
The global search ability of traditional PSO is very 
much enhanced with the help of the following 
modifications. This modified PSO is termed as IPSO 
[16].  
i) The two random parameters rand1 and rand2 of (5) 
are independent. If both are large, both the personal 

and social experiences are over used and the particle 
is driven too far away from the local optimum. If 
both are small, both the personal and social 
experiences are not used fully and the convergence 
speed of the technique is reduced. So, instead of 
taking independent rand1 and rand2, one single 
random number  is chosen so that when  is large, 1r 1r
( )11 r−  is small and vice versa. Moreover, to control 
the balance of global and local searches, another 
random parameter  is introduced. For birds 
flocking for food, there could be some rare cases that 
after the position of the particle is changed according 
to (6), a bird may not, due to inertia, fly toward a 
region at which it thinks is the most promising for 
food. Instead, it may be leading toward a region 
which is in the opposite direction of what it should 
fly in order to reach the expected promising regions. 
So, in the step that follows, the direction of the bird’s 
velocity should be reversed in order for it to fly back 
into the promising region.  is introduced for 
this purpose. Both cognitive and social parts are 
modified accordingly.  

2r

( )3rsign

Finally, the modified velocity of jth component of ith 
particle is expressed as follows:  
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where , 1r 2r  and  are the random numbers between 
0 and 1;  is the current position of particle i at 
iteration k;  is the personal best of i

3r
k
iS

k
ipbest th particle 

at kth iteration;  is the group best among all 
pbests for the group at k

kgbest
th iteration. The searching 

point in the solution space can be modified by the 
following equation (6).      

( )3rsign  is a function defined as: 
( ) 13 −=rsign   when   ≤ 0.05,  3r

      =  1   when   > 0.05.                (8) 3r
 
3. B. ii.  Novel Particle Swarm Optimization 
(NPSO) 
The search ability of IPSO is further enhanced with 
the help of the following modification. This 
modified PSO is named as NPSO [17].  
i) A new variation in the velocity expression (5) is 
made by splitting the cognitive component (second 
part of (5)) into two different components. The first 
component can be called good experience 
component. That is, the particle has a memory about 
its previously visited best position. This component 
is exactly the same as the cognitive component of 
the basic PSO. The second component is given the 
name bad experience component. The bad 

 



experience component helps the particle to 
remember its previously visited worst position. The 
inclusion of the worst experience component in the 
behavior of the particle gives additional exploration 
capacity to the swarm. By using the bad experience 
component, the bird (particle) can bypass its 
previous worst position and always try to occupy a 
better position.  
Finally, with all modifications, the modified velocity 
of jth component of ith particle is expressed as 
follows:  
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where  are the personal best and the personal 
worst of particle i respectively ; the other notations 
are already mentioned in the explanation of IPSO. 

k
ipworst

 
4. Convergence Tests of Optimization Techniques 
 
4.1. Benchmark Test Functions 
A suite of six benchmark test functions [18-19]: 
Sphere model (f1), Generalized Rosenbrock’s 
function(f2), Maxican hat function(f3), Six-hump 
camel back function(f4), Generalized Rastrigin’s 
function(f5) and Generalized Griewank function(f6) 
are used to test the performances of the optimization 
techniques. Some of these functions are plotted in 
Figs. 2-4 for N = 2 for ease of visualization. Many 
different kinds of optimization problems are tested 
by these benchmark test functions. They are divided 
into three categories: unimodal functions, 
multimodal functions with only a few local minima 
and multimodal functions with many local minima. 
They can test the searching ability of the 
optimization techniques comprehensively. 
 
A. Unimodal Function 
i) Generalized Rosenbrock function: 
The very narrow ridge in this function makes the 
landscape more complicated and difficult to be 
explored. Algorithms that are unable to discover 
good directions do not perform well on this problem. 
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where  
x=[x1,x2…xN] is a N-dimensional real-valued vector. 

 
B. Multimodal Functions with Many Local 
Minima 
i) Generalized Rastrigin function: 
This function contains millions of local optima in the 
interval of consideration, making it a fairly difficult 

problem of optimization. The function is highly 
multimodal. 
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where 
x=[x1,x2…xN] is a N-dimensional real-valued vector. 
 
ii) Generalized Griewank function: 
The function can be defined as 
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where 
x=[x1,x2…xN] is a N-dimensional real-valued vector. 
 

