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Abstract: This paper presents a new hybrid approach to 
solve the short-term unit commitment problem using 
Artificial Neural Network (ANN) and Particle Swarm 
Optimization (PSO). The objective of this paper is to find 
the generation scheduling such that the total operating cost 
can be minimized, when subjected to a variety of 
constraints.  This also means that it is desirable to find the 
optimal generating unit commitment in the power system for 
the next H hours. PSO, which happens to be a Global 
Optimization technique for solving Unit Commitment 
Problem, operates on a system, which is designed to encode 
each unit’s operating schedule with regard to its minimum 
up/down time.  In this, the unit commitment schedule is 
coded as a string of symbols. An initial population of parent 
solutions is generated at random. Here, each schedule is 
formed by committing all the units according to their initial 
status (“flat start”). Here the parents are obtained from a 
pre-defined set of solution’s i.e. each and every solution is 
adjusted to meet the requirements. Then, a random 
decommitment  is carried out with respect to the unit’s 
minimum down times. The network is trained by a numerous 
possible combinations of demand and their corresponding 
optimal generation schedule, which can be determined by 
the PSO algorithm. For the purpose of training, BP 
algorithm, one of the most widely used training algorithms 
is utilized for our approach. After the process of training, 
given any demands of a time horizon, the network effectively 
gives a schedule of unit’s commitment which will satisfy the 
demands of all the periods with minimum total cost. A 
thermal Power System in India demonstrates the 
effectiveness of the proposed approach; extensive studies 
have also been performed for different power systems 
consist of 10, 26, 34 generating units. Numerical results are 
shown comparing the cost solutions and computation time 
obtained by using the IPSO and other conventional methods 
like Dynamic Programming (DP), Legrangian Relaxation 
(LR) in reaching proper unit commitment. 
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1. Introduction 

In power stations, the investment is pretty costlier and 
the resources in operating them are considerably 

becoming sparse of which focus turns on to optimizing 
the operating cost of the power station. In today's 
world, it becomes an utmost necessity to meet the 
demand as well as optimize the generation. Unit 
commitment in power systems refers to the 
optimization problem for determining the on/off states 
of generating units that minimize the operating cost for 
a given time horizon. The solution of the unit 
commitment problem is a complex optimization 
problem. The exact solution of the UCP can be 
obtained by a complete   enumeration of all feasible 
combinations of generating units, which could be very 
huge number. The unit commitment has commonly 
been formulated as a nonlinear, large scale, mixed-
integer combinational optimization problem.  

 Research endeavors, therefore, have been focused on; 
efficient, near-optimal UC algorithms, which can be 
applied to large-scale, power systems and have 
reasonable storage and computation time requirements. 
 A survey of existing literature [1-37] on the problem 
reveals that various numerical optimization techniques 
have been employed to approach the complicated unit 
commitment problem. More specifically, these are the 
Dynamic Programming method (DP), the Mixed 
Integer Programming method (MIP), the Lagrangian 
relaxation method (LR), the Branch and Bound method 
(BB), the Expert system (ES), the Fuzzy Theorem 
method (FT), the Hop Field method (H), the Tabu 
Search method (TS), the Genetic Algorithm (GA), the 
Artificial Neural Network (ANN), the integration of 
Genetic Algorithm, Tabu search, Simulated Annealing 
(GTS), the TS and Decomposition method (TSD), the 
extended neighborhood search algorithm (ENSA), the 
Evolutionary Programming (EP), the Particle Swarm 
Optimization (PSO) and so on. The major limitations 
of the numerical techniques are the problem 
dimensions, large computational time and complexity 
in programming.  



 
 

The DP method [1-2], [13] is flexible but the 
disadvantage is the “curse of dimensionality”, which 
results it may leads to more mathematical complexity 
and increase in computation time if the constraints are 
taken in to consideration. The MIP methods [3-4] for 
solving the unit commitment problems fail when the 
number of units increases because they require a large 
memory and suffer from great computational delay. 
This new approach significantly improves the 
performances of MILP-based heuristics to the problem, 
either in terms of required running time, or in terms of 
quality of the obtained solutions [5].  

