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Abstract— A sliding mode control strategy associated to the
field-oriented control of dual-stator induction motor drives is
discussed in this paper. The induction machine has two sets
of stator three-phase windings spatially shifted by 30 electrical
degrees. The sliding mode control is a robust non linear algorithm
which uses discontinuous control to force the system states
trajectories to join some specified sliding surface. It has been
widely used for its robustness to model parameter uncertainties
and external disturbances. The simulation results are presented.

Index Terms— Field-Oriented Control (FOC), Dual-Stator In-
duction Motor Drives (DSIM), Sliding Mode Control (SMC).

I. I NTRODUCTION

I NVENTED by Nikola Tesla in 1888, the alternating-current
(AC) induction motor has had a major role in the develop-

ment of the electrical industry [1]. The primary advantages
of induction machine are less maintenance cost, brushless
construction (squirrel-cage rotor), better transient, etc.

Since the late 1920s, dual-stator AC machines have been
used in many applications (such as: pumps, fans, compressors,
rolling mills, cement mills, mine hoists [2]), for their advan-
tages in power segmentation, reliability, lower torque pulsa-
tions, less dc-link current harmonics, reduced rotor harmonics
and higher power per ampere ratio for the same machine
volume, etc. [3] – [6].

The sliding mode control theory was proposed by Utkin in
1977 [7]. Thereafter, the theoretical works and its applications
of the sliding mode controller were developed. Since the
robustness is the best advantage of a sliding mode control,
it has been widely employed to control nonlinear systems, es-
pecially the systems that have model uncertainty and external
disturbance [8], [9]. These advantages justify the necessity of
applying this kind of control for the DSIM.

The paper is organized as follows. Description of the DSIM
and the mathematical model are provides in Section II. The
field oriented control of an DSIM is developed in Section III.
The sliding mode control theory is presented in Section IV.
The sliding mode control of an DSIM is developed in Section
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V and its proprieties are validated through simulation results
in Section VI. Finally, Section VII summarizes conclusions.

II. M ACHINE MODEL

A schematic of the stator and rotor windings for a dual-
stator induction machine is given in Fig. 1. The six stator
phases are divided into two wye-connected three-phase sets,
labled(as1, bs1, cs1) and(as2, bs2, cs2), whose magnetic axes
are displaced byα = 30 electrical angle. The windings of
each three-phase set are uniformly distributed and have axes
that are displaced120 apart. The three-phase rotor windings
(ar, br, cr) are also sinusoidally distributed and have axes that
are displaced by120 apart [10] – [12].

The following assumptions have been made in deriving the
dual-stator induction machine model:

• Machine windings are sinusoidally distributed;
• The two stars have same parameters;
• Flux path is linear;
• The magnetic saturation and the mutual leakage are

neglected.

The electrical equations of the dual-stator induction motor
drives in the synchronous reference frame(d − q) are given

Fig. 1. Dual-stator windings induction machine.



as [13] – [15]

vd1 = r1ıd1 + pψd1 − ωeψq1 (1)

vq1 = r1ıq1 + pψq1 + ωeψd1 (2)

vd2 = r2ıd2 + pψd2 − ωeψq2 (3)

vq2 = r2ıq2 + pψq2 + ωeψd2 (4)

vdr = rrıdr + pψdr − (ωe − ωr)ψqr = 0 (5)

vqr = rrıqr + pψqr + (ωe − ωr)ψdr = 0 (6)

with,
vd1, vd2, ıd1, ıd2, and ψd1, ψd2 are respectively the”d”
components of the stator voltages, currents and flux linkage;
vq1, vq2, ıq1, ıq2, and ψq1, ψq2 are respectively the”q”
components of the stator voltages, currents and flux linkage;
vdr, ıdr andψdr are respectively the”d” components of the
rotor voltage, current and flux linkage;
vqr, ıqr andψqr are respectively the”q” components of the
rotor voltage, current and flux linkage;
r1, r2 and rr are respectively the per phase stator resistance
and the per phase rotor resistance;
ωe is the speed of the synchronous reference frame;
ωr is the rotor electrical angular speed;
p denotes differentiationw.r.t time.

