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Abstract: An increasing demand of availability 

improvement of industrial processes has been 

expressed in the last decades. Therefore, the fault 

detection and diagnosis has become considered 

indispensable to ensure high performances of the 

plant operation. Induction motors have dominated 

among all industrial drives. Their Condition 

Monitoring (CM) has therefore become critical. 

Despite their recurrent use, the CM of double cage 

induction motors (DC-IM) has not received sufficient 

research focus. This paper is inspired from the 

advanced signal processing techniques in order to 

diagnose one of the critical and most hardly detected 

faults in DC-IM. Actually, the challenge in DC-IM is 

the detection of the outer cage’s bar fault at an early 

stage. This study proposes a novel solution of this 

issue based on the Information Entropy of the Second 

Generation Wavelet Transform (SGWT). Using the 

Motor Current Signature Analysis, several rotor 

conditions including the incipient outer cage’s bar 

fault are analyzed under different severities and 

variable load levels. The results concluded by the 

experiments demonstrate the competence of this 

approach. 

Key words: Broken Rotor Bar; Condition 
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1. Introduction 

Because of its robustness and cost-effectiveness, 

Induction Motors (IM) lead all industrial rotating 

machines. Practically 85% of the electric energy is 

consumed by IM [1]. Nevertheless, several types of 

defects could affect them. The IM breakdown may 

lead to the production line’s halt. Their Condition 

Monitoring (CM) has therefore become a key issue. 

Most of CM works concentrate on the detection of air 

gap eccentricities, bearing defects, rotor defects, and 

short-circuits in stator in single cage IM [2]-[6]. The 

rotor faults, specifically the broken rotor bar (BRB) 

fault, are classified as the less occurring defects [5], 

[6]. However, the destructive consequences on the 

other parts of the IM make the detection of BRB very 

important, especially at an incipient stage. Different 

CM approaches such as vibration analysis, acoustic 

emission and infrared thermography were applied. 

However, the installation of these techniques is both 

difficult and expensive since the placement of sensors 

such as accelerometers and acoustic sensors is 

indispensable. MCSA is both a cost-effective 

alternative and a more sensitive technique to BRB 

fault. In fact, it does not need devices excepting those 

already employed to measure the principal electrical 

quantities. Besides, the BRB fault is an electrical fault, 

which is directly correlated to current variations. 

According to the ISO standard 20958:2013, the 

MCSA essentially consists in a spectral analysis 

performed on the motor line current in order to 

determine if there are signatures at specific 

frequencies that can indicate the presence of faulty 

components. However, the signatures related to the 

incipient faults such as incipient BRB are 

fundamentally weak and can therefore be buried in 

noise when using spectral techniques [6]. Spectro-

temporal techniques were efficiently introduced to 

extract weak signatures. Recently, many research 

works have focused on the incipient BRB fault 

detection at an early stage using MCSA [6]-[18]. 

Many works carried out the half BRB detection 

[7]-[9]. Several frequency and time-frequency based 

techniques were successfully applied. Further works 

enhanced these techniques to be able to detect BRB 

faults with lesser severity levels [10]-[18]. The 

spectral analysis such as Fast Fourier Transform, 

Hilbert transform and High-Resolution Spectral 

Analysis was previously investigated for this purpose 

[14]-[16]. Although these techniques succeeded to 

detect incipient broken rotor bar faults, they are still 

suffering from the requirement of big data acquisition 



and they are still inappropriate for non-stationary 

conditions. To overcome the frequency analysis 

drawbacks, the time-frequency based techniques were 

introduced [18]. In single cage IM, the startup current 

was also used to extract faulty feature related to the 

incipient BRB fault in [16]-[18].  However, the startup 

current cannot be suitable for online condition 

monitoring. Although several techniques were 

successfully applied for incipient BRB in single cage 

IM, a lack of focus is reported when dealing with 

double cage IM (DC-IM) case. In several industrial 

applications, the DC-IM is used, especially when a 

high startup torque is required [19], [20]. In fact, 

MCSA is 10 times less sensitive to the outer cage’s 

bar fault compared to the BRB fault in a single cage 

IM [19]. The wavelet transforms have shown high 

performances in the detection of the fault of the outer 

cage’s bars in DC-IM [6], [18] and [19]. Daviu et al. 

