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Abstract: This paper deals with the problem of velocity
control of a DC motor taking account the dynamics of the
DC-DC power converter, supposed here of Buck type. We
will develop for the global system, constituted by combined
DC-motor and Buck-converter, a model of fourth order. On
the basis of this model a regulator is designed using the
backstepping technique. The control purpose is, on one
hand, asymptotic stability of the closed-loop system and, on
the other hand, perfect tracking of the reference signal (the
machine speed). Both non adaptive and adaptive versions
are designed and shown to yield quite interesting
performances. A theoretical analysis shows that both
controllers meet their objectives. These results are
confirmed by experimental results which, besides, show that
the adaptive version deals better with load torque changes.
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1. Introduction

DC machines are extensively used in many
industrial applications such as servo control and
tractions tasks due to their effectiveness, robustness
and the traditional relative ease in the devising of
appropriate feedback control schemes [4], specially
those of the PI and PID types ([3], [5], [8]).

Therefore, the problem of velocity control of DC-
motors has been extensively dealt in the specialized
literature during the last years ([1], [2], [6].[7]).
However, in the most works, the dynamics of DC
power converter has generally been ignored when
analyzing the resulting closed-loop systems. Indeed,
the converter is generally considered transparent as
being assimilated to the proportional gain. Moreover,
this simplification can be tolerated for the high
powers, but not for the low and the medium powers.
Such a simplification can only limit performances of
the regulator and can even compromise the global
stability of the system in closed loop. Indeed, a

dynamics non taken in account in the design of the
regulator can generate a reduction of the phase margin
and in turn produces the instability of the system.

In this paper, we propose an adaptive control of DC
motor velocity tacking account the dynamics of DC-
DC power converter of the Buck type. The converter
input (duty ratio) is designed so that a smooth
trajectory is followed by the motor angular velocity.
The proposed controller, based on the backstepping
approach, is shown to achieve a good stability and
perfect tracking objectives under constant but
unknown load torque.

The paper is organized as follows: in section 2 the
combined DC-motor and Buck converter model is
described. Section 3 and Section 4 are devoted to the
controller theoretical design; the controller stability
and tracking performance are illustrated in section 5. A
conclusion and reference list end the paper.

2. The combined DC Motor-Buck Converter
Model

Consider a permanent magnet motor with its armature
circuit loaded to a DC-DC power converter of Buck type as
shown in Figure 1. Such a configuration constitutes a single
quadrant angular velocity control configuration for a DC
drive. The mathematical model of the composite system is
given by:

Fig. 1: The combined DC-motor- “Buck” converter model
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Where i is the converter input current, v is the
converter output voltage, i, is the dc motor armature

circuit current and  is the angular velocity of the
motor shaft, which may be subject to a constant but
unknown load torque 7,. The control input is

represented by the variableu, which represents a
switch position tacking value on the discrete set {0,
1}.

The model (1) is useful to build-up an accurate
simulator for the combined DC-motor and buck
converter. However, it cannot be based upon to design
a continuous control law as it involves a binary control
input, namelyu« . To overcome this difficulty, it is
usually resorted to the averaging process over cutting
intervals [11]. This process is shown to give rise to
average versions (of the above model) involving as a
control input the mean value of u which is nothing
other than the duty ratio « . The average model turns

out to be the following:
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where we denote by x;, x,, x; and x, the average

values of the angular velocity @, the dc motor
armature circuit current i,, the converter output

voltage v and the converter input current i,
respectively.
Furthermore, the switching policy is generated

according to so-called Pulse Width Modulation
(PWM) principle described as follows:
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where ¢, represents a sampling instant and the

parameter T >0 is the fixed sampling period

3. Non Adaptive Controller Design

The aim is to directly enforce the average angular
velocity x, to track a given reference signal w, (¢),

when the model parameters are perfectly known. The
reference signal and its four first derivatives are
assumed to be known, bounded, and piecewise
continuous. Following closely the backstepping design
[10], the controller is designed in four steps, since the
control input appear after four derivatives of x,. The

control law is summarized in Table 1.