The proposed MILP model allows to accurately 
represent most of the hydroelectric system 
characteristics, and turns out to be computationally 
solvable for a planning horizon of one week, proving 
the high efficiency of modern MILP software tools, 
both in terms of solution accuracy and computing time 
[6]. The LR approach [7-10] to solve the short-term 
UC Problems was found that it provides faster solution 
but it will fail to obtain solution feasibility and solution 
quality problems and becomes complex if the number 
of units increased. The proposed methods [11] are 
effective for large-scale UCP’s without the ramp-rate 
limit constraints, as compared with the existing 
methods. A successive sub problem solving method is 
developed and applied to solve unit commitment 
problems with identical units. The commitments of the 
identical units can be differentiated and the 
homogenous oscillations are avoided or greatly 
alleviated [12]. The proposed LR is efficiently and 
effectively implemented to solve the UC problem. The 
proposed LR total production costs over the scheduled 
time horizon are less than conventional methods 
especially for the larger number of generating units 
[13]. Based on forecasted data, profit-based UC is 
solved by considering power and reserve generation 
simultaneously. The optimization problems were 
solved using a hybrid method between LR and EP. [14] 
  The BB method [15] employs a linear function to 
represent fuel cost and start-up cost and obtains a lower 
and upper bounds. The difficulty of this method is the 
exponential growth in the execution time for systems of 
a practical size. An ES algorithm [16], [19] rectifies the 
complexity in calculations and saving in computation 
time. But it will face the problem if the new schedule is 
differing from schedule in database. In the FT method 
[17], [19] using fuzzy set solves the forecasted load 
schedules error but it will also suffer from complexity. 
The H neural network technique [18] considers more 
constraints but it may suffer from numerical 
convergence due to its training process. TS [20-21] is a 

powerful, general-purpose stochastic optimization 
technique, which can theoretically converge 
asymptotically to a global optimum solution with 
probability one. But it will take much time to reach the 
near-global minimum.   

GA [19], [22-23] is a general-purpose stochastic and 
parallel search method based on the mechanics of 
natural selection and natural genetics. It is a search 
method to have potential of obtaining near-global 
minimum. And it has the capability to obtain the 
accurate results within short time and the constraints 
are included easily. The total objective is the sum of 
objectives and constraints, which are the fuel cost, start 
up cost, spinning reserve and minimum up-down time 
violation. The power balance constraint (equality 
relation) is satisfied prior to genetic operation. This 
ensures a feasible solution during every stage of the 
GA simulation. The spinning reserve is treated as an 
objective with minimization in the total objective 
function [25]. This algorithm [26] provides a modeling 
framework less restrictive than previous approaches 
such as dynamic programming or Lagrangian 
relaxation. The algorithm competes advantageously in 
terms of generating solutions with other approaches. 
Computing time requirements to address problems of 
realistic size are moderate. The use of integer coding 
and the use of new genetic operators differentiate the 
new GA from previous, binary GA implementations 
[27]. Developed algorithms provide optimal unit 
commitment and also optimal MW values for energy, 
spinning reserve and non-spin. Presented algorithm and 
analysis could be beneficial to GENCO with big 
number of generators to maximize the profit and bid in 
competitive electricity market [28].  

The ANN [18] has the advantages of giving good 
solution quality and rapid convergence. And this 
method can accommodate more complicated unit-wise 
constraints and are claimed for numerical convergence 
and solution quality problems. The solution processing 
in each method is very unique. The integration of the 
ANN STLF [29] program into a SCADA/EMS system 
results in two major benefits. First, the level of 
accuracy of forecasting performance is improved. 
Second, the improvement in forecasting accuracy 
improves the quality of UC scheduling and results in a 
large amount of cost savings per year. 

The EP [30-31] has the advantages of good 
convergent property and a significant speedup over 
traditional GA’s and can obtain high quality solutions. 
The “Curse of dimensionality” is surmounted, and the 
computational burden is almost linear with the problem 
scale. CCA [32] has a good convergent property and a 



 
 

significant speedup over traditional GAs and can 
obtain high quality solutions. 

