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Abstract: Adaptive autoreclosures avoid reclosing unto 
permanent faults and reclose unto transient faults only after 
the secondary arc has extinguished. This paper presents an 
adaptive single-pole autoreclosure (AdSPAR) technique 
based on the standard deviation and percentage of energy in 
detailed coefficients of Daubechies db4 mother wavelet, and 
multilayer perceptron (MLP) artificial neural network 
(ANN). The proposed technique is able to distinguish 
between permanent and transient faults and in the case of 
the latter, predict optimal reclosure times. 
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1. Introduction 

The massive demand for electric power and difficulty in 
constructing new lines owing to cost and environmental 
pressures has led to the transmission of more power through 
existing transmission networks. This coupled with the high 
incidence of single-phase-to-ground faults threatens the 
stability of the power system [1] and thus making the use of 
autoreclosure schemes imperative. Notwithstanding, 
unsuccessful reclosure in conventional autoreclosure 
schemes using a fixed dead time may aggravate potential 
damage to system and equipment [2]. Adaptive 
autoreclosures adapt reclosure times and therefore present 
advantages such as: minimized unsuccessful reclosing, 
improvements in transient stability margins, high-speed 
response to sympathy trips and reduction in system and 
equipment shocks [3], [4].  

Researchers, recognizing the numerous merits of the 
adaptive autoreclosure, have proposed a number of adaptive 
autoreclosure schemes. These include schemes which 
measure and compare the voltage of the tripped phase to that 
of the energized phases to initiate or prevent autoreclosing 
[5], [6], schemes which make use of various components of 
faulted voltage such as total harmonic distortion, dc 
component and rms value to achieve successful 
autoreclosing [7]-[11] and schemes which employ high 
frequency current and voltage signals [12]-[15]. One 

significant demerit of the aforementioned schemes is that the 
many causes of faults and the interplay of several factors 
such as line configuration, fault position, fault point on 
wave, prefault loading, source parameters, and atmospheric 
conditions which influence the actual waveforms of the 
secondary arc voltage, are likely to hinder their effectiveness 
[3].  They are also limited by their inability to cope with 
previously unencountered situations.  

To overcome the above challenges, researchers are 
turning to ANNs which in recent years have clearly 
demonstrated their ability in solving some long standing 
problems in power systems where conventional techniques 
have difficulty. ANNs have the ability to learn from 
experience in the form of training and to recognize the 
hidden relationships that might exist in those training 
patterns. Patterns with noise superimposed on them may be 
recognized by a neural network that has been well trained 
[16]. A number of ANN-based autoreclosure schemes use 
artificial neural networks such as Recurrent, Multilayer 
perceptron (MLP) and Radial basis function (RBF)[2], [3], 
[17]-[23]. With the exception of the recurrent neural 
network-based scheme[23], the schemes employ signal 
processing tools such as Fourier transform[3], short-time fast  
Fourier transform[2], [17] and wavelet transform[18]-[22] to 
decompose voltage waveforms and extract vital features for 
adaptive autoreclosing. The signal processing is necessary to 
facilitate the decision making process of the ANN in the face 
of several factors given above that influence the fault voltage 
waveform. 

The application of neural network to adaptive 
autoreclosure scheme generally consists of four basic tasks 
[3]: (i) collecting or producing sets of sample of faulted 
voltage waveforms:(ii) preprocessing the data and extracting 
the useful features; (iii) choosing and building the most 
appropriate neural network; and (iv) using the processed 
sample data to train the neural network and then testing it by 
simulated fault transient data. The adaptive single-pole ANN 
autoreclosure scheme presented in this paper employs 
Discrete Wavelet Transform (DWT) signal processing tool, 
which has been shown to be the most resilient to noise [18]. 
An ANN architecture is also developed to suit the signal 



 
 

processing tool. The scheme is simulated using the well 
proven and widely accepted Electro-Magnetics Transient 
Program (EMTP). The scheme is able to distinguish clearly 
between permanent and transient faults and in the case of the 
latter, predict optimal reclosure times at various fault points  
on wave and fault locations indicating its robustness.  
 
2. Proposed adaptive single-pole autoreclosure 
scheme 
A flow chart of the proposed DWT, ANN-based 

AdSPAR scheme is shown in figure 1. The scheme is 
activated by a start logic when the circuit breaker is tripped. 
The DWT processes the voltage signal of the faulted phase 
from one of the capacitors associated with a capacitor 
divider and extracts the standard deviations of detailed 
coefficients from one cycle(20ms) of the voltage waveform 
for the first neural network to make a decision as to whether 
the fault is permanent or transient.  
 

 
Fig 1: Block diagram of proposed scheme 

 
If the fault is identified as transient, a signal is sent for the 
extraction of the percentage of wave energy in detailed 
coefficients from one cycle of the voltage waveform for a 
second neural network to determine whether or not the 
secondary arc has extinguished. Once the fault arc has 
extinguished, a signal is sent to reclose the breaker. 
However, if the fault is established to be permanent, a signal 

is sent to trip the other two healthy phase breakers 
immediately and lock out the single-pole autoreclosure. 

 

3. Primary system simulation 
A typical UK 400 kV uncompensated, single circuit, 

transmission line employed by many researchers to develop 
and test adaptive autoreclosure schemes [3], [18] is used for 
the study. The system is shown in figure 2. The frequency 
dependent parameters of the line were calculated via the 
inbuilt EMTP line constant program. The EMTP has no 
inbuilt transient arc model. The transient arc used for the 
study was modelled using the Transient Analysis of Control 
Systems(TACS) component of the EMTP based on the arc 
equations given in [24]. A 100Ω linear resistor was used to 
model permanent faults. Single phase-earth faults were 
simulated at various points along the line from the sending 
end. The fault point on wave was also varied. A sampling 
frequency of 6000Hz was used. 
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Fig 2:  Studied system  
 

4. Signal processing 
Fault voltage waveform generated from the EMTP was 

converted into MATLAB files using a file converter. The 
waveform was then extracted every cycle for analysis.  