TABLE 1: NON ADAPTIVE CONTROLLER

Error variables:

5 =x -0, “
z, =Kx,/J - ®)]
73 = Kx /(JLm)_ ) (0)
z, = Kxy I(JL,,C) - (7
Stabilizing functions
o=/ J+T 1 J+o, ¢z ®)

= (2 101, )- 7107

+ (KR, 1L, )+ 1K 17 ),

— [T, 1J? +clz)—cizy + 6, — 2, + ¢y 2, ©
ay=—(bf1J+b,K /L, )x,

+(b,K/J=byR,, /L, +K /(JL, C))x,

thyxy /Ly —b T, /T +oc) +2¢ +¢s

+(cl +c3 +cicy — 2)2 c1 +ey+es)zy +@,  (10)
where
=K 1L,)-(f 1} (1n
b, =KR,, /(JL, )+ fK / J* (12)
Control law:
=(JL,,LC/(KE)(byf /T —byK / L,)x,
—(b;K /J +byR,, / L, +by /(L,C))x,
+(K /(L Lc)+ by / Ly x5 +byxy /(L,C)+byT, / J
+(c —301 —2ccy +2)z1
+( i clcz czcl +3c; +4c, +c3)zz
+(c12 +c2 +c3 +cicy) +cic3 +Heyes — 3)23
() +cy +e3)zy 0V +c4z4}
(13)
where
by=bf/J+b,K/L, (14)
by=bK/J-byR, /L, +K/(JL,C) (15)




Proposition 1

Consider the closed loop system consisting of the
subsystem (2) and the control law (13). If the angular
velocity reference , and its four first derivatives are

known and bounded, then the closed loop undergoes,
in the (z,z,,z;,z,)-coordinates, the following

equation:
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where the design parameters (c¢;,c,,c5,c4) are

positives and freely chosen. Consequently, the error
system (16) is globally asymptotically stable. It
follows that:

1)  All signals in closed loop are bounded,
i1) The tracking error z; = x; — @, vanishes. O

Proof. Let us consider the following Lyapunov
function candidate:

4
V=) 05z (17)
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its time derivative, using Table 1, is given by
V:—Zcizfso (18)

This shows that the ( z,, z, , z5, z, )-sSystem is globally

asymptotically stable. From Table 1 we see that, since
the ¢, ’s are smooth function, the state variables x; can

be expressed as a smooth function of z,,---,z; . Hence,
the state vector x(¢) is globally asymptotically stable.
Furthermore, from (17) and (18), we can see that
V — 0 as t -« , hence, all variable errors z;,i=1...4,
vanish asymptotically. This ends the proof of
Proposition 1.

4. Adaptive Controller Version

Controllers of section 3 guarantee perform well only
when the model (2) is perfectly known. This
particularly means that the load torque 7, is constant

and time-invariant. When this is not the case, the
controllers may still provide an acceptable behavior, in

particular, the tracking error z, is bounded but not

vanishing. Therefore adaptive versions of the above
controllers turn out to be interesting alternatives.

To cope with such a model uncertainty the new
controller will be given a learning capacity. More
specifically, the controller to be designed should
involve an on-line estimation of the unknown

parameter
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The obtained estimate is denoted é, it follows that

0=0+0

where 6 1is the estimation error.

(20)

Following the tuning functions backstepping design
[10], then the control law and the parameter update
law, designed in four steps are summarized in table 2.

TABLE 2: TUNING FUNCTION DESIGN

Error variables
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Adaptive control law
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Where Z:[Zl,Zz,Z3,Z4]T aIld W:[WI,Wz,W3,W4]




The functions and constants introduced in the above
Table 2 have the following expressions
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where ¢;, ¢,, ¢35, ¢, and y are positive design

parameters freely chosen.
The main result of this subsection is summarized in the
following proposition

Proposition 2

Consider the closed loop system (2) subject to
uncertain load torque 7, and the controller composed
of the adaptive control law (34) and the parameter
update law (35). If the angular velocity reference ,

4

and its four first derivatives are known and bounded,
then the closed loop undergoes, in the following
equations:

i=Az+WTO

0=yWz

(56)
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where A4, is a skew symmetric matrix defined as

follows
—c 1 0 0
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A, = 2 23 24 (58)
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Consequently, the error system (56) is globally
asymptotically stable. It follows that:

1)  All signals in closed loop are bounded,

1) The tracking error z; = x, — @, vanishes.

1i1) The estimate parameter & converges toward
uncertain and constant parameter &
i
Proof. Consider the following Lyapunov function
candidate:

v=05"z+8%/y) (59)
its time derivative, using Table 2, is given by

' 4
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1) From (59) and (60) we can see that the
equilibrium (2,5 )= 0 is globally asymptotically
stable and in turn the state vector x(¢) is globally
asymptotically stable.

i1) From LaSalle’s Invariance Theorem [10], it
further follows that the state (z,§ ) converges to
the largest invariant set M of (56)-(57) contained
in E = {(z 5)6 IR /z= O}, that is, in the set where
¥V =0. This means, in particular, that z(t) >0 as
t—>o.

iii) On the invariant set M , we have z=0and 2=0.
Setting z=0and z =0 in (56) and (57) we obtain
6=0 and W@ =0. As the regressor vector is
composed of constant parameters it follows that
we get #=0on M, which implies that



M ={0,0)} and , in particular, we have 6 — @ as
t—> 0.
We thus established the proof of Proposition 2

5. Experimental Results

The backstepping no adaptive and adaptive
controllers shown in Table 1 and Table 2 has been
applied to the combined DC-Motor-“Buck” Converter
according to the experimental setting of figure 2,
where x denotes the state vector.
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Fig. 2: Experimental bench for DC-motor velocity control

Table 3 lists the numerical values for the parameters
the combined system studied in this paper.