 
The GTS [24] shows the reasonable combination of 

local and global search. It adopts the acceptance 
probability of SA to improve the convergence of the 
simple GA, and the tabu search is introduced to find 
more accurate solutions.  The TSD [33] has considered 
the time varying start-up costs as well as the non-
linearity in the hydrothermal systems. It can be used as 
post processor for existing generation scheduling 
methods or in cases where rescheduling of units is 
required due to change in the system status. And the 
application of the modified Benders decomposition 
method is to solve with constraints that are difficult to 
formulate. In order to obtain the better results, the 
experience of the operators in applying some system 
specific conditions has been included in the Tabu 
Search method. The proposed approach by this paper 
can be used in conjunction with the other optimization 
method to pursue a more comprehensive feasible 
solution if the initial solutions obtained by other 
optimization methods fail to satisfy some specific 
constraints.  In ENSA [34], the constrained models for 
fuel limits, emission limits and generation capacity 
limits are discussed and used for typical models. The 
method can make use of an algorithm that satisfies the 
objective of the sub problem. Most suitably, and starts 
from an initial solution even though the solution may 
be feasible. The higher integral economic effect is 
pursued, and the feasibility of the algorithm is 
maintained. The proposed method may be used for 
rescheduling purposes where the experience of human 
experts will be combined with the analytical method of 
optimal scheduling. The algorithm can also be used in 
other complicated mixed integer programming 
problems, such as integrated resource planning.   

The feasibility of the candidate solutions is checked 
so that physical constraints are not violated in the final 
solution. The CBM determination and allocation is 
performed simultaneously in the proposed optimization 
process [35]. The simulation results obviously display a 
satisfactory performance by IPSO, with respect to both 
the quality of its evolved solutions and the 
computational requirements [36]. The flexibility in the 
demand constraint both in terms of possibility of 
buying and selling in the market gives better indication 
of the likely future scenarios so that better bidding 
strategy can be made. The numerical results on the 
generation company with 3 units demonstrate the quick 
speed convergence and higher accuracy of proposed 
approach [37]. 

From the surveyed research works it can be 
understood that solving the UCP gains high 
significance in the domain of power systems. Solving 
the UCP by a single optimization algorithm is 
ineffective and time consuming. Hence, we are 
proposing a UCP solving approach based on PSO and 
ANN which provides an effective scheduling with 
minimum cost. The proposed approach solves the UCP 
with less time consumption rather than the approaches 
solely based on a single optimization algorithm. 
 
2. Problem Formulation 

The main aim is to find the generation scheduling so 
that the total operating cost can be reduced when it is 
exposed to a variety of constraints [38]. The overall 
objective function of the UCP is given below,    
 

( )( )
h

Rs
 

11
ititititit

N

i

T

t
T VSUPFF += ��

==
      (1) 

 

Where 
Uit ~ unit i status at hour t=1(if unit is ON)=0(if unit is 
OFF) 
Vit ~ unit i start up / shut down status at hour t =1 if the 
unit is started at hour t and 0 otherwise. 
FT ~ total operating cost over the schedule horizon 
(Rs/Hr) 
Sit ~ start up cost of unit i at hour t (Rs) 
For thermal and nuclear units, the most important 
component of the total operating cost is the power 
production cost of the committed units. The quadratic 
form for this is given as 
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Where 

Ai, Bi, Ci ~ the cost function parameters of unit i 
(Rs./MW2hr, Rs./MWhr, Rs/hr) 

F it(P it ) ~ production cost  of unit i at a time t (Rs/hr) 

P it ~ output power from unit i at time t (MW)  
The startup value depends upon the downtime of the 
unit. When the unit i  is started from the cold state then 
the downtime of the unit can vary from a maximum 
value. If the unit ‘ i ’ have been turned off recently, 
then the downtime of the unit varies to a much smaller 
value. During the downtime periods, the startup cost 
calculation depends upon the treatment method for the 
thermal unit. The startup cost Sit is a function of the 
downtime of unit i  and it is given as 
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Where 
Soi  ~ unit i cold start – up cost (Rs) 