 
Fig.  2.  Plot of Generalized Rosenbrock function (f2). 

 

 
Fig.  3.  Plot of Generalized Rastrigin function (f5). 

 

 
Fig.  4.  Plot of Generalized Griewank function (f6). 

 



4.2. Test Results 
Table 1 shows the asymmetric initialization ranges 
for the functions (f2, f5 and f6). Table 2 portrays the 
comparative performances of the optimization 
techniques tested on the above three functions 
respectively. The convergence profiles obtained by 
the techniques are displayed in Figs. 5-7. 
 

Table 1 
Asymmetric initialization ranges for different benchmark 
functions [23] 
Function Dimension Asymmetric initialization ranges 

f2 2 (0.1, 2.048)N

f5 2 ( 0.1, 10.24)N

f6 2 ( 0.1, 600)N

 
Table 2 
Computational results for Rosenbrock, Generalized Rastrigrin and Griewank functions 

Function Technique Desired 

min 

Computed 

min 

Parameters Execution time 

(Sec) 

RGA 0.0374 1.0456,  1.1467 5.6784 
IPSO 0.0169 1.0329,  1.0241 4.2500 

f2

NPSO 

0.0000 

0.0030 0.9455,  0.8947 7.6100 
RGA 2.0305 0.9960,  1.0014 0.9690 
IPSO 1.9967 0.9934,  1.0006 0.6870 

f5

NPSO 

2.0000 

2.0000 1.0000,  1.0000 1.2500 
RGA 0.0075 0.1000,  0.1000 1.0875 
IPSO 0.0075 0.1000,  0.1000 0.7840 

f6

NPSO 

0.0075 

0.0075 0.1000,  0.1000 1.8280 
 

 
(a) RGA 

 
(b) IPSO 

 
(c)NPSO 

Fig.  5.  Convergence characteristics for different 
techniques for Rosenbrock function. 
 

 

 
(a) RGA 

 
(b) IPSO 

 
(c)NPSO 

Fig. 6. Convergence characteristics for different 
techniques for Rastrigrin function. 
 

 



 
(a) RGA 

 
(b) IPSO 

 
(c)NPSO 

Fig. 7. Convergence characteristics for different 
techniques for Griewank function. 
 
5. Computational results 
This section gives the computational results for 
various CCAA design sets obtained by RGA, IPSO 
and NPSO techniques. For each optimization 
technique ten three-ring (M=3) CCAA sets for each 
case, (a) without central element feeding and (b) 
with central element feeding in three-ring concentric 
circular antenna arrays (CCAA) are assumed. Each 
CCAA maintains a fixed spacing between the 
elements in each ring (inter-element spacing for: first 
ring = 0.55λ, second ring = 0.61λ and third ring = 
0.75λ). These spacings are the means of the values 
determined for the ten sets for non-uniform spacing 
and non-uniform current excitation weights in each 
ring using 25 trial generalized optimization runs for 
each set. For all sets of experiments, the number of 
elements for the inner-most ring, the middle ring and 
the outermost ring are N1, N2 and N3 respectively. For 
all the cases, 0φ = 00 is considered so that the centre 
of the main lobe in radiation patterns of CCAA starts 
from the origin. After experimentation, best proven 
values of weighting factors,  of (4) are 
fixed as 18 and 1 respectively. 
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The following best proven parameters for the RGA 
and the two PSOs are: i) Initial population = 120 
chromosomes, ii) Maximum number iteration cycles 
= 400 (RGA), 100 (IPSO, NPSO); lesser number of 
cycles is found to be sufficient for the convergence 
of the two PSOs, since PSO’s convergence rate is 
higher than RGA’s convergence rate, iii) For RGA, 
Selection probability, Crossover (random dual point) 
ratio and mutation probability = 0.3, 0.8 and 0.004 
respectively, iv) For the PSOs,  =  = 1.5.  1C 2C
Each RGA, IPSO and NPSO technique generates a 
set of normalized optimal non-uniform current 
excitation weights for each set of CCAA. =1 
corresponds to uniform current excitation. Sets of 
three-ring CCAA (N

miI

1, N2, N3) designs considered  
for both without and with central element feeding are 
(2, 4, 6), (3,5,7), (4,6,8), (5,7,9), (6,8,10), (7,9,11), 
(8,10,12), (9,11,13), (10,12,13), (11,13,15). Three 
sets of optimal results for each RGA, IPSO and 
NPSO are shown in Tables 4-9. Table 3 depicts SLL 
values and BWFN values for all corresponding 
uniformly excited CCAA sets. 
 