The expressions for stator and rotor flux linkages are

ψd1 = L1ıd1 + Lm(ıd1 + ıd2 + ıdr) (7)

ψq1 = L1ıq1 + Lm(ıq1 + ıq2 + ıqr) (8)

ψd2 = L2ıd2 + Lm(ıd1 + ıd2 + ıdr) (9)

ψq2 = L2ıq2 + Lm(ıq1 + ıq2 + ıqr) (10)

ψdr = Lrıdr + Lm(ıd1 + ıd2 + ıdr) (11)

ψqr = Lrıqr + Lm(ıq1 + ıq2 + ıqr) (12)

where,
L1, L2 and Lr are respectively the per phase stator self
inductance and the per phase rotor self inductance;
Lm is the mutual inductance between stator and rotor.

The electromagnetic torque is evaluated as

Tem = P
Lm

Lm + Lr
[(ıq1 + ıq2)ψdr − (ıd1 + ıd2)ψqr] (13)

with, P is the number of pole pairs.
The mechanical equation of machine is described as

JpΩ + fΩ = Tem − TL (14)

where,
Ω is the mechanical speed(Ω = ωr

P );
TL is the load torque;
J is the moment of inertia;
f is the viscous bearing friction coefficient.

III. F IELD ORIENTED CONTROL OF AN DSIM

The main objective of the vector control of induction motors
is, as in DC machines, to independently control the torque and
the flux [16]. In this order, we propose to study the FOC of
the DSIM. The control strategy used consist to maintain the

quadrature component of the flux null(ψqr = 0) and the direct
flux equals to the reference(ψdr = ψ∗r ):

ψdr = ψ∗r (15)

ψqr = 0 (16)

pψ∗r = 0 (17)

Substituting Eqs. (15), (16) and (17) into Eqs. (5) and (6),
yields

rrıdr + pψ∗r = 0 ⇒ ıdr = 0 (18)

rrıqr + ω∗slψ
∗
r = 0 ⇒ ıqr = −ω

∗
slψ

∗
r

rr
(19)

with, ω∗sl = ω∗e − ωr, (ωsl is the slip speed).
The rotor currents in terms of the stator currents are divided

from Eqs. (11) and (12) as

ıdr =
1

Lm + Lr
[ψ∗r − Lm(ıd1 + ıd2)] (20)

ıqr = − Lm
Lm + Lr

(ıq1 + ıq2) (21)

Substituting Eq. (21) into (19), obtain

ω∗sl =
rrLm

(Lm + Lr)
(ıq1 + ıq2)

ψ∗r
(22)

The final expression of the electromagnetic torque is

T ∗em =
PLm

(Lm + Lr)
(ıq1 + ıq2)ψ∗r (23)

With taking into the rotor field orientation, the stator voltage
equations (1)–(4) can be rewritten as

v∗d1 = r1ıd1 + L1pıd1 − ω∗e(L1ıq1 + τrψ
∗
rω

∗
sl) (24)

v∗q1 = r1ıq1 + L1pıq1 + ω∗e(L1ıd1 + ψ∗r ) (25)

v∗d2 = r2ıd2 + L2pıd2 − ω∗e(L2ıq2 + τrψ
∗
rω

∗
sl) (26)

v∗q2 = r2ıq2 + L2pıq2 + ω∗e(L2ıd2 + ψ∗r ) (27)

where,τr = Lr

rr
is time rotor constant.

Consequently, the electrical and mechanical equations for
the system after these transformations in the space control
may be written as follows

pıd1 =
1
L1

{v∗d1 − r1ıd1 + ω∗e(L1ıq1 + τrψ
∗
rω

∗
sl)} (28)

pıq1 =
1
L1

{
v∗q1 − r1ıq1 − ω∗e(L1ıd1 + ψ∗r )

}
(29)

pıd2 =
1
L2

{v∗d2 − r2ıd2 + ω∗e(L2ıq2 + τrψ
∗
rω

∗
sl)} (30)

pıq2 =
1
L2

{
v∗q2 − r2ıq2 − ω∗e(L2ıd2 + ψ∗r )

}
(31)

pψr = − rr
Lr + Lm

ψr +
rrLm

Lr + Lm
(ıd1 + ıd2) (32)

pΩ =
1
J

{
P

Lm
Lr + Lm

(ıq1 + ıq2)ψ∗r − Tr − fΩ
}

(33)



IV. SLIDING MODE CONTROL

We consider a system described by the following state space
equation:

[Ẋ] = [A][X] + [B][U ] (34)

with,
[X] ∈ Rn is the state vector;
[U ] ∈ Rm is the control input vector;
[A] and [B] are system parameter matrices.