Di, Ei ~ start – up cost coefficients for unit i 

2.1 Constraints  
Depending on the nature of the power system under 

study, the UCP is subject to many constraints, the main 
being the load balance constraints and the spinning 
reserve constraints. The other constraints include the 
thermal constraints, fuel constraints, security 
constraints etc. [38] 

2.1.1 Load   Balance Constraints 
The real power generated must be sufficient enough 

to meet the load demand and must satisfy the following 
factors given in (4). 
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Where  
PD t ~ system peak demand at hour t (MW) 
N ~ number of available generating units 
U(0,1) ~ the uniform distribution with parameters 0 
and 1 
UD(a,b) ~ the discrete uniform distribution with 
parameters a and b 

2.1.2 Spinning Reserve Constraints 
The   spinning reserve is the total amount of real 

power generation available from all synchronized units 
minus the present load plus the losses.  It must be 
sufficient enough to meet the loss of the most heavily 
loaded unit in the system. This has to satisfy the 
equation given in (5). 
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Where 
Pmaxi ~ Maximum generation limit of unit i 
Rt ~ spinning reserve at time t (MW) 
T ~ scheduled time horizon (24 hrs.) 

2.1.3 Thermal Constraints 
The temperature and pressure of the thermal units 

vary very gradually and the units must be synchronized 
before they are brought online. A time period of even 1 
hour is considered as the minimum down time of the 
units. There are certain factors, which govern the 
thermal constraints, like minimum up time, minimum 
down time and crew constraints. 

Minimum up time:  
If the units have already been shut down, there will 

be a minimum time before they can be restarted and the 
constraint is given in (6). 
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Where 
Toni ~ duration for which unit i is continuously ON 
(Hr) 
Tup i ~ unit i minimum up time (Hr) 

Minimum down time: 
If all the units are running already, they cannot be 

shut down simultaneously and the constraint is given in 
(7). 
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Where 
T down i ~ unit i minimum down time (Hr) 
T off i ~ duration for which unit i is continuously OFF 
(Hr) 

2.1.4 Must Run Units 
Generally in a power system, some of the units are 

given a must run status in order to provide voltage 
support for the network. 

2.1.5 Ramping Constraints 
If the ramping constraints are included, the quality of 

the solution will be improved but the inclusion of 
ramp-rate limits can significantly enlarge the state 
space of production simulation and thus increase its 
computational requirements.  And it results in 
significantly more states to be evolved and more 
strategies to be saved. Hence the CPU time will be 
increased. 

 



 
 

When ramp-rate limits are ignored, the number of 
generators consecutive online/offline hours at hour t, 
provides adequate state description for making its 
commitment decision at hour (t+1). When ramp-rate 
limits are modeled, the state description becomes 
inadequate. An additional status, generators energy 
generation capacity at hour t is also required for 
making its commitment decision at hour (t+1). These 
additional descriptions add one more dimension to the 
state space, and thus significantly increase the 
computational requirements. Therefore, we have not 
included in this algorithm.   

 
3. Hybrid Algorithm to Solve UCP using PSO 
and ANN 

The proposed hybrid intelligence technique for UCP 
utilizes PSO Algorithm and ANN. By means of PSO, 
we determine the units and their generation schedule 
for a particular demand with minimum cost. In this 
manner, with the assistance of PSO we determine the 
same for different possible demands and then train the 
ANN. The training algorithm, hereby, we utilize the 
BP algorithm, trains the neural network by an optimal 
schedule which satisfies the demand of current period 
based on the demand of previous period. Thus, we are 
dividing the problem into two stages; one is for 
determining the minimum cost for a particular demand 
and another is for determining the minimum cost for 
unit commitment during all the periods. But the 
demand varies during all the periods. Hence, different 
possible demands are need to be generated which can 
be performed by the BP algorithm, training algorithm 
for ANN.  
 