5. A. Analysis of radiation pattern of optimal 
CCAA 
   Figs. 8-10 depict the substantial reductions in SLL 
with non-uniform optimal excitation weights as 
compared to the case of uniform non-optimal current 
excitation weights. All three techniques yield much 
more reductions in SLL for all CCAA design sets 
with central element feeding as compared to the 
same without central element feeding. As seen from 
Tables 4-9 SLL reduces to -28.06 dB (RGA), -30.94 
dB (IPSO), -32.90 dB (NPSO) for Case (a) (Set III) 
and -34.32 dB (RGA), -36.80 dB (IPSO), -39.38 dB 
(grand highest SLL reduction as determined by 
NPSO) for Case (b) (shown as a shaded row in Table 
9) with the CCAA set having N1=4, N2=6, N3=8 
elements (Set III). This optimal set yields grand 
maximum SLL reductions for all three techniques 
among all the sets. IPSO and NPSO yield more 
reductions in SLL than RGA for each CCAA set 
without and with central element feeding.  
   BWFN also become narrower for non-uniform 
optimal current excitation weights as compared to 
the uniform non-optimal excitations in all cases. For 
the same optimal CCAA set, the BWFN values are 
77.10 (RGA), 77.00 (IPSO), and 76.00 (NPSO) for 
Case (a), 84.00 (RGA), 82.80 (IPSO) and 87.30 
(NPSO) for Case (b) against 90.30 (Case (a)), 95.40 
(Case (b)) for the corresponding uniformly excited 
CCAA having the same number of elements. So, 
these techniques yield maximum reductions of 
BWFN also for this optimal CCAA. 
 

 



Table 3 
SLL and BWFN for uniformly excited ( =1) CCAA miI

Without central element (Case 
(a)) 

With central element (Case 
(b)) 

Set No. No. of elements in each rings 
(N1,N2,N3) 

SLL (dB) BWFN (deg) SLL (dB) BWFN (deg) 
I 2, 4, 6 -12.56 128.4 -17.0 140.0 
II 3, 5, 7 -13.8 107.2 -15.0 116 
III 4, 6, 8 -11.23 90.3 -12.32 95.4 
IV 5, 7, 9 -11.2 78.2 -13.24 81.6 
V 6, 8, 10 -10.34 68.4 -12.0 71.1 
VI 7, 9, 11 -10.0 61.0 -11.32 63.0 
VII 8, 10, 12 -9.6 54.8 -10.76 56.4 
VIII 9, 11, 13 -9.28 50.0 -10.34 51.3 
IX 10, 12, 14 -9.06 46.0 -10.0 47.0 
X 11, 13, 15 -8.90 42.0 -9.8 43.2 

 
Table 4 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (a)) using RGA 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.3773    0.9491    0.3830    0.7861    0.5661    0.6932    0.9638    0.6275    0.5465  0.9349   
0.4878    0.7220    0.5123    0.2850    0.6041    0.7300    0.5016    0.2799 

1.57 -28.06 77.1 

V 0.5513    0.4810    0.6504    0.5254    0.7093    0.9878    0.9240    0.0206    0.7129  0.9853   
0.8481    0.0006    0.8226    0.9933    0.4945    0.7770    0.6438    0.4928    0.6184  0.4075   
0.9723   0.8552    0.4231    0.5006 

1.99 -25.3 59.6 

VII 0.7507    0.3438    0.7676    0.9471    0.8357    0.4322    0.8105    0.9816    0.4392  0.1996   
0.2429    0.8479    0.5903    0.6827    0.0409    0.0649    0.9464    0.5148    0.5861  0.0744   
0.9357   0.3858    0.4818    0.4177    0.2614    0.5137    0.9845    0.6134    0.3000   0.5170 

1.50 -26.24 51.8 

 
Table 5 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (b)) using RGA 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.4114    0.6870    0.9740    0.6609    0.9566    0.7231    0.6604    0.8840    0.7331   
0.6333    0.8109    0.5521    0.7222    0.5261    0.1991    0.6528    0.7360    0.5624   
0.1988 

0.76 
 

-34.32 84.0 

V 0.3133    0.6070    0.4469    0.6535    0.5605    0.5371    0.8150    0.8702    0.0191   
0.7174    0.9248    0.5435    0.0055    0.9165    0.9551    0.2993    0.9178    0.7840   
0.3256    0.5021    0.3362    0.7293    0.9277    0.4545    0.4949 

