
      Abstract— The paper proposes an advanced aircraft roll 

control system based on design an autopilot that controls the roll 

angle of an aircraft. Firstly, modeling phase begins with a derivation 

of suitable mathematical model to describe the lateral directional 

motion of an aircraft. Then, the Linear Quadratic Controller (LQR) 

and Model Predictive Controller (MPC) are developed for controlling 

the roll angle of an aircraft system. Simulation results of roll 

controllers are presented in time domain and the results obtained with 

MPC are compared with the results of LQR. Finally, the 

performances of roll control systems are analyzed in order to decide 

which control method gives better performance with respect to the 

desired roll angle. According to simulation results, it is showed that 

MPC controller deliver the best performance than LQR Controller. 
 

 

Index Terms— Aircraft, Roll control, LQR, MPC. 

I. INTRODUCTION 

he development of automatic control systems has played 

an important role in the growth of civil and military 

aviation [1]. The Sperry brothers developed an autopilot that is 

sensitive to the movements of an aircraft. When an aircraft 

deviated from a particular flight route, this autopilot adjusted 

the pitch, roll and heading angles of an aircraft. Then, in 1914, 

the Sperry brothers demonstrated this autopilot at the Paris air-

show. To demonstrate the effectiveness of their design, 

Lawrence Sperry trimmed his airplane for straight and level 

flight and then engaged the autopilot [1]. Since then, the fast 

advancement of high performance military, commercial and 

general aviation aircraft design has required the development 

of many technologies; these are aerodynamics, structures, 

materials, and propulsion and flight controls [2]. Currently, the 

aircraft design relies heavily on automatic control systems to 

monitor and control many of the aircraft subsystems [2].  

Modern aircrafts are much more complex and includes a 

variety of automatic control system. Generally, an aircraft is 

controlled by three main surfaces. These are elevator, rudder 

and ailerons. Pitch control can be achieved by changing the lift 

on either a forward or aft control surface. If a flap is used, the 

flapped portion of the tail surface is called an elevator. Yaw 

control is achieved by deflecting a flap on the vertical tail 

called the rudder and roll control can be achieved by 

deflecting small flaps located outboard toward the wing tips in 

a differential manner [1].  

These flaps are called ailerons. The two ailerons are 

typically interconnected and both ailerons usually move in 

opposition to each other. The ailerons are used to bank the 

aircraft. 
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The banking creates an unbalanced side force component of 

the large wing lift force which causes the aircraft’s flight path 

to curve [3]. 

Thus, when the pilot applies right push force on the stick, as 

the aileron on the right wing is deflected upward, the aileron 

on the left wing is deflected downward. As a result of this, the 

lift on the left wing is increased, while the lift on the right 

wing is decreased.  

     So, the aircraft performs a rolling motion to the right as 

viewed from the rear of the aircraft. The rolling motion of an 

aircraft is controlled by adjusting the roll angle.  

In this study, for this situation an autopilot is designed to 

control the roll angle of an aircraft. In aircraft modeling phase, 

the aerodynamic forces (lift and drug) as well as the aircraft’s 

inertia are taken into account [4]. This is a third order, 

nonlinear system which is linearized about the operating point 

[4]. Lucio [2] has proposed a new autopilot controller in order 

to meet the desired performance. In (Atlas, 2011), an 

intelligent fuzzy logic controller (FLC) is developed for the 

roll control of an aircraft system. Performances of this 

controller are analyzed with respect to the desired roll angle 

[7]. A comparative analysis between LQR and fuzzy controller 

was proposed by Nurbaiti Wahid et.al [4].Generally these are 

all approaches which won’t handle constraints and optimal 

control. So in order to handle to the constraints of the system, 

Predictive strategy is used. 

     In this work, Constrained Model predictive controller 

(MPC) has been proposed for aircraft roll control system and 

its performance is compared with unconstrained MPC. The 

simulation test studies have been carried out to illustrate the 

performances of the constrained and unconstrained MPC in an 

aircraft roll system. 

     The paper is organized as follows. Next section presents 

the modeling of the aircraft roll system. Preliminaries are 

given in section 3. The simulation results and discussion is 

given in section 4. Finally some conclusions are drawn in 

section 5. 

