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Abstract – Nowadays, numerical modelling has become 
an interesting tool for determining impedance variations 
due to various conductive flaws in eddy current non-
destructive evaluation systems. These kinds of defects, 
rarely treated in the published works, are taken into 
consideration in the modelling while introducing them as 
electrically conductive volumes with a finite electric 
resistivity. This step is very important since it permits to 
improve qualitatively several models developed so far by 
many authors whose consider the defect as loss of 
material only. However, in several applications, the 
defect can occur with a finite resistivity such as impurity, 
small burns and micro-solder. On the other hand, even 
though the defect appears with a loss of materials, some 
polluting materials can fill the affected region. Indeed, the 
volume of the initial defect will be completely or partially 
occupied by these conducting pollutant materials. This 
paper deals with the effect of physical and geometrical 
characteristics of such kind of defects on the differential 
sensor response. Furthermore, the necessity of taking the 
defect electric conductivity (as an important parameter) 
into account will be explained, in order to develop a 
reliable and accurate inverse method allowing a full 
characterization of conductive defects. 
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1. Introduction 
The eddy current technique is one of the 

preferred Non Destructive Testing (NDT) methods 
for the inspection of deployed metallic components 
[1]. It is a fast and effective method of defect 
detection in metal rods and plates caused by 
corrosion or stress [2]. Eddy Current Testing (ECT) 
requires an excitation coil to induce currents within 
the sample conductive material. In the presence of a 
defect, these currents are perturbed and thus, the 
produced magnetic field is also perturbed. Eddy 
current sensor is used for detecting this perturbed 
field. These field perturbations are then processed to 
infer on the defect presence and its physical and 
geometrical characteristics. Until now, the majority 
of the published scientific works in the literature 
treating eddy current testing have elaborated the 

detection and the characterization of defect existing in 
the material as a loss of material. However, other 
defects can appear without loss of material; one can 
state as examples the small inclusions, small burns and 
micro-solders, [3].  

In fact, even though the defect appears with a loss 
of materials, some polluting materials can fill and 
occupy the affected region. Indeed, the volume of the 
initial defect will be completely or partially occupied 
by these conducting pollutants materials; that can be 
the sit of induced currents. Therefore, if this 
phenomenon is not taken into consideration in the 
modeling of these systems, the results with this 
assumption will be affected. In this article, the effect 
of this parameter on the signature of the defect will be 
made into evidence. In other words, the effect of 
physical and geometrical parameters of this kind of 
defects such as its depth, width and electric 
conductivity on a differential probe signal will be 
studied. The advantage of differential coils is being 
able to detect very small discontinuities and permits to 
eliminate temperature and lift-off variation effects, 
[11]. 
 

2. Eddy current testing through Maxwell 
equations 
Maxwell’s equations describe the physical model 

used for electromagnetic EC problems solved with 
the finite element method (FEM) that allows 
determining the response of sensor eddy current. 
The magnetic vector potential, electric and magnetic 
field or the pointing vectors are the most quantities 
widely used to solve the field equations, [2]. Quasi-
stationary Maxwell equations are given hereafter: 
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The constitutive relations describing the material 
properties in relation to the electromagnetic fields 
are given by: 

 HB   (5) 

 EJ   (6) 

 
In equations (1) to (4), H  is the magnetic field, E  
is the electric field, B  is the magnetic flux density, 

D is the electric flux density, sJ  is the coil current 

density, and t  is the time. The magnetic potential 
vector A can be determined through the following 
equation: 

 AB   (7) 

By replacing equation (7) into equation (2) we can 
write: 
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By introducing equation (9) into equation (1), we 
obtain: 
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If   is the applied angular frequency and by 

considering 0A  (coulomb gauge), for time- 
harmonic electromagnetic fields, equation (10) could 
be expressed as: 
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3. Axi-symmetrical model 

Since the testing model has characteristics of 
axial symmetry, it could be described by cylindrical 

coordinate system ),,( zr  , [2]. 

In the case of axisymmetric geometries, where A  

and sJ  have components at the positive direction of 

  only equation (11) could be written as given in, 
[4-5]: 
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Where A is the magnetic vector potential (Wb/m), Js 
is the source current density (A/m),   and   are 

the permeability (Wb/Am), and conductivity (S/M), 
respectively. 
Equation (12) is a linear diffusion equation for 
sinusoidal steady state condition and axisymmetric 
geometries. For a given situation, the magnetic 
vector potential can be found by solving the above 
equation using appropriate boundary conditions, [4]. 
The electromagnetic system is composed of test 

specimen, sensor coils and air. The equation 
governing the conductive rod is given as follows. 
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Where p  represents the conductivity of specimen 

The equation representing sensor coil is given by: 

 sJA  (14) 

The differential equation for the air-filled space 
between the tested rod and the coil is Laplace’s 
equation which is given by, [4]:  

 0A  (15) 

The most models studied so far suppose that the 
defect (flaw) is an air that is integrated in equation 
(15). 
Some studies have published papers related to the 
conductivity of the test piece, as it is one of the most 
important variables in eddy current testing. Shao and 
al. [6], presented a method for the reconstruction of 
conductivity profiles from eddy current impedance 
change data but in this article, we suppose that the 
defect is as a conductive volume which is different 
from the one governing the test piece as presented in 
the following equation: 
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Where d  is the defect conductivity. 