3.1 Generating Training set for ANN 

To generate training set of ANN, it is essential to 
generate different possible combinations of the demand 
to determine the optimal generation schedule 
throughout the T  periods. Succinctly, the training set 
for ANN is comprised of different demands and the 
corresponding least cost generation schedule. Let the 
power demand vector be 
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It is assumed that the demand vector in the above 
mentioned equation exhibits arithmetic progression and 
so the vector element can be determined by  
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where,  
d is the difference between successive members, 

ii dd PP −
+1

. Then the set representation of the 

different possible pairs of vector elements chosen from 
the demand vector is as follows 
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In equation (10), tD is the demand training set given 

as the input set for ANN. In the given set, the element 
),(

21 dd PP represents that 
1dP is the demand of 

previous period and 
2dP is the demand of current 

period. This is under consideration because the start-up 
cost given in equation (3) also considers the generation 
schedule of all the previous periods and so it is 
necessary to determine the optimal generation schedule 
based on the generation schedule of the previous 
period. Hence, different combinations of a pair of 
periods are generated as in equation (10) and for each 
combination, an optimal generation schedule is need to 
be determined using PSO. The schedule is calculated 
not only for the combination of demand but also for the 
demand in the vector which is given in the equation 
(8). For all those different possible demands, PSO is 
applied and optimal generation schedule is determined. 
 
3.2. Determining optimal generation schedule by 
PSO 

As mentioned earlier, in order to find an optimal 
solution to an objective function (fitness function) in a 
search space, PSO method is used which belongs to the 
group of direct search methods. PSO is used to 
determine the optimal generation schedule for a 
particular demand. The steps of the algorithms which is 
used for our approach is demonstrated in the Figure 1. 

As depicted in Figure 1, for a power demand of dP , 
initially, a population of random individuals is taken. 
The random individuals include random particles and 
their velocities. Hereby, a logical algorithm is utilized 
to generate the initial random solutions of particles 
which can be discussed as follows, 

 



 
 

 
Figure 1: Steps involved in PSO to determine the optimal 

generation schedule 
 

1. Generate an arbitrary integer r which satisfies 
the condition nr ≤ . 

2. For the thr  unit, generate a random integer 
indicating the power generated by the unit 
which should essentially satisfy the condition  
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3. The remaining power to be generated i.e. 

rgd PP − is subjected for the following 

decision, 
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4. Allot dP  to the next unit to generate (now, let 
the next unit as r ) whose maximum limit of 
power generation is greater than the remaining 
free units. The allotment of dP  to the unit is 
based on the following condition 
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5. Determine

rgd PP − . If 0<−
rgd PP , go to step 

1; If 0>−
rgd PP , go to step 3; 

If 0=−
rgd PP , then terminate the criteria. 

 
By the above mentioned algorithm, a vector is 

obtained which represents the amount of power to be 
generated by each unit. Hence, some different possible 
vectors are generated by repeating the algorithm and it 
can be given as 
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Equation (13) represents the initial particles that are 
satisfying the constraints given in equation (4) and (5) 
are generated as random initial solutions for the PSO 
algorithm. In parallel, random velocities are also 
generated for the corresponding particles as follows 
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In equation (14), the velocities for each particle 
element are randomly generated within the maximum 
and minimum limit and so the each element of the 

velocity vector iv  satisfies maxmin )( vjvv i ≤≤ . 

After determining the initial particles and their 
corresponding velocities, the particles are evaluated by 
the evaluation function which is given by   
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Based on the evaluation function given in equation 
(15), bestp and bestg for the initial particles are 
determined. Then new velocities are determined as  
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where, li ≤≤1 , nj ≤≤1 , )( jvcnt
i stands for current 

velocity of the particle, )( jvnew
i stands for new 

velocity of a particular parameter of a particle, 1a and 

2a  are arbitrary numbers in the interval ]1,0[ ,  1c and 

2c  are acceleration constants (often chosen as 2.0) 

and w is the inertia weight that is given as 
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where, maxw and minw are the maximum and minimum 
inertia weight factors respectively which are chosen 
randomly in the interval ]1,0[ , I is the current number 

of iteration and maxI is the maximum number of 
iterations. The velocity of such newly attained particle 
should be within the limits. Before proceeding further, 
this would be checked and corrected.   
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Depend upon the newly obtained velocity vector, the 
particles are updated and obtained as new particles as 
follows 
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Then the parameter of each particle is checked whether 
it is ahead the lower and upper bound limits. The 
minimum and maximum generation limit of each unit 
is referred by the lower and upper bound values 
respectively. If the new particle infringes the minimum 
and maximum generation limit, then a decision making 
process is performed as follows 
 

