
 
 1

ACCOUNTING OF DC-DC POWER CONVERTER DYNAMICS IN DC 
MOTOR VELOCITY ADAPTIVE CONTROL 

 
H. El Fadil 

Département LA2I, Ecole Mohammadia d’Ingénieurs, Agdal, Rabat, 10000 
Maroc (Tel: +212-65-27-68-45; e-mail: elfadilhassan@yahoo.fr). 

 
F. Giri 

GREYC, Université de Caen, Bd Marechal Juin, B.P 8156, 14032, Caen 
France (e-mail: giri@greyc.ensicaen.fr) 

 
 
 
Abstract: This paper deals with the problem of  velocity 
control of a DC motor  taking account the dynamics of the 
DC-DC power converter, supposed here of Buck type. We 
will develop for the global system, constituted by combined 
DC-motor and Buck-converter, a model of fourth order. On 
the basis of this model a regulator is designed using the 
backstepping technique. The control purpose is, on one 
hand, asymptotic stability of the closed-loop system and, on 
the other hand, perfect tracking of the reference signal (the 
machine speed). Both non adaptive and adaptive versions 
are designed and shown to yield quite interesting 
performances. A theoretical analysis shows that both 
controllers meet their objectives. These results are 
confirmed by experimental results which, besides, show that 
the adaptive version deals better with load torque changes. 
 
Key words: DC-motor, Buck converter, Backstepping, 
Lyapunov stability. 
 

1. Introduction 
DC machines are extensively used in many 

industrial applications such as servo control and 
tractions tasks due to their effectiveness, robustness 
and the traditional relative ease in the devising of 
appropriate feedback control schemes [4], specially 
those of the PI and PID types ([3], [5], [8]).  

Therefore, the problem of velocity control of DC-
motors has been extensively dealt in the specialized 
literature during the last years ([1], [2], [6],[7]). 
However, in the most works, the dynamics of DC 
power converter has generally been ignored when 
analyzing the resulting closed-loop systems. Indeed, 
the converter is generally considered transparent as 
being assimilated to the proportional gain. Moreover, 
this simplification can be tolerated for the high 
powers, but not for the low and the medium powers. 
Such a simplification can only limit performances of 
the regulator and can even compromise the global 
stability of the system in closed loop. Indeed, a 

dynamics non taken in account in the design of the 
regulator can generate a reduction of the phase margin 
and in turn produces the instability of the system.   
In this paper, we propose an adaptive control of DC 
motor velocity tacking account the dynamics of DC-
DC power converter of the Buck type.  The converter 
input (duty ratio) is designed so that a smooth 
trajectory is followed by the motor angular velocity. 
The proposed controller, based on the backstepping 
approach, is shown to achieve a good stability and 
perfect tracking objectives under constant but 
unknown load torque. 

The paper is organized as follows: in section 2 the 
combined DC-motor and Buck converter model is 
described. Section 3 and Section 4 are devoted to the 
controller theoretical design; the controller stability 
and tracking performance are illustrated in section 5. A 
conclusion and reference list end the paper. 

2. The combined DC Motor-Buck Converter 
Model  

Consider a permanent magnet motor with its armature 
circuit loaded to a DC-DC power converter of Buck type as 
shown in Figure 1. Such a configuration constitutes a single 
quadrant angular velocity control configuration for a DC 
drive. The mathematical model of the composite system is 
given by: 

 

Fig. 1: The combined DC-motor- “Buck” converter model 
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Where i  is the converter input current, v  is the 
converter output voltage, ai  is the dc motor armature 
circuit current and ω  is the angular velocity of the 
motor shaft, which may be subject to a constant but 
unknown load torque LT . The control input is 
represented by the variable u , which represents a 
switch position tacking value on the discrete set {0, 
1}. 
The model (1) is useful to build-up an accurate 
simulator for the combined DC-motor and buck 
converter. However, it cannot be based upon to design 
a continuous control law as it involves a binary control 
input, namely u . To overcome this difficulty, it is 
usually resorted to the averaging process over cutting 
intervals [11]. This process is shown to give rise to 
average versions (of the above model) involving as a 
control input the mean value of u  which is nothing 
other than the duty ratio µ . The average model turns 
out to be the following: 
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where we denote by 1x , 2x , 3x  and 4x  the average 
values of  the angular velocity ω , the dc motor 
armature circuit current ai , the converter output 
voltage v  and the converter input current i , 
respectively.  
Furthermore, the switching policy is generated 
according to so-called Pulse Width Modulation 
(PWM) principle described as follows: 
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 where kt  represents a sampling instant and the 
parameter 0>T  is the fixed sampling period 

3. Non Adaptive Controller Design 
The aim is to directly enforce the average angular 

velocity 1x  to track a given reference signal ( )trω , 
when the model parameters are perfectly known. The 
reference signal and its four first derivatives are 
assumed to be known, bounded, and piecewise 
continuous. Following closely the backstepping design 
[10], the controller is designed in four steps, since the 
control input appear after four derivatives of 1x . The 
control law is summarized in Table 1. 
 