 
4. Finite element discretization   

For solving equation (12), we have used the finite 
element (FE) method. An energy functional 
equivalent to the diffusion equation (Eq. (12)) is 
formulated based on the energy balance in the 
solution region. The region is discretized using first-
order triangular elements and the energy balance 
within the entire region W  was achieved by 
minimizing the energy functional at every node in 
the region as given in [5]. 
Applying energy minimization, the final element 
matrix equation is obtained as done in, [7, 8]: 
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Where S is the solved region. 
The solution now consists of finding a set of 

functions A  such that the energy-related functional 
is minimized. Since this cannot be done everywhere 
in space, a bounded region (solution region) is 
discretized into a large number of linear triangular 
elements. In each element, three nodal points are 
defined at which the magnetic vector potential is 
found. Minimization of the energy functional is 
achieved by setting the partial derivative with 

respect to each nodal value iA  equal to zero, [5-8]: 
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Where I is the total number of the nodes in the 
solution region. After rearrangement, we get the 
linear algebra equations set of nodal vector potential 
of each element e  as given in [9, 10]: 

        
eeee QARjK   (19) 

Equation (19) is called the cell matrix equation of 
element e . These elements can be combined into an 
N-order complex gross matrix equation (N is the 
sum of the nodes): 

        QARjK   (20) 

And: 

     QAG   (21) 

Where  G  is an NN   orders symmetric zonal 

complex coefficient matrix (gross stiffness matrix); 

 A  is the unknown 1N  orders nodal complex 

vector potential and  Q  is the 1N  orders nodal 

source complex vectors to be solved, [8]. 
 
5. Solving the Finite Element Equations  

The Gauss elimination algorithm is applied to the 
system of equations, taking advantage of the 
symmetry [7]. Once the magnetic potential is 
calculated, the other physical quantities, such as 
magnetic flux, induced EC density, magnetic energy, 
EC losses and impedance variations, can be 
calculated for each displacement step of the sensor. 
The total impedance of a differential probe can be 
calculated by the following expression, [5]. 
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Where 1k  and 2k  are the number of elements in the 

two coils, Nc  is the turn density of the coils, I  is 
the current in a turn of the coils, rk  is the distance 

from the element centroid to the symmetry axis, k  

is the area of element on the cross section of the coil 
and kA  is the A  at the centroid. 
 
6. Studied device description 

Differential probes consist of two coils that 
compare two adjacent parts of the inspected material 
as shown in Fig. (1). The detecting coils are wound 
in the opposite directions the one to the other in 
order to equalize the induced voltages generated by 
the excitation primary field. Differential coils have 
the advantage of being able to detect very small 
discontinuities. However, differential coils do no 
detect gradual dimensional or composition variations 
of the test piece, as the coils are typically very close, 
[11]. Fig. (1) presents the studied configuration 
which is composed of twin coils that generates two 
conflicting electromagnetic fields. Each coil is made 

of a copper wire with a conductivity of 59.6MS/m 
[12], a height of 3 mm and has a coil of 70 turns and 
a width of 2.6 mm. The inspected piece is a rod with 
a radius of 4 mm and a length of 60 mm, the lift-off 
is of 0.1 mm. Knowing that the electrical currents in 
both coils of the sensor are equal in intensity and 
opposite in direction, one can write as: 

21 CCT JJJ 
 

since the studied geometry is 

axis-symmetric, the domain of solution is reduced to 
half of the device as shown in Fig. (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Geometry representation for differential 

sensor probe. 

 
7. Effect of defect parameters on differential 

probe impedance  
In the following sections, the developed model 

has been exploited to study the effect of the variation 
of rectangular cross section defect geometrical and 
physical parameters on differential sensor 
impedance. Moreover, for analyzing the effect of 
excitation field frequency, three frequencies 100, 
240 and 500 kHz have been introduced. The defect 
parameters to be studied are the depth Dd, the width 

Ld and the electric conductivity d . 