II. MODELING OF AIRCRAFT SYSTEM  

The equation governing the motion of an aircraft are very 

complicated as a set of six nonlinear equations. Under certain 

assumptions, these equations can be decoupled and linearized 

into the longitudinal and lateral equations. Roll control is 

achieved by deflecting small flaps located outboard toward the 

wing tips in a differential manner. It is controlled by 

controlling the roll angle of an aircraft to stabilize the system 

when an aircraft performs the rolling motion. The roll control 

system is shown in Fig.1. 
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Fig.1.Definition of forces, moments and velocity components in a body fixed 

coordinate 

     In this figure, X, Y and Z represents the aerodynamic force 

components, ϕ and δa represent the orientation of aircraft (roll 

angle) in the earth-axis system and aileron deflection angle 

respectively. The forces, moments and velocity components in 

the body fixed coordinate of an aircraft system are shown in 

Figure 3 where p, q and r represents the angular rate 

components of roll, pitch and yaw axis and the term u, v and w 

represent the velocity components of roll, pitch and yaw axis, 

the term L, M and N represent the aerodynamic moment 

components. 

     Referring to figure.1, the rigid body equations of motion 

are obtained from Newton’s second law. But, a few 

assumption and approximation need to be considered before 

obtaining the equations of motion. Assume that the aircraft is 

in steady-cruise at constant altitude and velocity, thus, the 

thrust and drag cancel out and the lift and weight balance out 

each other. Also, assume that change in pitch angle does not 

change the speed of an aircraft under any circumstance. Under 

these assumptions, the lateral directional motion of an aircraft 

is well described by the following kinematic and dynamic 

differential equations. 

𝑋 − 𝑚𝑔𝑆∅ = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣)                                             (1) 

𝑌 + 𝑚𝑔𝐶𝜃𝑆𝜃 = 𝑚(𝑣 + 𝑟𝑢 − 𝑝𝑤)̇                                          (2) 

𝑍 + 𝑚𝑔𝐶𝜃𝐶∅ = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢)                                         (3) 

𝐿 = 𝐼𝑥�̇� − 𝐼𝑥𝑧𝑟 + 𝑞�̇�(𝐼𝑧 − 𝐼𝑦) − 𝐼𝑥𝑧𝑝𝑞                                  (4) 

𝑀 = 𝐼𝑦�̇� + 𝑟𝑞(𝐼𝑥 − 𝐼𝑧) + 𝐼𝑥𝑧(𝑝
2 − 𝑟2)                                 (5) 

𝑁 = −𝐼𝑥𝑧�̇� + 𝐼𝑧𝑟 + 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) + 𝐼𝑥𝑧𝑞𝑟                              (6) 

     Equation (1), (2), (3), (4), (5) and (6) are nonlinear and 

they can be linearized by using small-disturbance theory. 

According to small-disturbance theory, all the variables in the 

equation (1), (2), (3), (4), (5) and (6) are replaced by a 

reference value plus a perturbation or disturbance, as given in 

equation (7-10). 
 

𝑢 = 𝑢0 + ∆𝑢  𝑣 = 𝑣0 + ∆𝑣 𝑤 = 𝑤0 + ∆𝑤                            (7) 

𝑝 = 𝑝0 + ∆𝑝 𝑞 = 𝑞0 + ∆𝑞 𝑟 = 𝑟0 + ∆𝑟                                 (8) 

𝑌 = 𝑌0 + ∆𝑌 𝐿 = 𝐿0 + ∆𝐿 𝑀 = 𝑀0 + ∆𝑀                            (9) 

𝛿 = 𝛿0 + ∆𝛿                                                                         (10) 

     For convenience, the reference flight condition is assumed 

to be symmetric and the propulsive forces are assumed to 

remain constant. This implies that, 
 

𝑉0 = 𝑝0 = 𝑞0 = 𝑟0 = ∅0 = 𝛹0 = 0                                    (11) 

After linearization the lateral rigid body equations of motion 

are obtained as 
 

(
𝑑

𝑑𝑡
− 𝑌𝑣) ∆𝑣 − 𝑌𝑝∆𝑝 + (𝑢0 − 𝑌𝑟)∆𝑟 − (𝑔𝑐𝑜𝑠𝜃0)∆∅ = 𝑌𝛿𝑟∆𝛿𝑟   

−𝐿𝑣∆𝑣 + (
𝑑

𝑑𝑡
− 𝐿𝑝) ∆𝑝 − (

𝐼𝑥𝑧

𝐼𝑥

𝑑

𝑑𝑡
+ 𝐿𝑟) ∆𝑟 = 𝐿𝛿𝑎∆𝛿𝑎 + 𝑁𝛿𝑎∆𝛿𝑟  

−𝑁𝑣∆𝑣 − (
𝐼𝑥𝑧

𝐼𝑥

𝑑

𝑑𝑡
+ 𝑁𝑝) ∆𝑝 + (

𝑑

𝑑𝑡
− 𝑁𝑟)∆𝑟 = 𝑁𝛿𝑎∆𝛿𝑎 + 𝑁𝛿𝑎∆𝛿𝑟                                                                              

     The lateral directional equations of motion consist of the 

side force, rolling moment and yawing moment equations of 

motion. It is sometimes convenient to use the sideslip angle 

∆𝛽 instead of the side velocity ∆𝑣 . These two quantities are 

related to each other in the following way 

∆𝛽 ≈ 𝑡𝑎𝑛−1 ∆𝑣

𝑢0
=

∆𝑣

𝑢0
                                                           (12) 