The first phase of the control design consist to choose the
number of the switching surfacesS(x). Generally this number
is equal the dimension of the control vectorU . In order to
ensure to convergence of the state variablex to its reference
valuex∗, [8], [16] and [17] propose a general function of the
switching surface:

S(x) = (
d

dt
+ λ)r−1e(x) (35)

where,
λ is a strictly positive constant;
r is the smallest positive integer such that∂Ṡ∂U 6= 0: ensure
controllability;
e(x) = x∗ − x is the error variable.

The second phase consists to find the control law which
meets the sufficiency conditions for the existence and reachi-
bility of a sliding mode such as [7], [17], [18]

S(x)Ṡ(x) < 0 (36)

Intuitively, the existence of a sliding mode on the sliding
surface implies stability of the system. One of the possible
solutions is given by

Uc = Ueq + Un (37)

Ueq is the so called equivalent control. It plays the feedback
linearisation role is the solution of

Ṡ(x) = 0 ⇔ ∂S

∂X
{[A][X] + [B]Ueq}+

∂S

∂X
[B]Un = 0 (38)

During the sliding mode, theUn is equal zero, thenUeq is

Ueq = −
{
∂S

∂X
[B]

}−1 {
∂S

∂X
[A][X]

}
(39)

with
∂S

∂X
[B] 6= 0 (40)

During the convergence mode, theUn 6= 0. We substituting
Eq. (39) into Eq. (38) yields

Ṡ(x) =
∂S

∂X
[B]Un (41)

Substituting Eq. (41) into Eq. (36), obtain

S(x)
∂S

∂X
[B]Un < 0 (42)

So that the state trajectory be attracted to the switching
surfaceS(x) = 0. A commonly used from ofUn is a constant
relay control [17].

Un = kxsgn(S(x)) (43)

sgn(S(x)) is a sign function, which is defined as

sgn(S(x)) =
{
−1 if S(x) < 0
1 if S(x) > 0 (44)

kx is a constant.
This introduces some undesirable chattering. Hence, we will

substitute it by the function plotted in Fig. 2.
Consequently,Un is defined as

Un = kx
S(x)

|S(x)|+ ξx
(45)

ξx is small positive scalar.

V. SLIDING MODE CONTROL OF AN DSIM

The proposed control scheme is a cascade structure at it
is shown in Fig. 3, in which six surfaces are required. The
internal loops allow the control stator current components
(ıd1, ıq1, ıd2 and ıq2), whereas the external loops provide the
regulation of the speedΩ and the fluxψr. The bloc of the
FOC(SMC) is presented in Fig. 4.

A. Design of the Switching Surfaces

In this work, six sliding surfaces are used and taken as
follows since a first order is used:

S(Ω) = Ω∗ − Ω (46)

S(ψr) = ψ∗r − ψr (47)

S(ıd1) = ı∗d1 − ıd1 (48)

S(ıq1) = ı∗q1 − ıq1 (49)

S(ıd2) = ı∗d2 − ıd2 (50)

S(ıq2) = ı∗q2 − ıq2 (51)

Fig. 2. Shape of thesgn function.

Fig. 3. Indirect FOC scheme for DSIM.



Fig. 4. Bloc diagram of the FOC(SMC).

B. Development of the Control Laws

By using the equations systems (28)-(33), (37) and (45), the
regulators control laws are obtained as follows:

1) For the Speed Regulator:

S(ωr)Ṡ(ωr) < 0 ⇒ ı∗q = ıqeq + ıqn (52)

with

ıq = ıq1 + ıq2 and ωr = PΩ;

ıqeq =
J

P 2

Lr + Lm
Lmψ∗r

+
[
ω̇∗r
f

J
ωr +

P

J
Tr

]
;

ıqn = kωr

S(ωr)
|S(ωr)|+ ξωr

.

2) For the Flux Regulator:

S(ψr)Ṡ(ψr) < 0 ⇒ ı∗d = ıdeq + ıdn (53)

where

ıd = ıd1 + ıd2;

ıdeq =
Lr + Lm
rrLm

[
pψ∗r +

rr
Lr + Lm

ψr

]
;

ıdn = kψr

S(ψr)
|S(ψr)|+ ξψr

.