 
7.1. Effect of defect depth Dd 

The fulfillment of this study requires the 
variation of the defect depth for the three 
frequencies while maintaining its width fixed at 
1mm. The sensor impedance is calculated for 
different positions, from -20mm to 20mm, according 
to the z axis as illustrated in Fig. (2). When the 
sensor does not detect any defect, the variations of 
the impedance components (absolute of Z and 
lissajou) are null. When the sensor is coming near 
the defect, we observe an increase in the variation of 
these components up to a maximal value. This 
increase is due to the fact that the first coil of the 
sensor sees the defect in a position different from the 
one of the second coil. This induces a variation of 
the field and consequently a variation in the 
impedance. When the sensor arrives in front of the 
defect, no variation is recorded since the two coils 
are symmetrically located at the same position 
compared to the center of the defect, [11]. 
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We notice that when the defect depth increases the 
amplitude of the signal increases too. Similarly, the 
signal amplitude increases when the frequency 
increases. Furthermore, according to the Lissajou 
curves, the differential impedance phase varies 
clockwise with the increase of defect depth.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
7.2. Effect of defect width 

The accomplishment of this study necessitates 
the variation of the defect width for the three 
frequencies while maintaining its depth fixed at 
2mm. The sensor impedance is calculated for 
different positions, from -20mm to 20mm, according 
to the z axis as illustrated in Fig. (3). 

Fig. 2 Evolution of sensor impedance parameters according to width variation. 
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According to the curves depicted in Fig. (3), we 
notice that the amplitudes and the phases of the 
signal remain nearly unchanged for all widths 
whereas the distance between the two peaks of 
impedance increases when the defect width 
increases. Furthermore, the amplitude of the signal 
becomes more important when the frequency 
increases. 
 

7.3. Effect of defect electric conductivity 
The purpose of the following simulations is to study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
the influence of defect electric conductivity on the 
differential probe impedance variation, since its 
omission would lead to incomplete and affected 
results.  Generally, several factors can affect locally 
the electric conductivity such as presence of 
impurities, small burns and micro-solder, [3]. In this 
case, the defect differ by its electric conductivity 
variation while maintaining constant the other 
parameters (Dd=2mm and Ld=1mm). 
 
 

Fig. 3 Evolution of sensor impedance parameters according to defect width (Ld). 
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Fig. 4  Evolution of sensor impedance parameters according to defect electric conductivity. 
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Through the results shown in Fig. (4), one can 
remark that the amplitude of the sensor impedance 
depends considerably on the defect conductivity.  
These results can be interpreted by the fact that as 
well as the difference in the conductivity between 
the piece and the defect is increased the sensor 
impedance amplitude increases. Besides, the 
differential impedance phase varies in anti clockwise 
with the increase of defect conductivity.  
For better understanding the previous results at the 
frequency of 240 kHz, we present the evolution of 
the magnetic potential vector for three values of 
electric conductivity (A, B and C). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

According to Fig. (5), one can notice that the 
amplitude of the magnetic potential vector is 
affected by the variation of the defect electric 
conductivity. Therefore, it necessarily leads to the 
modification of the sensor impedance amplitude Fig. 
(4). From Fig. (4), it is clear that the signal 
amplitude decreases 2.2 times when the defect 

conductivity passes from 
p

4

1
 to 

p
2

1
; and 

5.5times when the defect conductivity passes from 

p
4

1
 to 

p
4

3
. These results reveal the necessity to 

take into account this defect physical characteristic 
that can be the reason of the accumulation of a layer 
conducting deposit in the crack. 
 
8. Conclusion  
  In this article, we have studied the influence of 
the physical and geometrical parameters of a 
conductive defect on differential sensor impedance. 
The studied geometrical and physical parameters are 
the defect depth, width and electric conductivity. 
The defect is located in the outer rod surface on 
which a differential probe operates. The sensor 
impedance variation, caused by the presence of the 
defect, is calculated using the classical finite element 
method that we have successfully implemented in 
Matlab software for three different frequencies 100 
kHz, 240 kHz and 500 kHz [13-14]. The obtained 
simulation results reveal that the depth variation 
generates an alteration in the sensor impedance 
amplitude and phase. Furthermore, the defect width 
variation has no influence on the amplitude and the 
phase, whereas the distance between the two 
amplitude peaks depends strongly on this parameter. 
Besides, the effect of the defect electric conductivity 
has been considered. According to the yielded 
simulation results, one can clearly notice that the 
signal amplitude decreases with 2.2 times when the 
defect conductivity varies from (1/4) p to (1/2) p; 
and 5.5 times when the defect conductivity varies 
from (1/4) p to (3/4) p. This study brings into 
evidence the necessity to take into account this 
defect physical characteristic so as to ensure a full 
and accurate defect characterization. 
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