     Using this relationship and if the product of inertia of pitch 

axis Ixz=0, then the lateral equations of motion can be 

rearranged and reduced into the state space form in the 

following manner. 
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     For this system, the input will be the aileron deflection 

angle and the output will be the roll angle. In this study, the 

data from General Aviation Airplane: 𝑁𝐴𝑉𝐼𝑂𝑁𝑎[1] is used in 

system analysis and modeling. The lateral directional 

derivatives stability parameters for this airplane are given 

Table I. 
            Table.I.The lateral directional derivatives stability parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

General 
Aviation 

Airplane: 

𝑁𝐴𝑉𝐼𝑂𝑁𝑎 

The Dynamic Pressure 

                     𝑄𝑆 = 6771   𝐼𝑏
𝑐

2𝑢0

= 0.016 𝑠 

 𝑄 = 36.8
𝐼𝑏

𝑓𝑡2
  𝑄𝑆−𝑐 = 38596 𝑓𝑡. 𝐼𝑏 

Components 

Y-Force 
Derivatives 

Yawing 
Moment 

Derivatives 

Rolling 
Moment 

Derivatives 

Pitching 
Velocities 

𝑌𝑉= - 0.254 𝑁𝑉 = 0.025 𝐿𝑉 = −0.091 

Side Slip 

Angle 
𝑌𝛽 = −44.665 𝑁𝛽 = 4.549 𝐿𝛽 = −15.969 

Rolling Rate 𝑌𝑃 = 0 𝑁𝑃 = −0.349 𝐿𝑃 = −8.395 

Yawing Rate 𝑌𝑟 = 0 𝑁𝑟 = −0.76 𝐿𝑟 = 2.19 

Rudder 

Reflection 
𝑌𝛿𝑟 = 12.433 𝑁𝛿𝑟 = −4.613 𝐿𝛿𝑟 = 23.09 

Aileron 
Reflection 

𝑌𝛿𝑎 = 0 𝑁𝛿𝑎 = −0.224 𝐿𝛿𝑎 = −28.916 

 



III. DESIGN PROCEDURES FOR LQR AND MPC 

A. Linear Quadratic Regulator (LQR) 

     Linear quadratic regulator (LQR) is a method in modern 

control theory and it is an alternative and very powerful 

method for flight control system designing. The method is 

based on the manipulation of the equations of motion in state 

space form and makes full use of the appropriate 

computational tools in the analytical process [6]. LQR control 

system for the lateral directional control of an aircraft is 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Full-state feedback controller with reference input for the roll control 

system. 

     In this work, the closed loop optimal control of linear 

systems with quadratic performance measure are presented. 

This leads to state regulation and set point tracking. 

The state and output matrix equations describing the lateral 

directional equations of motion can be written as the following 

equation. 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                           (13) 

𝑦(𝑡) = 𝐶𝑥(𝑡)                                        (14) 

Where 𝑥(𝑡)is the state vector, u(t) is the input vector, A and B 

indicate the constant system model parameters. The pair (A, 

B) is assumed to be stabilizable. The performance index as 

𝐽 =
1

2
∫ [𝑥`(𝑡)𝑄𝑥(𝑡) + 𝑢`𝑅𝑢(𝑡)]𝑑𝑡

∞

0
                                          

(15)            

Where Q is a nonnegative definite matrix that penalizes the 

departure of system states from the equilibrium and R is a 

positive definite matrix that penalizes the control input.  