TABLE 3: PARAMETERS OF THE COMBINED DC-
MOTOR-BUCK CONVERTER

L=20x10"H] C =400x10°[F]

K, =0.046[V.s/rad] K, =0.046[N-m/A]

J =7.06x10"[kgxm?’] f=8.42x10"
[Nm.s/rad]

L, =2.63x107 [H] R, =2.0[Q]

E=12[V] 7, =0.05 [N-m]

A.  Non adaptive controller
Fig.3. illustrates the behavior of the controller (13)
in presence of a constant reference w, = 60rad/s and a

variable load torque. The value of the load torque T,

was step changed for a time period of 0.1 seconds to
50% value of its original one. The relevant design
parameters have the following values: ¢, = 1x10%;

¢, =1.5x10% ¢; =400; ¢, = 500. It is seen that motor

velocity perfectly tracks its reference only when the
load torque is equal to its nominal value. Besides,
when the load torque deviate around its nominal value,
it can be seen that the motor velocity deviate, in turn,
around its reference.

B.  Adaptive controller version

We consider now the adaptive controller (34)-(35).
The reference signal value and the load torque
variation are the same as in simulation 4. The adaptive

controller design parameters have the following
values: ¢, =600; c¢,=700; c;=400; c,=500;

y=1x10""". The corresponding performances are

illustrated by Fig.4. This shows that, despite the load
torque uncertainty, the controller behavior is quite
satisfactory. It is worth noting that such a good
behavior is preserved when facing different variations
of the load torque. As can be expected, the estimation
parameter 6 converges asymptotically to the uncertain
value @ as depicted in Fig.4.

Fig.5 shows that the motor velocity tracks perfectly its
varying reference. The desired trajectory @, is a signal
switching between 40 and 50rad/s.
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Fig.3: Backstepping non adaptive controller performances
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Fig.4: Backstepping adaptive controller performances
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Fig.5: Tracking behavior of the adaptive controller

C. Importance of converter dynamics

We are going to illustrate here the importance to
take in account, when designing the controller, the
dynamics of the converter. When the converter
dynamic is not taken in account, the output voltage of
the converter is v = pF which leads, after averaging, to

the following second order model

X ==(f /Iy +(K /Ty =T, /T 61)
)'CZ :_(K/Lm )xl _(Rm /Lm )xz +(E/Lm ),U

where we denote by x, and x,, the average values of

the angular velocity @ and the dc motor armature
circuit current i, , respectively.

Following closely the backstepping design procedure
in [10], one gets the following regulator

u=L, /(KE)){(K2 /(JL, )- f? /Jz)
+(kR,, /(JL,)+ 1K 1 J?)

0 SN I | S S P (62)

where 2z, and 2z, are given by (4) and (5),
respectively.

Regulator (62) has been applied successively to the
system (2) and to the simplified model (61). The
relevant design parameters have been given the

following values: ¢, = 8x10°, ¢, = 10*. Fig.6 illustrates

the tracking behaviour of two systems in presence of a
constant reference w, = 70rad/s. As it can be seen

from the figure, if the regulator (62) perfectly
stabilises the simplified system (61), it is not the same
way for the system (2). This clearly shows that
neglecting the converter dynamics in the regulator
design may lead to drastic deterioration of the closed-
loop performances.

6. Conclusion

In this paper, we have dealt with the problem of DC-
motor velocity control tacking account the dynamics
of a switching power converter. The average controller
design is elaborated via the use of the backstepping
approach. In the case of perfectly known converter
model, the control objective can be ensured using a
backstepping non adaptive controller (13). In the case
of unknown load torque, an adaptive version of the
backstepping controller ((34)-(35)) has been developed
to achieve the control objective. Simulation results

illustrates that the adaptive controller provide excellent
asymptotic stability, a perfect tracking behavior, and a
good compensation of load torque changes.
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Fig.6: Tracking behavior of the controller (62) associated,
successively, with the global system (2) and the simplified
system (61).
(solid line: simplified system ; dotted line: global system)
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