[18] applied the DWT to detect the breakage of the 

entire outer cage’s bar. Nevertheless, the proposed 

approach used 30.000 Samples, which is a big number 

of data. Another drawback is that this approach is not 

suitable for steady state condition.  To overcome these 

drawbaks, Gritli et al. [19] applied the DWT using 

9.600 Samples to detect three broken outer cage’s bars 

of a DC-IM even in steady state. Despite the success 

of the detection of the outer cage’s bar fault in the 

aforementioned works, the incipient BRB fault can 

relatively be considered in an advanced stage. An 

earlier detection should be performed. Hmida et al. [6] 

have recently performed another work for incipient 

outer cage’s bar detection. The authors also used 

another variant of the traditional wavelet transform, 

namely the recursive stationary wavelet packet 

transform. Although the success of the wavelet-

derived techniques, they are still suffering from 

computational intensity [21]. To overcome this 

drawback, the second-generation wavelet transform 

(SGWT) was introduced as a cost-effective alternative 

[22]-[25]. This alterative is faster and lesser 

demanding in terms of computational cost, since it 

performs an in-place calculation and does not require 

convolutions to compute the coefficients [22], [23]. 

The contribution of the present study is the 

combination of the SGWT and the information 

entropy in order to detect a 3 mm depth incipient outer 

cage’s bar in a DC-IM. Other rotor faults are also 

diagnosed under different load levels. This approach 

solve this issue using only 7000 Samples and a 

sampling frequency of 1400 Hz. 

In this regard, the paper is structured so that a brief 

review of conventional wavelet transforms and  

 
Fig. 1. DWT decomposition tree 

 

 
Fig. 2. Frequency domain representation of DWT 

 

second-generation wavelet transforms is presented in 

Section 2. Section 3 focuses on the explanation of the 

effect of the rotor cage’s bar fault on the stator current, 

whereas Section 4 addresses the fault detection 

algorithm proposed in this paper. An experimental 

study is conducted to demonstrate the effectiveness of 

the proposed approach as described in section 5. 

Finally, section 6 concludes the paper with several 

highlights and perspectives. 

 

2. Wavelet transforms 

2.1. Discrete wavelet transform 

In the context of IM fault detection using MCSA, 

the stator current is not as commonly known a 

stationary signal. Previous studies show that 

frequency-based techniques are not the most 

appropriate for the analysis of this type of signals [26]. 

To overcome this disadvantage, the techniques based 

on the spectro-temporal transforms were introduced. 

Several approaches were elaborated in the literature, 

namely, the Short-Time Fourier Transform, the 

Empirical Mode Decomposition and the Hilbert-

Huang transform. Similarly, the wavelet transform 

represents a powerful signal-processing tool for fault 

detection [4], [5], [6], [19] and [20]. This transform 

splits the signal into special functions called Wavelets 

[27]. By definition, a wavelet is an oscillating function 



of zero mean value. A wavelet is defined by: 
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where a is the scale factor and  is the translation 

factor. The continuous wavelet transform of a finite 

energy current signal C00 is defined by the following 

equation: 
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where Ψ* denotes the complex conjugate of the 

wavelet Ψ. However, the continuous wavelet 

transform suffers from a very high computational 

time, for the simple reason that it calculates all wavelet 

coefficients at all levels. 

Derived from the discretization of the continuous 

wavelet transform, Mallat developed the Discrete 

Wavelet Transform [27]. The application of multi-

resolution analysis is the basis of the DWT. The latter 

consists in filtering the signal through a series of low-

pass and high-pass filters. As a result, the outputs of 

the filtering process are Approximations (A) and 

Details (D) coefficients. A multi-level decomposition 

tree is then generated by repeating this process several 

times. Only the approximation coefficients are filtered 

similarly to each level. The decomposition structure of 

a two-level DWT is shown in Fig.1. 

 

2.2. Second generation wavelet transform 

The SGWT was initially developed by Sweldens 

[22]. The SGWT is an alternative implementation of 

DWT using lifting schemes. This technique allows 

designing wavelets without Fourier transform. The 

second-generation wavelets are therefore no longer 

constructed by translation and dilation of a fixed 

function. While the DWT applies a recursive filtering 

to the signal, the SGWT divides the signal such as a 

zipper. It conserves the time-frequency properties and 

the multi resolution characteristics of DWT. The 

lifting scheme, which constructs the SGWT consists 

of three phases: splitting, predicting and updating.  

1) Splitting: is to decompose the original signal 

C00 [n] into two separated sequences. The original 

dataset is usually split into odd and even subsets. The 

even subset is indexed C00 even [n] , while the odd one 

is C00 odd [n] . 

C00 even [n]=X [2n]   (3) 

 

C00 odd [n]=x[2n+1]   (4) 

Assuming that data are similar, C00 odd [n] can be 

predicted from C00 even [n] through an independent 

predict operator P.  

 
Fig. 3. Lifting steps: Split, Predict and Update 

 

2) Predicting: Using P, C00 even predicts C00 odd. 