��

�
�

�

<

>
=

(min)(min)

(max)(max)

)(;

)(;
)(

iii

iii

g
new
gg

g
new
ggnew

i
PjP   if       P

PjP   if       P
jP     (20) 

 

The newly obtained particles are evaluated as 
mentioned earlier and so bestp  for the new particles 

are determined. With the concern of bestp and 

the bestg , new bestg  is determined. Again by 
generating new particles, the same process is repeated 
until the process reaches the maximum iteration maxI . 

Once the iteration reaches the maxI , the process is 
terminated and so that a generation schedule of all the 
units with minimum cost is obtained which will meet 
the demand at the particular period. In the similar 
fashion, the optimum generating schedule for all the 
possible demand set is determined. So, a complete 
training set which includes the various possible 
demands and the corresponding optimum generation 
schedule is generated.  
 
3.3. Training the ANN by Back propagation (BP) 
algorithm 
 

Two different networks 1N and 2N  are used for our 
proposed approach; one is for receiving the optimal 
generation schedule for a particular demand where the 
schedule does not depends upon the previous period 
demand. Another network is for receiving the optimal 
generation schedule which depends on the previous 
period demand. Hence, the first network is configured 
with a single input unit and n  hidden and output units. 
The second network is configured with 2 input units 
and n hidden and output units. The two different 
configurations of the network used for our approach is 
depicted in the Figure 2. 

The BP algorithm, the most widely used algorithm is 
used to train the two networks. In order to train the 
neural network, a pair of load profiles and their 
corresponding commitment schedules satisfying all the 
constraints are used. The commitments of units are 
used as the target outputs to train the network. The 
training steps are given as follows: 
Step 1: Initialize the input weights of all the neurons, 

except the neurons in the input layer, by 
arbitrarily choosing an integer from the 
interval ( )1,0 . The weights of the input 
neurons keep a constant value 1. 

Step 2: Apply a training sample 1x  and ),( 21 xx  to 

the network 1N and 2N respectively. 
Step 3: Determine the output at the output layers of the 

network as  
 



 
 

)exp(1
1

j
j x

y
−+

=    (21) 

 

where, jy is the output of thj neuron which 

follows sigmoid function and jx is the total 

weighted input which can be calculated as 
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Step 4: Determine error by considering the actual 

output of the network and the desired output 
by 
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The error calculation for output layer and 
hidden layer is given in equation (23) and (24) 
respectively and jd  represents the desired 

output.  
 
Step 5: Adjust the weights of all the neurons using the 

calculated je  as follows 
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where, ijw∆  is the change of weight and lr is 

the rate of learning, usually, 2.0 and 15.0 for 
output and hidden layers respectively. The 
modification of weights starts from the output 
layer, hidden layer and then input layer.  

 
Repeat the process iteratively until either the error 
reaches a tolerable value ( )1.0<je  or the iteration 

reaches maximum limit. Once the training process is 
completed, the network is ready to provide the optimal 
generation schedule for any demand. By giving the 
demand for T periods as the input to the network, the 
network provides an optimal commitment of units 
which has minimum cost. By applying the obtained 
outputs of the network in the equation (26), the overall 
objective function given in the equation (1) can be 
determined. 
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In equation (26), tc is the minimum cost of the units 

commitment obtained from ANN. So, given a demand 
set for T  periods, the proposed hybrid approach offers 
the optimal units commitment which satisfies the 
demand of the T periods with minimum cost. 
Eventually, the commitments of units in an optimal 
manner are obtained so as to fulfill the demand at the 
particular period by satisfying the mentioned 
constraints.  