The solution is  

Step 1: Solve the matrix algebraic Ricatti equation 

−�̅�𝐴 − 𝐴`�̅� − 𝑄 + �̅�𝐵𝑅−1𝐵`�̅� = 0                                      (16) 

Where P⋲ 𝑅𝑛×𝑚 is a non negative definite matrix satisfying 

the matrix Riccati Equation, 

Step 2: Estimated the state using an Extended Kalman Filter 

(EKF)   

�̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + 𝐾(𝑡)(𝑦(𝑡) − 𝐶�̂�(𝑡))      (17) 

𝐾(𝑡) = 𝑃(𝑡)𝐶`(𝑡)𝑉−1(𝑡)                                                     (18)           (6) 

Kalman gain   

𝑉(𝑡) = 𝐶(𝑡)𝑃(𝑡)𝐶(𝑡)` + 𝑅                                                  (19)              (7) 

Step3: To find Optimal control  

𝑢∗(𝑡) = −(𝑅−1𝐵`𝑃(𝑡)) ∗ �̂�(𝑡)                                            (20)           (8)  

The error is 

𝑒(𝑡) = 𝑧(𝑡) − 𝑦(𝑡)           (21) 

Where z(t) is the desired signal(set point) 

 

 

The performance index taken as  

lim𝑡𝑓→∞ 𝐽 = lim𝑡𝑓→∞
1

2
∫ [𝑒′(𝑡)𝑄 𝑒(𝑡) + 𝑢′(𝑡)𝑅 𝑢(𝑡)

∞

0
] 𝑑𝑡  

(22) 

To find �̅� 

−�̅�𝐴 − 𝐴′�̅� + �̅�𝐵𝑅−1𝐵′�̅� − 𝐶′𝑄𝐶 = 0         (23) 

To find �̅� 

�̇̅�(𝑡) = [�̅�𝐸 − 𝐴′]�̅�(𝑡) − 𝑊𝑧(𝑡)                  (24) 

Where𝐸 = 𝐵𝑅−1𝐵` and 𝑊 = 𝐶`𝑄 

Optimal control 

𝑢(𝑡) = −𝑅−1𝐵′[�̅�𝑥(𝑡) − �̅�(𝑡)]                  (25) 
 

 The weighting matrices Q and R are important components 

of an LQG optimization process. The compositions of Q and R 

elements have great influences on system performance [3]. 

The number of matrices Q and R elements are dependent on 

the number of state variable (n) and the number of input 

variable (m), respectively. The diagonal-off elements of these 

matrices are zero for simplicity. If diagonal matrices are 

selected, the quadratic performance index is simply a weighted 

integral of the squared error of the states and inputs. The 

designer is free to choose the matrices Q and R, but the 

selection of matrices Q and R is normally based on an iterative 

procedure using experience and physical understanding of the 

problems involved. Commonly, a trial and error method has 

been used to construct the matrices Q and R elements. This 

method is very simple and very familiar in LQG application. 

For this study, R=1 and Q= 𝐶𝑇 × 𝐶 where C is the matrix from 

state equation and 𝐶𝑇 is the matrix transpose of C. For 

designing LQR controller, the value of the feedback gain 

matrix, K, must be determined. The following block is shown 

how to determine the values of K.  

      K= [0.5284, -0.5349, -0.0917 -8.6567] values are obtained 

by using MATLAB. To obtain the desired output in other 

words to reduce steady-state error, we must use a feed-forward 

scaling factor called N. Because, the full-state feedback 

system does not compare the output to the reference, it 

compares all states multiplied by the feedback gain matrix to 

the reference [5]. The reference must be scaled by scaling 

factor N. The scaling factor N is obtained from MATLAB 

function that is a designer-defined function in m-file code. In 

this case, N=-8.6603 is determined. 

B. Model Predictive Control (MPC) 

      The model predictive control is a strategy that is based on 

the explicit use of some kind of system model (eqn. 1 and 2) 

to predict the controlled variables over a certain time horizon, 

the prediction horizon. The block diagram of a model 

predictive controller is shown in Fig 2. At any sampling 

instant k, the model predictive control problem is formulated 

as a constrained optimization problem whereby the future 

manipulated input moves, denoted as {𝑚(𝑘|𝑘,𝑚(𝑘 +

1|𝑘)… 𝑚(𝑘 + 𝑁𝑝|𝑘)} are determined by minimizing an 

objective function involving the predicted controller errors. 

Typical objective function used in a MPC formulation is of the 

form: 

J = Je + J∆u                                                                            (26) 

𝐽𝑒 = ∑ 𝑒𝑓(𝑘 + 𝑖|𝑘)𝑇𝑚
𝑖=1 𝑊𝑒𝑒𝑓(𝑘 + 𝑖|𝑘)                           (27) 



J∆u =  ∑ ∆𝑢(𝑘 + 𝑖|𝑘)𝑇𝑛−1
𝑖=1 𝑊𝑢∆𝑢(𝑘 + 𝑖|𝑘)                          (28) 

Where, 

𝑒𝑓(𝑘 + 𝑖|𝑘) = 𝑦𝑟(𝑘 + 𝑖) − �̂�(𝑘 + 𝑖|𝑘)                                (29) 