Therefore, the difference is the detail signal D, which 

is expressed as: 

D= C00 odd - P C00 even   (5) 

 

3) Updating: To obtain the approximation 

coefficients A, the even subset C00 even is combined 

with the details D after the application of an updating 

operator U on D.  

A= C00 even + U D   (6) 

 

The decomposition structure of the SGWT is 

depicted in Fig.3. The SGWT has several benefits 

compared to the classical wavelet transforms, since it 

is appropriate for nonlinear and adaptive design; it 

allows in-place calculations, integral wavelet 

transform and irregular samples [22], [23]. The 

implementation of the SGWT using Lifting schemes 

is therefore quicker than the classical wavelet 

transform. Another strength of the lifting schemes is 

that they do not refer to Fourier transforms to design 

the second-generation wavelets [22], [23].  

 

3. Motor current spectral components for 

broken rotor cages 

Among several condition monitoring techniques, 

the Motor Current Signature Analysis is used for the 

fault diagnosis in induction motors, [2]-[20]. This 

technique was originally conceived for inaccessible 

IMs in nuclear power plants, and recently, it has been 

increasingly investigated in industry applications. 

Several IM faults of electric or mechanic origins can 

modulate the motor current signal, that lead to further 

sideband harmonics appearence in the current 

spectrum. Based on the amplitudes and the 

frequencies of these signatures, the motor defects can 

be detected and classified with the assessment of their 

severities. 

DC-IM are among the most important types of 

IMs. Two short-circuited squirrel cages compose the  



 
Fig. 4. Fault detection algorithm 

 

rotor of DC-IM. In order to offer a sufficient starting 

torque, the construction of the outer cage is higher 

resistant than the inner cage construction. However, 

the outer cage is usually exposed to damage. The rotor 

bar fault initiates as slight cracks in the outer cage’s 

bar, that gradually grow into a critical defect as a 

broken rotor bar [19], [20]. 

Once a bar is broken, it provokes the rise of current in 

the adjacent rotor bars, leading similarly to their 

breakage and can induce an inadequate starting torque. 

The fast and early detection of the incipient outer 

cage’s bar (IOCB) fault of a DC-IM is therefore a key 

issue to prevent such process from occurring. 

However, it is considerably more complicated than the 

BRB detection in a single cage IM. Compared to the 

BRB fault in a single cage IM, the sensitivity of the 

MCSA to the IOCB fault is extremely reduced [20]. 

The conventional FFT-based techniques are not 

sufficient for the detection of IOCB defects [19], [20]. 

Advanced signal processing tools are needed. The 

rotor bar faults are commonly assessed by monitoring 

their related harmonics in the current spectrum given 

by [5]: 
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where ff is the fundamental supply frequency and s 

represents the slip value. According to (7), the current 

signatures obtained with k=1 are adjacent to the  

 

 
 
Fig. 5. Experimental setup for fault detection 

 

 
 
Fig. 6. Incipient outer cage bar fault 

 

fundamental frequency. These harmonics are widely 

used to assess the rotor bars condition. However, the 

fundamental frequency overwhelms the diagnosis of 

the BRB faults by the motor current. Filtering the 

fundamental frequency component is therefore 

indispensable. The proposed solution consists of using 

a notch filter, which is a band-stop filter with a narrow 

stop-band. 

 

4. Fault detection algorithm  

Feature extraction is the key step in fault detection. 

The statistical representations of signals are 

descriptive features of faults. Combining the statistical 

features with the wavelet transform is highly efficient. 

Features such as crest factor, Skewness, standard 

deviation, energy and root mean square are very 

suitable [28]. Information entropy is an additional 

efficient statistical feature. The Shannon entropy 

measures the uncertainty of the signals, the reason 

why it is a highly sensitive feature to IM faults. 

Wavelet entropy proved its efficiency in analyzing 

faulty signals [29]. 

The wavelet entropy is defined by the following 

expression: 



 

 
Fig. 7. SGWT decomposition tree for a sampling rate of 

1392 Hz 

))()/log(()())/(()/( 2

1

2 jDAjDADAE i

N

j

ii 


   (8) 

The entire fault detection algorithm is illustrated in 

Fig.4. 