TABLE 1: NON ADAPTIVE CONTROLLER 
 
Error variables: 

rxz ω−= 11      (4) 
122 / α−= JKxz      (5) 

( ) 233 / α−= mJLKxz     (6) 
( ) 344 / α−= CJLKxz m     (7) 

Stabilizing functions 
 1111 // zcJTJfx rL −++= ωα &    (8) 

( ) ( )( ) 1
22

2 // xJfJLK m −=α     
( )( ) 2

2// xJfKJLKR mm ++     
 221211

2
1

2/ zczzczcJfT rL +−+−+− ω&&   (9) 
( ) 1213 // xLKbJfb m+−=α     

( )( ) 221 xCJL/KL/RbJ/Kb mmm +−+    
       ( ) 121

3
1132 2 zcccJ/TbL/xb Lm ++−+−+  

  ( ) ( ) rzccczcccc ω&&&+++−−+++ 3321221
2
2

2
1 2     (10) 

where 
( ) ( )22

1 // JfJLKb m −=    (11) 
( ) 2

2 J/fKJL/KRb mm +=   (12) 
Control law: 

( )( ) ( ){ 143 xL/KbJ/fbKE/LCJL mm −=µ    
( )( ) 2243 xCL/bL/RbJ/Kb mmm ++−  

( )( ) ( ) J/TbCL/xbxL/bLCJL/K Lmmm 34234 ++++

( ) 121
2
2

2
1

4
1 223 zccccc +−−−+  

( ) 2321
2
12

2
21

3
2

3
1 43 zccccccccc +++−−−−+  

( ) 3323121
2
3

2
2

2
1 3 zccccccccc −++++++   

( ) }44
4

4321 zczccc )(
r ++++− ω                

(13) 
where 

mL/KbJ/fbb 213 +=    (14) 
( )CJL/KL/RbJ/Kbb mmm +−= 214  (15) 
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Proposition 1 
Consider the closed loop system consisting of the 

subsystem (2) and the control law (13). If the angular 
velocity reference rω  and its four first derivatives are 
known and bounded, then the closed loop undergoes, 
in the ( 1z , 2z , 3z , 4z )-coordinates, the following 
equation: 
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where the design parameters ( 1c , 2c , 3c , 4c ) are 
positives and freely chosen. Consequently, the error 
system (16) is globally asymptotically stable. It 
follows that: 

i) All signals in closed loop are bounded, 
ii) The tracking error rxz ω−= 11  vanishes. □ 
 

Proof. Let us consider the following Lyapunov 
function candidate: 

∑
=

=
4

1

250
i

iz.V     (17) 

 
its time derivative, using Table 1, is given by 
 

0
4

1
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ii zcV&    (18) 

 
This shows that the ( 1z , 2z , 3z , 4z )-system is globally 
asymptotically stable. From Table 1 we see that, since 
the iα ’s are smooth function, the state variables ix  can 
be expressed as a smooth function of iz,,z L1 . Hence, 
the state vector ( )tx  is globally asymptotically stable. 
Furthermore, from (17) and (18), we can see that 

0V →  as ∞→t , hence, all variable errors iz , i=1…4, 
vanish asymptotically. This ends the proof of 
Proposition 1. 

4. Adaptive Controller Version 
Controllers of section 3 guarantee perform well only 

when the model (2) is perfectly known. This 
particularly means that the load torque LT  is constant 
and time-invariant. When this is not the case, the 
controllers may still provide an acceptable behavior, in 

particular, the tracking error 1z  is bounded but not 
vanishing. Therefore adaptive versions of the above 
controllers turn out to be interesting alternatives. 

To cope with such a model uncertainty the new 
controller will be given a learning capacity. More 
specifically, the controller to be designed should 
involve an on-line estimation of the unknown 
parameter 

 
J/TL=θ     (19) 

 
The obtained estimate is denoted θ̂ , it follows that 
 

θθθ ~ˆ +=     (20) 
 

where θ~  is the estimation error. 
Following the tuning functions backstepping design 

[10], then the control law and the parameter update 
law, designed in four steps are summarized in table 2. 

