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Abstract: In this paper we analyze the asymptotic 

stability of a vector control system for a squirrel-cage 
induction motor that contains in its loop a Gopinath 
observer. The studied control system is based on the 
direct rotor flux orientation method (DFOC) and the 
stability study is based upon the linearization theorem 
around the equilibrium points of the control system, 
emphasizing the estimated variation domain of the rotor 
resistance for which the control system remains 
asymptotically stable when the prescribed speed of the 
control system is close to zero. The stability study is made 
in both the continual and discrete cases. The 
mathematical model of the vector regulating system is 
made using a value e ed qλ λ−  linked to stator current. 
In order to mathematically describe the DFOC control 
system we will consider the following hypotheses: the 
static frequency converter (CSF) is assumed to contain a 
tension inverter; the static frequency converter is 
considered ideal so that the vector of the command 
measures is considered to be the entry vector of the 
induction motor; the dynamic measure transducers are 
considered ideal; the system and axis transformation 
blocks are considered dynamically ideal; the 
mathematical model of the vector control system will be 
written in an e ed qλ λ−  axis reference bounded to the 
stator current. 

 

1. Introduction  
This paper approaches a difficult problem within 

vector driving systems for induction motors namely the 
asymptotic stability study in a Lyapunov manner. The 
difficulty is brought by the mathematical model of the 
non-linear analyzed system that makes the Lyapunov 
stability analysis methods difficult to apply. The novelty 
of the paper consists in obtaining the method and the form 
of the linerized mathematical model on which the analysis 
of the asymptotic stability is made. The shape and 
structure of the mathematical model depends on the actual 
components within the analyzed control system and the 
way in which the state values are selected. The paper 

describes the analysis of the asymptotic stability of a 
vector control system for a squirrel-cage induction motor 
with contains in its loop a Gopinath observer. The 
analyzed control system is orientated according to the 
estimated rotor flux by the Gopinath observer.  

We have realized the stability analysis for low speeds, 
emphasizing the influence of the identified rotor 
resistance within the stability of the control system. We 
have obtained the variation range of the identified rotor 
resistance for which the control system remains 
asymptotically stable. 

 

2. The Mathematical Description of the Vector 
Control System 
In order to mathematically describe the DFOC control 

system we will consider the following hypotheses: 
• The static frequency converter (CSF) is assumed to 

contain a tension inverter. 
• The static frequency converter is considered ideal 

so that the vector of the command measures is considered 
to be the entry vector of the induction motor. 

• The dynamic measure transducers are considered 
ideal.  

• The system and axis transformation blocks are 
considered dynamically ideal. 

• The mathematical model of the vector control 
system will be written in an e ed qλ λ−  axis reference 
bounded to the stator current. 

Based on these hypotheses the block diagram of the 
direct vector control system that contains a Gopinath type 
rotor flux estimator in its loop is presented within Figure 
1 and the DFOC field orientation block within Figure 2. 

Some of the equations that define the vector control 
system are given by the elements which compose the field 
orientation block and consist of: 

• couple PI regulator (PI_Me) defined by the MK  
proportionality constant and the MT  integration 
time; 
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• PI flux regulator (PI_ψ) defined by the Kψ  

proportionality constant and the Tψ  integration 
time; 

• mechanical angular speed PI regulator (PI_W)  
defined by the Kω  proportionality constant and 
the Tω  integration time; 

• current PI regulator (PI_I)  defined by the iK  
proportionality constant and the iT  integration 
time; 

• stator tensions decoupling block (C1Us); 
• Flux analyzer (AF). 
 

 
Figure 1 Direct Vector Speed Control System 

 
Figure 2 Internal structure of the field orientation bloc (DFOC) 

 
The other equations that compose the mathematical 

model of the speed control system are those given by the 
relations that define the stator currents – rotor fluxes 
mathematical model  of  the  induction  motor  as  well  as  
the  equations that define the mathematical model of the 
observer for the Gopinath  type rotor flux. 