1.58 -27.52 60.7 

VII 0.7336    0.5878    0.8171    0.6285    0.9334    0.5923    0.9541    0.4979    0.9455   
0.7430    0.0891    0.0076    0.7318    0.4378    0.8178    0.0077    0.0403    0.7994   
0.5177    0.4003    0.3999    0.8346    0.4101    0.4733    0.4789    0.4304    0.3757   
0.9218    0.5178    0.2464    0.3176 

1.44 
 

-28.10 55.4 

 
Table 6 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (a)) using IPSO 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.2627  0.7210    0.2934    0.8062    0.5205  0.4549    0.9229    0.4710    0.5328  1.0000   
0.5047    0.7571    0.4666  0.2824    0.4476    0.7655      0.4755  0.2603 

1.01 -30.94 77.0 

V 0.5898  0.4557    0.8915    0.5845    0.5826  0.7157    0.7554    0.0024    1.0000  0.9997   
0.8149    0.0002    0.6834  0.9960    0.5656    0.7870    0.8495  0.4840    0.3921    0.3375   
0.8508  0.8327    0.3992    0.5780 

1.79 -26.28 60.0 

VII 0.8797  0.4214    0.7917    0.8798    0.7259  0.4046    0.7728    0.9795    0.6673  0.2388   
0.0667    0.6917    0.4563  0.7247    0.0000    0.1562    0.6141  0.4940    0.3613    0.3553   
0.9702  0.3091    0.4248    0.4615    0.4081  0.4474    0.9148    0.3575    0.3570  0.4125 

1.44 -26.84 51.8 

 
 

 



Table 7 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (b)) using IPSO 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.3286    0.5247    0.9394    0.5759    0.9617    0.6526    0.6479    1.0000    0.6603   
0.6904    0.9415    0.5947    0.7374    0.6044    0.2658    0.5901    0.8050   0.5784   
0.2282 

0.64 -36.8 82.8 

   V 0.6820    0.6479    0.4552    0.2491    0.3610    0.5122    0.9340    0.8508    0.2413   
0.4122    1.0000    0.3001    0.2245    0.8157    1.0000    0.3381    1.0000    0.8942   
0.2727    0.5808    0.3359    0.7631    0.9528    0.3366    0.4732 

1.51 -27.6 59.0 

VII 0.6323    0.7016    0.6992    0.6429    0.9198    0.5076    0.8026    0.6549    0.9991   
0.8022    0.0876    0.0364    0.8577    0.5634    0.5816    0.0703    0.1957    0.8024   
0.5639    0.4077    0.4874    1.0000    0.5435    0.3892    0.4976    0.4542    0.3156   
0.9996    0.3611    0.4881    0.5881 

1.35 -28.56 54.9 

 
Table 8 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (a)) using NPSO 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.1352  0.6342    0.1276    0.7173    0.4605  0.3996    0.9999    0.3881    0.4328  0.9999   
0.4861    0.7093    0.4786  0.2444    0.4951    0.7217    0.5059  0.2206 

0.84 -32.90 76.0 

   V 0.6540  0.3225    0.5256    0.3500    0.5900  0.9953    1.0000    0.0000    0.6796  1.0000   
0.4865    0.0000    0.9826  0.9999    0.3181    0.9085    0.6976  0.4740    0.6658    0.5429   
0.6096  0.9997    0.3863    0.4706 

1.56 -25.92 59.6 

VII 0.7790  0.1309    0.7325    0.9913    0.6683   0.3641    0.7597   0.9994    0.5164  0.2497   
0.2785    0.6088    0.8325  0.8729    0.1274    0.1717    0.9892  0.6307    0.7907    0.1891   
0.9626  0.2938    0.5241    0.7151    0.1008  0.5870    0.9995    0.6031    0.4819    0.7547 

1.35 -25.06 54.4 

 
Table 9 
Current excitation weights, SLL and BWFN for optimal, non-uniformly excited CCAA (Case (b)) using NPSO 

Set 
No. 