 
TABLE 2: TUNING FUNCTION DESIGN 

Error variables 
rxz ω−= 11     (21) 

122 α−= J/Kxz    (22) 
( ) 233 α−= mJL/Kxz    (23) 
( ) 344 α−= CJL/Kxz m    (24) 

 Stabilizing functions 
r

ˆwJ/fxzc ωθα &+−+−= 11111   (25) 
2122212 γτψα wzcz −−−−=   (26) 

33333323 υγτλψα +−−−−= zcz  (27) 
Tuning functions 

111 zw=τ     (28) 
iiii zw+= −1ττ  42,...,i =   (29) 

Regressor constants 
11 −=w      (30) 

J/fwcw += 112    (31) 
( ) 32

2
1

2
1113 1 awwcwbw +−−−= γ   (32) 

36251434 wawawabw +++=   (33) 
Adaptive control law 

{ }4444443 υγτλψµ +−−−−= zcz
KE

LCJLm (34) 

Parameter update law 
Wzˆ γθ =&     (35) 

where [ ]T4321 z,z,z,zz =  and [ ]4321 w,w,w,wW =
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The functions and constants introduced in the above 
Table 2 have the following expressions 
 

22112 xbxb −−=ψ rzczcJ/ˆf ωθ &&−+−+ 211
2
1           (36) 

 
mL/xbxbxb 3224133 −+=ψ     

       rzazazaˆb ωθ &&&−++++ 3322111   (37) 
 

( ) 1434 xL/KbJ/fb m+−=ψ     
       ( )( ) 2243 xCL/bL/RbJ/Kb mmm +−+   

( )( ) 34 xLCJL/KL/b mm −+ ( ) θ̂bCL/xb m 342 −−  

( )[ ] 1136
2
1541 1 zwawaac γλγ −+−−+    

( ) ( )[ ] 22323621254 1 zwawwcaa γλσγ ++−+−+   
( ) ( )[ ] 3333631235 1 zwcawwa γλγσ +−−++    

( )4
46 rza ω−+            (38) 

 
313 awJ/f +=λ    (39) 

361514 λλ awab ++=    (40) 
( ) ( )22

1 J/fJL/Kb m −=    (41) 
( ) 2

2 J/fKJL/KRb mm +=   (42) 
mL/KbJ/fbb 213 +=    (43) 

( ) mmm L/RbJ/KbCJL/Kb 214 +−−=  (44) 
( ) ( )2

13
2
1

2
111 11 wawcca γγ +−−−=   (45) 

( )[ ]2123
2
1

2
12 1 wwcawca γγ ++−−−=  (46) 

21213 wwcca γ++=    (47) 
1314 waa γλ+=     (48) 

232325 1 σγλ +++= waa   (49) 
33336 waca γλ++=    (50) 

2233 zσυ −=     (51) 
3123 wγw=σ     (52) 

3342244 zz σσυ −−=    (53) 
4124 wwγσ =     (54) 
4334 wγλσ =     (55) 

 
where 1c , 2c , 3c , 4c  and γ  are positive design 
parameters freely chosen. 
The main result of this subsection is summarized in the 
following proposition 
 
Proposition 2 

Consider the closed loop system (2) subject to 
uncertain load torque LT   and the controller composed 
of the adaptive control law (34) and the parameter 
update law (35). If the angular velocity reference rω  

and its four first derivatives are known and bounded, 
then the closed loop undergoes, in the following 
equations: 

 
θ~WzAz T

z +=&     (56) 

Wzˆ γθ =&     (57) 
 

where zA  is a skew symmetric matrix defined as 
follows 
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Consequently, the error system (56) is globally 
asymptotically stable. It follows that: 

i) All signals in closed loop are bounded, 
ii) The tracking error rxz ω−= 11  vanishes.  
iii) The estimate parameter θ̂  converges toward 

uncertain and constant parameter θ   
 □ 

Proof. Consider the following Lyapunov function 
candidate: 
 

( )γθ /~zz.V T 250 +=    (59) 
 

its time derivative, using Table 2, is given by 
 

0
4

1

2 ≤−= ∑
=i

ii zcV&    (60) 

 
i) From (59) and (60) we can see that the 

equilibrium ( ) 0~,z =θ  is globally asymptotically 
stable and in turn the state vector ( )tx  is globally 
asymptotically stable.  

ii) From LaSalle’s Invariance Theorem [10], it 
further follows that the state ( )θ~,z  converges to 
the largest invariant set M  of (56)-(57) contained 
in ( ){ }0IR 5 =∈= z/~,zE θ , that is, in the set where 

0=V& . This means, in particular, that ( ) 0→tz  as 
∞→t . 

iii) On the invariant set M , we have 0≡z and 0≡z& . 
Setting 0=z and 0=z&  in (56) and (57) we obtain 

0=θ&  and 0=θ~W T .  As the regressor vector is 
composed of constant parameters it follows that 
we get 0=θ~ on  M , which implies that 
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( ){ }0,0=M  and , in particular, we have θθ →ˆ  as 
∞→t . 