All these expressions can be put together as a 12 
differential equations system with 12 unknown values. In 
order to offer a coherent presentation of this differential 
equations system, we have used the following notations: 

The state vector of the control system will be 
[ ] 1,12i ix x ==                             (1) 

where 1 edsx i λ= ; 2 eqsx i λ= ; 3 edrx λψ= ; 4 eqrx λψ= ; 

5 rx ω= ; �
11 edrx λψ= ; �

12 eqrx λψ= . 

The input vector of the of the control system will be 

[ ]1 2 3
Tu u u u=                    (2) 

where *
1 ru ψ=  ; *

2 ru ω= ; 3 ru M= . 
Under these circumstances the 12 differential 

equations system that define the mathematical model of 
the vector regulating system can be written as follows 

( ) ( ( ), ( ))d x t f x t u t
dt

=              (3) 

where [ ] 1,12( , ) ( , )i if x u f x u == , and the ( , )i if f x u=  

functions are:  

* 2
1 11 1 5 31 22 2

11 12

13 3 14 5 4 11

( , ) p

p ds e

xf x u a x z x a x
x x

a x a z x x b u λ

⎛ ⎞
⎜ ⎟= ⋅ + ⋅ + ⋅ ⋅ +
⎜ ⎟+⎝ ⎠

+ ⋅ + ⋅ ⋅ ⋅ + ⋅

(4) 

* 2
2 5 31 1 11 22 2

11 12

14 5 3 13 4 11

( , ) p

p qs e

xf x u z x a x a x
x x

a z x x a x b u λ

⎛ ⎞
⎜ ⎟= − ⋅ + ⋅ ⋅ + ⋅ −
⎜ ⎟+⎝ ⎠

− ⋅ ⋅ ⋅ + ⋅ + ⋅

(5) 

2
3 31 1 33 3 31 42 2

11 12

( , ) xf x u a x a x a x
x x

∗= ⋅ + ⋅ + ⋅ ⋅
+

       (6) 

2
4 31 2 31 3 33 42 2

11 12

( , ) xf x u a x a x a x
x x

∗= ⋅ − ⋅ ⋅ + ⋅
+

   (7) 

[ ]5 1 3 2 4 1 2 5 3 3( , ) m m mf x u K x x x x K x K u= ⋅ ⋅ − ⋅ − ⋅ − ⋅    (8) 

2 2
6 1 11 12( , )f x u u x x= − +                      (9) 

( ) 2 2
7 8 2 5 2 11 12( , ) a

K
f x u x K u x K x x x

T
ω

ω
ω

= ⋅ + ⋅ − − ⋅ ⋅ +  (10) 

8 2 5( , )f x u u x= −                         (11) 

2 2
9 6 1 11 12 1( , )

K
f x u x K u x x x

T
ψ

ψ
ψ

⎛ ⎞= ⋅ + ⋅ − + −⎜ ⎟
⎝ ⎠

  (12) 

( ) 2 2
10 8 2 5 2 11 12

7 2

( , ) M a

M

M

K
f xu K x K u x K x x x

T
K x x
T

ω
ω

ω

⎛ ⎞
= ⋅ ⋅ + ⋅ − − ⋅ ⋅ + +⎜ ⎟

⎝ ⎠

+ ⋅ −

 (13) 

* *
11 1 11 2 12 11 11

3 1 4 2 1 2

( , )

( , ) ( , )
a ds e b qs e

a b

f x u b x b x g b u g b u

b x b x g f x u g f x u
λ λ= ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ +

+ ⋅ + ⋅ + ⋅ − ⋅
 (14) 

*
12 2 11 1 12 11

*
11 4 1 3 2 1 2

( , )

( , ) ( , )
a ds e

b qs e b a

f x u b x b x g b u

g b u b x b x g f x u g f x u
λ

λ

=− ⋅ + ⋅ − ⋅ ⋅ −

− ⋅ ⋅ − ⋅ + ⋅ + ⋅ + ⋅
 (15) 

Where: 11
1 1

s r
a

T T
σ

σ σ
⎛ ⎞−
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; 13

m

s r r

L
a

L L T σ
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⋅ ⋅ ⋅
; 

14
m

s r

L
a

L L σ
=

⋅ ⋅
; 31

m

r

L
a

T
= ; 33

1

r
a

T
= − ; 11

1

s
b

L σ
=

⋅
; 
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x x
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+
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2
* 2 2 * 2
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x x
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⋅
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+
. 