∆𝑢(𝑘 + 𝑖|𝑘) = 𝑢(𝑘 + 𝑖) − 𝑢(𝑘 + 𝑖 − 1|𝑘)                         (30) 

Subject to the following constraints: 

𝑢𝑖 ≤ 𝑢(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑁                                                         (31) 

    Where, 𝑖 ∈ [0  𝑚]. Here 𝑚 represents prediction horizon 

and 𝑛 represents control horizon, 𝑦𝑟  represents the future set-

point trajectory and �̂� represents the vector of controlled 

outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. Structure of MPC controller 

 

As the control variables in a MPC controller are calculated 

based on the predicted output, the model thus needs to be able 

to reflect the dynamic behavior of the system as accurately as 

possible. The control strategy can be described as follows [6]. 
 

(1). At each sampling time, the value of the controlled variable 

y(t+i) is predicted over the prediction horizon i=1,……N2. 

This prediction depends on the future values of the control 

variable u(t+i) within a control horizon k=1,…Nu, where 

Nu≤N2. If Nu<N2, then u(t+i)=u(t+Nu), i=Nu+1,…N2. 

(2). A reference trajectory r(t+i), i=1,….N is defined which 

describes the desired system trajectory over the prediction 

horizon. 

(3). The vector of future controls u(t+i) is computed such that 

a cost function, usually a function of the errors between the 

reference trajectory and the predicted output of the model, is 

minimized. 

(4). Once minimization is achieved, the first optimized control 

action is applied to the plant and the plant outputs are 

measured. Use this measurement of the plant states as the 

initial states of the model to perform the next iteration. 

Steps 1 to 4 are repeated at each sampling instant; this is 

called receding horizon strategy. 
 

Table.II. Initializing parameters of MPC 
 

Model length (N)   100 

Prediction horizon (m) 2 

Control horizon (n)  1 

Weighting factor We 10 

Weighting factor Wu 10 

Sample time 1sec 

Time of set point change 2 

Final simulation time 100 

IV. RESULTS AND DISCUSSIONS 

A. Adaptive aspects 

    Since the computation of the gain matrices in the case of the 

predictive controller is simpler than the resolution of the 

Riccati equation to be solved in the LQR controller, the 

predictive controller seems better suited for adaptive aspects. 

In this case the gain matrices can be computed frequently 

when the operating conditions have changed. 

B. Robustness 

    According to the above presented simulations, both 

controllers prove a satisfactory robustness to model 

degradation. It seems that the LQR controller is slightly more 

robust than the MPC one, but additional simulations must be 

done. 

C. Simplified Solutions 

     One advantage of the optimal LQR controller is to allow 

the simplified asymptotic solution obtained when the time 

horizon is infinite. The predictive controller allows a 

simplified solution consisting of considering a weighting 

coefficient only on the final time step and a constant control 

sequence over the prediction interval.  

      This option was not tested in this paper. It will be tested in 

the future, but a priori it appears more restrictive than the 

asymptotic solution of the LQR controller. 

D. Computational Efforts 

     Since a significant time horizon as to be selected in order to 

include roll control effects, the computation efforts of the 

predictive controller are bigger than in the case of the 

asymptotic solution of the LQR controller. They could be 

reduced using the above quoted simplifications, but probably 

with a degradation of the controller performance. 

E. Results 

     Results obtained with both controllers are very close in 

terms of performance indicators. Tuning of the predictive 

controller seems easier and leads to less variability in the 

weighting coefficients (Matrices Q and R). 

F. Performance Index 

     In order to assess the performance of the controller, 

Integral Square Error (ISE) is used as performance index to 

evaluate the performance of the controllers proposed. Table 3 

shows the comparative study. 
Table.III. Comparison between conventional MPC and LQR 
 

Controller/ Performance index ISE 

MPC 9.3404 

LQR 13.5121 

 

From Table 3, it is clear that the MPC shows better 

performance than the LQR whether the measurement noise is 
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considered or not. Moreover it shows that MPC has better 

noise suppressing capability. 
Fig.2. Closed Loop Performance of LQR Controller 

Fig.2. Closed Loop Performance of MPC Controller 

Fig.2. Comparative Analysis of LQR and MPC Controller 

 

V. CONCLUSION 

In this paper, the model of an aircraft rolls control system 

that is helpful in developing the control strategy for an aircraft 

system. There are two advanced control methods developed 

for this system. The results from MPC are compared with 

those obtained using LQR controller. MPC has good and 

acceptable performances according to the results from 

simulation and analysis. Practically obtained results show that 

MPC controller relatively gives the best performance in 

comparison to LQR and using such controller increases speed 

of the time response. 
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