We thus established the proof of Proposition 2 

5. Experimental Results 
The backstepping  no adaptive and adaptive 

controllers shown in Table 1 and Table 2 has been 
applied to the combined DC-Motor-“Buck” Converter 
according to the experimental setting of figure 2, 
where x denotes the state vector. 

 
Fig. 2: Experimental bench for DC-motor velocity control 

 
Table 3 lists the numerical values for the parameters 
the combined system studied in this paper. 
 

TABLE 3: PARAMETERS OF THE COMBINED DC-
MOTOR-BUCK CONVERTER 

=L 20x10-3[H] =C 400x10-6[F] 
=eK 0.046[V.s/rad] =mK 0.046[N-m/A] 

=J 7.06x10-5[kgxm2] =f 8.42x10-4 
[Nm.s/rad] 

mL  =2.63x10-3 [H] =mR 2.0[Ω] 
=E 12[V] =LT 0.05 [N-m] 

A.   Non adaptive controller 
Fig.3. illustrates the behavior of the controller (13) 

in presence of a constant reference rω  = 60rad/s and a 
variable load torque.  The value of the load torque LT  
was step changed for a time period of 0.1 seconds to 
50% value of its original one. The relevant design 
parameters have the following values: =1c 1x103; 

=2c 1.5x103; =3c 400; =4c 500. It is seen that motor 
velocity perfectly tracks its reference only when the 
load torque is equal to its nominal value. Besides, 
when the load torque deviate around its nominal value, 
it can be seen that the motor velocity deviate, in turn, 
around its reference. 

B. Adaptive controller version 
We consider now the adaptive controller (34)-(35). 

The reference signal value and the load torque 
variation are the same as in simulation A. The adaptive 

controller design parameters have the following 
values: =1c 600 ; =2c 700 ; =3c 400; =4c 500 ; 

111x10−=γ . The corresponding performances are 
illustrated by Fig.4. This shows that, despite the load 
torque uncertainty, the controller behavior is quite 
satisfactory. It is worth noting that such a good 
behavior is preserved when facing different variations 
of the load torque. As can be expected, the estimation 
parameter θ̂  converges asymptotically to the uncertain 
value θ  as depicted in Fig.4. 

Fig.5 shows that the motor velocity tracks perfectly its 
varying reference. The desired trajectory rω  is a signal 
switching between   40 and 50rad/s. 
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Fig.3: Backstepping non adaptive controller performances 
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Fig.5: Tracking behavior of the adaptive controller 

C. Importance of converter dynamics 
We are going to illustrate here the importance to 

take in account, when designing the controller, the 
dynamics of the converter. When the converter 
dynamic is not taken in account, the output voltage of 
the converter is Ev µ=  which leads, after averaging, to 
the following second order model 

 
( ) ( )
( ) ( ) ( )µmmmm

L1

L/ExL/RxL/Kx
  J/TxJ/KxJ/fx

+−−=
−+−=

212

21

&

&
 (61) 

 
where we denote by 1x  and 2x ,  the average values of 
 the angular velocity ω  and the dc motor armature 
circuit current ai , respectively. 
Following closely the backstepping design procedure 
in [10], one gets the following regulator 
 

( )( ) ( )( ){ 222 J/fJL/KKE/JL mm −=µ  
       ( )( )2J/fKJL/KR mm ++  

2J/fTL− ( ) ( ) }r2211
2
1 zccz1c ω&&++−−+         (62) 

 
where 1z  and 2z  are given by (4) and (5), 
respectively. 
Regulator (62) has been applied successively to the 
system (2) and to the simplified model (61). The 
relevant design parameters have been given the 
following values: =1c 8x103, =2c 104. Fig.6 illustrates 
the tracking behaviour of two systems in presence of a 
constant reference rω  = 70rad/s. As it can be seen 
from the figure, if the regulator (62) perfectly 
stabilises the simplified system (61), it is not the same 
way for the system (2). This clearly shows that 
neglecting the converter dynamics in the regulator 
design may lead to drastic deterioration of the closed-
loop performances. 

6. Conclusion 
In this paper, we have dealt with the problem of DC-
motor velocity control tacking account the dynamics 
of a switching power converter. The average controller 
design is elaborated via the use of the backstepping 
approach. In the case of perfectly known converter 
model, the control objective can be ensured using a 
backstepping non adaptive controller (13). In the case 
of unknown load torque, an adaptive version of the 
backstepping controller ((34)-(35)) has been developed 
to achieve the control objective. Simulation results 

illustrates that the adaptive controller provide excellent 
asymptotic stability, a perfect tracking behavior, and a 
good compensation of load torque changes. 
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Fig.6: Tracking behavior of the controller (62) associated, 
successively, with the global system (2) and the simplified 

system (61).  
(solid line: simplified system ; dotted line: global system) 
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