Where sL , rL , mL are the stator, rotor and mutual 
inductance, sR , rR  are the stator and rotor resistance 
and σ  is the mutual coefficient of leakage.    

In the relations above we noted with „ *  ” the 
identified measures of the induction motor and k is the 
proportionality coefficient Gopinath.  

Under these circumstances the mathematical model of 
the speed vector control system is fully determined as 
being defined by the non-linear differential equations 
system given by (3) whose initial condition is ( )0 0x = . 

3. The Asymptotic Stability Study of the Control 
System 
In order to realize the analysis of the asymptotic 

stability we will consider an induction motor that has the 
following characteristics: 

• electrical parameters 
[ ]0.371sR = Ω ; [ ]0.415rR = Ω ; [ ]0.08694 HsL = ;

[ ]0.08762 HrL = ; [ ]0.08422 HmL = . 
• mechanical parameters 

2pz = ; 20.15 kg mJ ⎡ ⎤= ⋅⎣ ⎦ ; 
N m s0.005

rad
F ⋅ ⋅⎡ ⎤= ⎢ ⎥⎣ ⎦

. 

On the other hand, following the automated regulators 
tuning within the speed control system we obtain the 
following constants: 

501.3834Kψ = ;
2374.7

K
T ψ
ψ = ; 5.9881iK = ;

754.4176
i

i
K

T = ;

10.1988MK = ; 
1020

M
M

KT = ; 10Kω = ; 
350
K

T ω
ω =  

Under these circumstances by imposing the entry 
vector of the control system to be of the following type  

[ ]*
1 0.69 Wbru ψ= = ; *

2
rad

30 sm rm mu n πω ⎡ ⎤= = ⋅ ⎢ ⎥⎣ ⎦
; 

[ ]3 93.269 N mr Nu M M= = = ⋅           (16) 

where [ ]100 rpmmn m= ⋅  with 0, 15m =  and the 
proportionality coefficient between the self values of the 
motor and those of the observer being 0.3k =  by solving 
the non-linear system 

( , ) 0f x u =                         (17) 
using the Newton method having as the start point the 
vector: 

[ ]*
1 2 10 0 0 0 0 0 0 0 0mx u u u=     (18) 

we obtain an equilibrium point m mx b= where:  

[ ] 1,12m mi ib b == . 

From those stated above by the linearization of the 
system (3) around the equilibrium point m mx b=  

obtained for an [ ]*
1 2 3

T
mu u u u=  entry vector 

defined by (16) we obtain:  
( ) ( ) ( )L Lx t A x t B u tΔ = ⋅Δ + ⋅Δ&           (19) 

where ,L LA B  matrixes are:  

*

1,12; 1,12

( , ) ;i
L m

j i j

f
A b u

x
= =

⎡ ⎤∂
=⎢ ⎥
∂⎢ ⎥⎣ ⎦

*

1,12; 1,3
( , )i

L m
k i k

f
B b u

u = =

⎡ ⎤∂
=⎢ ⎥∂⎣ ⎦

 

Next, in order to study the asymptotic stability of the 
equilibrium points m mx b= , the self values of the AL 
matrix will be analyzed, so that if they have a strictly 
negative real part the m mx b=  equilibrium point is 
asymptotically stable for the linerized system (19).  

Under these circumstances according to the 
linearization theorem [6] in a vicinity of the equilibrium 
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point m mx b=  the non-linear system (3) is 
asymptotically stable.  

As the self values of the LA  matrix are presented 
within Figure 3, it results that the equilibrium points 

m mx b=  of the linerized system (19) are asymptotically 
stable and according to the linearization theorem the 
equilibrium points m mx b= are asymptotically stable in 
certain vicinity for the non-linear system (3). 

Also in figure 3 for a more in depth study of the 
asymptotic stability of the (3) system we emphasized self 
values of the control system that does not contain a 
Gopinath observer.  

From those presented above one may notice that the 
self values consist of the self values of the control system 
that does not contain a Gopinath observer as well as the 
self values of the Gopinath observer.  

The only self values that modify when a new entry 
vector is imposed are the self values of the Gopinath 
observer. 