Current excitation weights for the array elements ( , ,…. ) 11I 21I miI MF SLL 
(dB) 

BWFN 
(deg) 

III 0.5895    0.9684    0.9999    0.9778    0.9999    0.7511    0.7504    0.4567    0.7547   
0.7334    0.4502    0.4520    0.5944    0.4278    0.0887    0.4474    0.5906    0.4488   
0.1376 

0.40 -39.38 87.3 

V 0.3841    0.5175    0.7782    0.7991    0.7484    0.5967    0.7253    0.7594    0.0000   
0.8493    1.0000    0.9054    0.0506    0.7521    0.9593    0.4153    0.7860    0.9959   
0.4315    0.5375    0.3743    1.0000    0.7653    0.3356    0.3897 

1.47 
 

-27.78 60.1 

VII 0.5478    0.6715    0.7042    0.6778    0.9674    0.5746    0.8762    0.5337    0.8748   
0.7105    0.0073    0.0273    0.7897    0.5195    0.6712    0.1081    0.0747    0.7765   
0.3068    0.3318    0.4394    0.8748    0.3860    0.3744    0.3121    0.4117    0.2588   
1.0000    0.4616    0.2906    0.3932 

1.19 -29.60 52.55 
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Fig.  8.  Radiation patterns for a uniformly excited and 
RGA based non-uniformly excited CCAA (N1=4, N2=6, 
N3=8 elements) 

-150 -100 -50 0 50 100 150
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle of Arival (Degrees)

N
or

m
al

iz
ed

 a
rr

ay
 fa

ct
or

 (d
B

)

 

 

Uniform Excitation  (without central element feeding)
Uniform Excitation  (with central element feeding)
IPSO  (without central element feeding)
IPSO  (with central element feeding)

 
Fig.  9.  Radiation patterns for a uniformly excited and 
IPSO based non-uniformly excited CCAA (N1=4, N2=6, 
N3=8 elements) 
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Fig.  10.  Radiation patterns for a uniformly excited and 
NPSO based non-uniformly excited CCAA (N1=4, N2=6, 
N3=8 elements). 
 
5. B. Comparative effectiveness and convergence 
profiles of RGA and PSOs 
From Tables 4-9, it is observed that as compared to 
RGA and IPSO, NPSO always yields higher SLL 
reductions for both without and with central element 
feeding for all the CCAA sets. 
 The minimum “Misfitness” MF  values are recorded 
against the number of iteration cycles to get the 
convergence profile for each technique as shown in 
Figs 11-13.  
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Fig.  11.  Convergence curve for RGA in case of non-
uniformly excited CCAA (N1=4, N2=6, N3=8 elements) 
with central element feeding (Case (b)). 
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Fig.  12.  Convergence curve for IPSO in case of non-
uniformly excited CCAA (N1=4, N2=6, N3=8 elements) 
with central element feeding (Case (b)). 
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Fig. 13. Convergence curve for NPSO in case of non-
uniformly excited CCAA (N1=4, N2=6, N3=8 elements) 
with central element feeding (Case (b)). 
 
Tables 4-9 show RGA and IPSO yield suboptimal 
higher values of grand minimum MF and NPSO 
yields optimal (least) grand minimum MF  
consistently in all sets and cases. With a view to the 
above facts, it may finally be inferred that NPSO 
yields near global optimization. The programming 
was written in MATLAB 7.5 version on core (TM) 2 
duo processor, 3.00 GHz with 2 GB RAM. 
 
6. Conclusion 
In this paper, the optimal design of a non-uniformly 
excited CCAA with uniform inter-element spacing 
and without / with central element feeding has been 
described using the techniques RGA, IPSO and 
NPSO. RGA is less robust and yield suboptimal 
results. IPSO and NPSO technique prove to be faster 
and more robust techniques. NPSO yields near global 
optimal current excitation weights and near global 
minimum values of SLL and BWFN for all sets of 
CCAA designs. Computational results reveal that the 
design of optimally and non-uniformly excited 
CCAA offers a considerable SLL reduction along 
with the reduction of BWFN with respect to the 
corresponding non-optimal uniformly excited CCAA. 
Contribution of the paper is threefold: (i) All CCAA 
designs having central element feeding yield much 
more reductions in SLL as compared to the same not 
having central element feeding, (ii) The CCAA set 
having N1=4, N2=6, N3=8 elements along with central 
element feeding gives the grand minimum SLL        
(-39.38 dB) as compared to all other sets, which one 
is thus the grand optimal set among all the three-ring 
CCAA sets, and (iii) Comparing the performances of 
the three techniques NPSO shows the best 
optimization performance as compared to the other 
two. 
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