 

5. Results and discussions 

As illustrated in Fig.5, the experiments are done 

through a test bed composed by a 3-kW DC-IM fed by 

an ff of 50 Hz and loaded by a DC motor, which allows 

the motor load variation from no load to full load. The 

acquisition of the stator currents is allowed by Hall-

effect transducers and a data acquisition card NI-PCI 

6221. Three rotor faults are tested: the incipient outer 

cage’s bar fault, the one broken bar (1BRB) and the 

two broken bars (2BRB) at 25%, 50%, 75%, and 

100% load levels. The slip s consequently varies from 

1.33% to 5.06 % and the BRB characteristic frequency 

varies from 47.4 to 49.3 Hz. The outer cage’s bar is 

drilled at 3mm of depth to create the IOCB, which is 

illustrated by Fig.6. The piercing of the outer and inner 

cages’ bars at a time allows the generation of the 

1BRB fault. This same process is repeated in two 

different placements of the rotor in order to generate 

the 2BRB fault. The sampling frequency is selected at 

1400 Hz. In order to get a frequency resolution of 0.2 

Hz, every acquisition takes 5 seconds. The application 

of a 4th order Notch filter with a center frequency of 

50 Hz and a quality factor of 6 completely filters out 

the fundamental frequency component from the stator 

current spectrum, which allows to enhance the 

performance of the detection. Various mother 

wavelets such as Symmlet, Coiflet, Daubechies and 

Meyer perform comparable outcomes in fault 

detection [30]. Here in this paper, Meyer mother 

wavelets are selected. Five levels of SGWT 

decomposition allow the D5 generation, as shown in 

Fig. 7. The generated coefficient D5 covers the 

shifting of the characteristic frequency from 0% to 

100% of load. The related frequency bandwidth is  

 

  
Fig. 8. D5 waveform for HLT, IOCB,1BRB, 2BRB 

conditions 

 

[43.7 – 87.5 Hz]. Fig.8 shows the D5 waveform after 

filtering the 50 Hz frequency for healthy (HLT), 

IOCB, 1BRB and 2BRB motor conditions under 

100% of load. It can be seen that under faulty rotor 

conditions, the magnitude of D5 increases 

correspondingly with the increase of the severity of 

the fault. The sensitivity of D5 to the motor and load 

conditions makes it a solid descriptor for BRB 

diagnosis. 30 current acquisitions are collected for 

every level of load and rotor condition with a total 

number of acquisitions of 480. The performances of 

the wavelet techniques are revealed with the analysis 

of variance tool (ANOVA) as shown in Fig.9. On each 

box, the upper and lower adjacents are respectively the 

maximum and the minimum entropies of the 

coefficient among the 30 acquisitions. The marks in 

the center of the boxes are the medians, while the 

upper and lower edges are the 25th and 75th 

percentiles. It can be clearly observed that the entropy 

median increases as long as the severity of the fault 

increases. It can be concluded that the SGWT 

coefficient is highly sensitive to rotor faults, even 

capable to detect the IOCB fault. 

 The distance e between the medians of each box 

indicates the ability of the differentiation between the 

rotor conditions. Here in these experiments, a 

remarkable dissimilarity between the boxes related to 
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each rotor condition is shown, which confirms the 

efficiency of the SGWT coefficient in detecting and 

classifying the rotor faults. Using a processor Intel (R) 

Core™ i5 with 4 logical processors, 2 core and a CPU 

M430 @2.27 GHz, we compare the SGWT computing 

time with the DWT one. The SGWT offers a gain of 

7.68 seconds in the computation of D5 for the 

aforementioned conditions. Actually, the reparation of 

the BRB faults is much simpler and more affordable 

as long as the detection is earlier, thus confirming the 

requirement of a fast algorithm, especially in case of 

online fault detection. 

6. Conclusion 

The present work proposes a new fault detection 

approach for incipient induction motor faults. The 

double cage induction motor, which is a specific 

commonly used type of IM, is monitored. The critical 

fault occurring to the DC-IM is the breakage of the 

outer cage’s bar. As this fault could lead to an 

insufficient startup torque, its early detection becomes  

crucial. However, MCSA is lesser sensitive to this 

fault than the BRB in single cage IM. Therefore, the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fault detection of the outer cage’s bar fault requires 

powerful signal processing tools. The present 

approach consists of a combination of information 

entropy with second-generation wavelet transform. 

Several rotor conditions are tested and compared. The 

resulting performances show the ability of the 

proposed approach to design a fault descriptor, which 

performs a fast detection and a high sensitivity to 

faults, even at incipient stage. The average 

computing time of the SGWT is equal to 0.289s.  In 

addition to the detection of faults, the SGWT-

entropy based detection provides a possibility of 

discrimination between the fault severity levels. The 

analysis of variance ANOVA shows a notable 

distinction between the analyzed conditions. These 

contributions are reached under low data acquisition 

parameters and using only one fault descriptor. A 

promising extension of this approach is the 

hybridization of the SGWT-entropy with an artificial 

intelligence-based classifier to determine precisely the 

accuracy of the approach and to perform an automatic 

fault recognition. The performances of the SGWT-
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Figure 9. Distribution of D5 wavelet entropy 
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entropy are encouraging to be applied for other 

electrical drives fault diagnosis. 
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