One may notice that inclusion of the Gopinath 
observer does not alter the self values of the control 
system that does not contain it. 

Thus, one can conclude that we can study the 
asymptotic stability of a control system that contains in its 
loop a Gopinath observer by independently studying the 
asymptotic stability of the control system that does not 
contain a Gopinath observer and asymptotic stability of 
the Gopinath observer. 
 

 
Figure 3 The self values of the matrix ;L r NA M M=  

 
For a more detailed study of the asymptotic stability, 

next we will present the LA  matrix self values under 
identical testing conditions with those above with the 
difference that [ ]3 0 N mr Nu M M= = = ⋅ . 

As with the previous case from Figure 4 one may 
notice that the m mx b=  equilibrium points of the 
linerized system are asymptotically stable resulting that in 
certain vicinity these points are asymptotically stable for 
the non-linear system defined by (3) 

 

 
Figure 4  The self values of the matrix ; 0L rA M =  

Next, the influence of the estimated rotor resistance 
will be emphasized, when studying asymptotic stability of 
the equilibrium point 0 0x b=  of the non-linear system 
(3) in a certain vicinity of this point.  

The equilibrium point is obtained for an entry vector 

like [ ]1 20 3
Tu u u u= defined by (16), namely for a 

speed of [ ]0 0 rpmn = .  
Based on this study we can obtain information related 

to the range of variation of the estimated rotor resistance 
for which the non-linear system (3) remains 
asymptotically stable around the 0 0x b=  equilibrium 
point.  

As the self values of the AL matrix are presented in 
Figure 5, it results that the non-linear system (3) around 
the equilibrium point 0 0x b=  is  asymptotically stable 
for an estimated  rotor resistance in range 

of { }* *
1 ; 0,91 1, 48r r r rD R R R R= ⋅ ≤ ≤ ⋅ , becoming 

asymptotically unstable for an estimated rotor resistance 

in range of { }* *
2 ;1,48 0,91r r r rD R R R R= ⋅ < < ⋅  

 
Figure 5 LA  self values by rotor resistance for 

[ ]0 0n rpm= r NM M=  
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Next the influence of the estimated rotor resistance to 
the asymptotic stability of the non-linear system (3) will 
be presented, when the entry vector is 

[ ]1 20 3
Tu u u u=  defined by (16) with the 

difference that [ ]3 0 N mr Nu M M= = = ⋅ . The self 
values of the AL matrix are presented in Figure 6. 

 

 
Figure 6 LA  self values by rotor resistance for 

[ ]0 0n rpm= 0rM =  
 

As the self values of the AL matrix are presented in 
Figure 6, it results that the non-linear system (3) around 
the equilibrium point 0 0x b=  is asymptotically stable for 
an estimated rotor resistance in range of 

{ }* * 6
1 ;0,1 2,61 10r r r rD R R R R= ⋅ ≤ ≤ ⋅ ⋅ ,becoming 

asymptotically unstable for an estimated rotor resistance 

in range of { }* 6 *
2 ;2,61 10 0,1r r r rD R R R R= ⋅ ⋅ < < ⋅ . 

On the other hand in case we realize the digitization of 
the linear system (19) we get: 

( ) ( ) ( )1 L Lx k F x k H u k+ = ⋅ + ⋅                 (20) 

where: the ,L LF H  matrixes are obtained from the 

L LA , B  matrixes using one of the two digitization types: 
• simplified digitization: 

12L LF I A T= + ⋅ ; L LH B T= ⋅                            (21) 
• complete digitization: 

2
2

12 2L L L
TF I A T A= + ⋅ + ⋅ ;

2

2L L L L
TH B T A B= ⋅ + ⋅ ⋅   (22) 

where: T is the sampling time. 
Proceeding in a similar manner the self values of the 

LF  matrix in case the entry vector is defined by (16) and 
the LF  matrix is obtained by using simplified digitization 

using a [ ]53,3 secT μ=  sampling time are graphically 
presented in Figure 7. 

From the figure above one may notice that the 
m mx b=  equilibrium points are asymptotically stable for 

the discrete system (20) in case the LF  matrix is obtained 
through using the simplified digitization method.  
 