 
 

 
 

Figure 2(a): Single input- n outputs Neural Network to 
obtain an optimal generation schedule given a demand 

 
 
 

 
Figure 2 (b): Two inputs- n outputs Neural Network to 

obtain an optimal generation schedule given a demand of 
current and previous periods 

 



 
 

4. Results and Discussion 
The proposed hybrid intelligence technique for UCP 

which is based on the PSO-ANN has been 
implemented in the working platform of MATLAB 
(version 7.8). We have considered an Indian thermal 
power system with seven unit’s utility system for a time 
span of 24 hours for evaluating the performance of the 
proposed technique. The operation data for the system 
is given in the Table I. The daily load data of 10, 26, 
34 unit systems are shown in Table II. The schedule for 
the demand of each hour is obtained from the ANN 
which has been already trained by BP.  
 

TABLE I 
 OPERATION DATA OF SEVEN UNITS UTILITY SYSTEM 

 
 

TABLE II 
DAILY GENERATION OF 10,26,34 UNIT SYSTEM 

 
 

The demand for 24 hour time horizon is just 
simulated and it is not the actual demand which is 
practically satisfying by the units. An optimal 
generation schedule for each period and the total 
operating cost for the whole 24 periods are obtained 
from the ANN. The PSO contributes in the generation 
of training set for ANN by determining the optimal 
generation schedule for a particular demand. The 
performance of PSO for a particular demand is 
depicted in the Figure 3. 

TABLE III 
 OPTIMAL GENERATION SCHEDULE FOR UTILITY SYSTEM SATISFYING 24 

HOUR DEMAND ALONG WITH ITS TOTAL OPERATING COST  

 
 

 
Figure 3: The normalized cost for an optimal generation 

schedule versus the number of iterations of the PSO 
operation 

 
In practical use, ANN’s provides many advantages to 

the decision makers. They do not require any modeling 
or programming for matching inputs to outputs. 
Moreover, they are able to run with missing or with the 
larger data. It is also easier, cheaper and quicker to 
make the system learn from complex data set by 
training. In consideration of these kinds of advantages, 
ANN’s are used in a wide range of applications in 
engineering and management practices. Given a 
demand, the PSO generates an optimal unit 
commitment with minimum cost. In Figure 3, the 
improvement of PSO is illustrated in terms of offering 
the commitment of units with minimum cost. The 
affixed graph is obtained for solving the power demand 
of 400 Mw by the seven unit’s utility system. In every 
number of iteration, the cost of the schedule offering by 
the PSO gets reduced. After a certain number of 
iterations, the cost remains constant for all the 
remaining iterations, which means that there no more 
generation schedule is available with cost which lesser 
than the previous cost.  For the evaluation of 
performance, we have solved the UCP by PSO only 



 
 

and thus we have compared the computational time 
taken by the proposed hybrid approach and by the PSO 
solely to solve the problem. 

The simulated demand set, corresponding generation 
schedule, the minimum operating cost and the 
computational time for the utility system is given in the 
Table III. The status of unit i at time t and the start-up / 
shut - down status obtained are the necessary solutions 
and are obtained for DP, LR, PSO, PSO-ANN 
methods. Table IV shows the comparison of cost and 
CPU time for utility and IEEE systems. In comparison 
with the results produced by the referenced techniques 
(DP, LR, ANN, PSO), the PSO-ANN method 
obviously displays a satisfactory performance. 

 
TABLE IV 

 COMPARISONS OF COST AND CPU TIME FOR UTILITY & IEEE SYSTEMS 

 
 
5. Conclusion 

The proposed approach PSO-ANN has performed 
well in solving the UCP by recognizing the optimal 
generation schedule. The approach has been tested for 
the seven unit’s utility system with the consideration of 
load balance and spinning reserve constraints, which 
are the most significant constraints. Prior to test the 
system, we have trained the network by different 
possible combinations of the demand set and its 
corresponding optimal schedule using the BP 
algorithm.  

For the test demand set which consists of demand for 
24 periods, the hybrid approach effectively yields 
optimal generation schedule for the periods. In 
comparison with the results produced by the referenced 
techniques (DP, LR, ANN, PSO), the PSO-ANN 
method obviously displays a satisfactory performance.  

There is no obvious limitation on the size of the 
problem that must be addressed, for its data structure is 
such that the search space is reduced to a minimum; No 
relaxation of constraints is required; instead, 
populations of feasible solutions are produced at each 
generation and throughout the process.  
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