3) For the Stator currents:

S(ıd1)Ṡ(ıd1) < 0 ⇒ v∗d1 = vd1eq + vd1n (54)

S(ıq1)Ṡ(ıq1) < 0 ⇒ v∗q1 = vq1eq + vq1n (55)

S(ıd2)Ṡ(ıd2) < 0 ⇒ v∗d2 = vd2eq + vd2n (56)

S(ıq2)Ṡ(ıq2) < 0 ⇒ v∗q2 = vq2eq + vq2n (57)

with

vd1eq = L1 ı̇
∗
d1 + r1ıd1 − ω∗e [L1ıq1 + τrψ

∗
rω

∗
sl] ;

vq1eq = L1 ı̇
∗
q1 + r1ıq1 + ω∗e [L1ıd1 + ψ∗r ] ;

vd2eq = L2 ı̇
∗
d2 + r2ıd2 − ω∗e [L2ıq2 + τrψ

∗
rω

∗
sl] ;

vq2eq = L2 ı̇
∗
q2 + r2ıq2 + ω∗e [L2ıd2 + ψ∗r ] ;

and

vd1n = kd1
S(ıd1)

|S(ıd1)|+ ξd1
;

vq1n = kq1
S(ıq1)

|S(ıq1)|+ ξq1
;

vd2n = kd2
S(ıd2)

|S(ıd2)|+ ξd2
;

vq2n = kq2
S(ıq2)

|S(ıq2)|+ ξq2
.

To satisfy the stability condition of the system, the gains
kωr

, kψr
, kd1, kq1, kd2 and kq2 should be taken positive by

selecting the appropriate values [19].

VI. SIMULATION RESULTS AND DISCUSSION

The dual-stator induction motor parameters used in the
simulation are given in the APPENDIX.

The first test concerns a no-load starting of the motor with
a reference speedn∗ = 2500rpm. Then a torque loadTL =
14N.m is applied betweent = 1.5sec and t = 2.5sec. The
results are shown in Fig. 5.

The second test concerns a no-load starting of the motor
with a reference speedn∗ = 2500rpm. Then att = 1.5sec a
reverse speed is applied. The results are shown in Fig. 6.

It is noticed that the speed regulation is obtained using such
as controller is spite of the presence of stern disturbances such
as step change of the load torque.

The waveforms depicted in Fig. 5 show that the ideal field-
oriented control is established by setting the flux responses
ψdr = 1Wb, ψqr = 0Wb, despite the load variations. The step
changes in the load torque and the reverse of speed response
cause step change in the torque response without any effects
on the fluxes responses, which are maintained constant, due to
the decoupled control system between the torque and the rotor
flux. Thus, the aim of the field-oriented control is achieved,
and the introduction of perturbations is immediately rejected
by the control system.

The aim of the third test is to solve the problem of
detuning in indirect field-oriented control system in the case of
parameter variations of the motor. The coefficients in equations
systems (28)-(33) are all dependent on the motor parameters.



Fig. 5. Simulation results for a cascade structure using SMCs.

Fig. 6. Simulation results for a cascade structure using SMCs, with reverse
speed att = 1.5sec.

These parameters may vary during on-line operation due
to temperature or saturation effects. So, it is important to
investigate the sensitivity of the complete system to parameters
changes.

One of the most significant parameter changes in the motor
is the rotor resistancerr. A simulation taking into account
the variation of100% rise of rr relative to the identified
model parameter was carried out. The parameters changes
are introduced only in the model of the motor. Neither the
estimator, nor the controller is involved by this variation. The
waveforms obtained are illustrated in Fig. 7. The responses
are approximately similar to chose obtained in Fig. 5 and the
condition of oriented control is obtained in the steady state
(ψqr = 0Wb). It can be conclude that the proposed sliding
controllers are robust. They are able to realize and maintain
the control even the parameters of the motor (rr) change.

VII. C ONCLUSION

In this paper, a sliding mode control strategy of the dual-
stator induction motor drives has been presented. This control
methodology has the property of imposing the control signal
necessary to enforce the desired feedback control law inde-
pendently of model uncertainties.

The effectiveness of the proposed controllers has been
demonstrated by simulation and successfully implemented in
an dual-stator induction motor drives.

Fig. 7. Simulation results with variation of100% of rr for an indirect FOC
drive with SMCs.



APPENDIX

The machine parameters used in the simulation are as
follows:
• Stator resistances (winding setI andII) r1 = r2 = 3.72Ω;
• Stator self inductances (winding setI and II) L1 = L2 =
0.022H;
• Rotor resistancerr = 2.12Ω;
• Rotor self inductanceLr = 0.006H;
• Mutual inductance between stator and rotorLm = 0.3672H;
• Moment of inertiaJ = 0.0625kg.m2;
• Viscous bearing friction coefficientf = 0.001N.m.s/rd.
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