 
Figure 7 Self values off the FL matrix when using simplified 

digitization 
 

This conclusion also remains valid when the LF  
matrix is obtained through the complete digitization 
method both where the resistant couple is present or 
absent. 

Next we will present the influence of the estimated 
rotor resistance over the asymptotic stability of the 
discrete non-linear system when the entry vector is 

[ ]1 20 3
Tu u u u=  and is defined by (16). This study 

was conducted for a sampling time of [ ]53,3 secT μ=  
in case of simplified digitization. After the study we 
obtained the information that the 0 0x b=  equilibrium 
point remains asymptotically stable for the (21) linear 
system for a variation of identified rotor resistance 

ranging from { }* *
1 ;0,91 1, 48r r r rD R R R R= ⋅ ≤ ≤ ⋅ .  

The 0 0x b=  equilibrium point becomes 
asymptotically unstable when the variation of the 
identified rotor resistance varies 

from { }* *
2 ;1,48 0,91r r r rD R R R R= ⋅ < < ⋅ . 

When the study of the influence of identified rotor 
resistance variation is done for an entry vector of the 

[ ]1 20 3
Tu u u u=  type defined by (16) with the 

difference that [ ]3 0 Nmr Nu M M= = =  then the stability 

domain for which the 0 0x b=  equilibrium point is 

asymptotically stable is { }* *
1 ;0.1 306,39r r r rD R R R R= ⋅ ≤ ≤ ⋅ and 

the instability domain is { }* *
2 ;306,39 0,1r r r rD R R R R= ⋅ < < ⋅ . 

On the other hand the domains that define the upper 
and lower limits of variation of identified rotor resistance 
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for which the 0 0x b=  equilibrium point remains 
asymptotically stable for the (21) discrete linear system 
diminishes with the increase of the sampling time. 
 
4. Conclusions  

This paper presents analytically in a single form the 
mathematical model of the speed vector-controlled system 
with a Gopinath observer, suitable for stability analysis.  

The mathematical model is written in an 
e ed qλ λ− orientation value linked to the stator current 

vector. This mathematical model allows for both the 
internal asymptotic study as well as the external stability 
of the control system.  

The study helped us to conclude that the analyzed 
control system is asymptotically stable for the imposed 
speed range ( ) [ ]0 1500 rpmK  both, when a resistant 

couple is lacking or present as r NM M= . This 
conclusion is valid in both the continual and discrete 
cases where the sampling time is [ ]53,3 secT μ= . 

From those presented above we can say that the 
Gopinath observer adds self values to the control system 
that does not contain it in its loop without modifying the 
other self values. This conclusion is only valid when the 
matrixes that are the basis of projecting the Gopinath 
observer are the same size with those of the induction 
motor.  

In this paper we determined the upper and lower 
variation limits for the identified rotor resistance for 
which the 0 0x b=  equilibrium point remains 
asymptotically in both the discrete and continual cases.     

The following information emphasized within Table 1 
for the continual case ant Table 2 for the discrete case.  

Table 1 

Continual case 
 r NM M=  0rM =  
LI 0,91 rR⋅  0.1 rR⋅  
LS 1.48 rR⋅  62,61 10 rR⋅ ⋅  

Table 2 

Discrete case 

 r NM M=  0rM =  

LI 0,91 rR⋅  0.1 rR⋅  

LS 1.48 rR⋅  306,39 rR⋅  

 
Where, through LI we noted the lower limit and 

through LS we noted the upper limit of variation of 
identified rotor resistance. 

From the tables above one may notice that the upper 
limit for the discrete case decreases compared to the 
upper limit of the continual case when the resistant couple 
is null. The upper limit stays the same in both the discrete 
and continual cases when r NM M= . 

The lower limit for the discrete case is the same as the 
lower limit of the continual case in both the lack or 
presence of the resistant couple. 

Also, from the tables above one may notice that the 
upper limit in case of lacking resistant couple increases 
compared to the upper limit in case of having resistant 
couple and the upper limit in case of lacking the resistant 
couple decreases compared to the lower limit in case of 
having resistant couple. This conclusion remains valid for 
both, the continual and discrete cases. 
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