Fault transients generated on a system contain a wide 
range of frequency components. It has been established from 
analysis that the most distinct characteristics of the 
waveforms are those associated with the variation of the 
frequency components over time [2]. It is also known from 
extensive studies that for each cycle, certain frequency bands 
can be used as potential features [3]. In order to distinguish 
between permanent and transient faults, the voltage 
waveform extracted every cycle was decomposed using the 
Daubechies db4 mother wavelet in MATLAB into 9 
frequency bands(detailed coefficients): 3000-1500Hz, 1500-
750Hz, 750-375Hz, 375-187Hz, .... Then the standard 
deviation (SD) of each frequency band was determined to 
identify the most significant bands. Analysis of the results 
revealed that the frequency ranges 750 – 375Hz(d3), 375 –
187.5Hz(d4) and 187.5 – 93.75Hz(d5) were the most 
significant. The standard deviations of these detailed 
coefficients formed the data for distinguishing between 
permanent and transient faults. The db4 was again employed 
to decompose the voltage waveform extracted each cycle 
into 5 frequency bands, and the percentages of energy of 
each band was determined. Analysis of the results showed 
that the percentages of energy in detailed coefficients 2 and 
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4 were the most significant. The extracted percentages of 
energy thus formed the arc extinction determination data.   
 

5. ANN architecture and training      
A three-layer feedforward-multilayer perceptron with 

no bias was used for this study. The choice was informed by 
the fast decision making capability of MLPs[8]. The number 
of nodes in the input layer equalled the number of input data 
(standard deviations or wave energies in detail coefficients). 
The networks had one node each in the output layer. The 
number of hidden layer neurons was varied. Figure 3 shows 
the architecture of a neural network with 3 neurons in the 
input layer, 4 neurons in the hidden layer and 1 neuron in the 
output layer. The ANNs had purelin as the input transfer 
function. Hidden layer and output neurons had tansig as the 
transfer function. The ANN for permanent and transient fault 
identification had three input neurons (standard deviations of 
d3, d4 and d5) while that for the determination of arc 
extinction time had 2 input neurons (percentages of energy 
of d2 and d4). Training of the networks was carried out 
using the Levenberg-Marquardt back-propagation technique 
for its fast and accurate training capabilities [25]. The neural 
networks were trained with a set of input-output pairs. The 
inputs for the ANN responsible for distinguishing between 
permanent and transient faults were the standard deviations 
of the detailed coefficients while the outputs were ‘1’ for 
permanent faults and ‘0’ for transient faults. The inputs to 
the ANN which determines the extinction time of secondary 
arcs were the percentages of energy. The outputs were ‘1’ 
for secondary arc persistence and ‘0’ for secondary arc 
extinction. 
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Fig 3: Neural network architecture 
 

  
 
 
 
 
6. Results and Discussion 

To test the robustness of the proposed scheme, both 
permanent and transient faults were simulated at various 
locations and for each location at voltage-zero and voltage-
maximum. A credible AdSPAR scheme must be based on 
realistic transient fault arc model. Figures 4, 5, 6 and 7 show 
voltage waveforms of transient faults at 64km-voltage zero, 
64km-voltage maximum, 120km-voltage zero and 120km-
voltage maximum respectively. The waveforms, depicting 
the characteristics of a true faulted voltage waveform [24], 
show that the TACS-built transient arc model was very 
realistic. Voltage waveforms of permanent faults at voltage 
maximum at 64km and 120km respectively are shown in 
figures 8 and 9. 
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Fig 4: Transient fault at voltage zero at 64km 
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Fig 5: Transient fault at voltage maximum at 64km 
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Fig 6: Transient fault at voltage zero at 120km 
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Fig 7: Transient fault at voltage maximum at 120km 
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Fig 8: Permanent fault voltage maximum at 64km 
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Fig 9: Permanent fault voltage maximum at 120km 

 
Tables 1, 2, 3 and 4 show standard deviations for the 
detailed coefficients at 32km and 96km for permanent and 
transient faults which are representative of the results 
obtained. 
 
Table 1: Standard deviations of detailed coefficients of 
permanent and transient faults at 32km, voltage- maximum 
Cycle 
No. 

Permanent fault Transient fault 
d3 d4 D5 d3 d4 d5 

1 2.8459 1.1714 1.1952 9.1286 16.756 16.035 
2 0.0936 0.1822 0.7909 0.2486 1.1061 1.4178 
3 0.04 0.1752 0.7924 0.2534 1.2448 1.6453 
4 0.0425 0.1764 0.7917 0.3423 1.4958 2.1764 
5 0.0526 0.1764 0.7928 0.4813 1.6902 2.8769 
6 0.0413 0.1755 0.7924 0.6294 1.7765 3.6937 
7 0.0375 0.176 0.7907 0.8066 1.6853 5.0306 
8 0.0427 0.1761 0.7907 1.0189 1.4134 7.3036 
9 0.0431 0.1755 0.7912 1.0447 2.5816 9.4961 

10 0.0406 0.1755 0.7907 1.2735 4.7381 10.639 
 
Table 2: Standard deviations of detailed coefficients of 
permanent and transient faults at 32km, zero-crossing 
Cycle 
No. 

Permanent fault Transient fault 
d3 d4 D5 d3 d4 d5 

1 2.9095 1.2515 1.2755 9.328 16.47 16.025 
2 0.0432 0.1789 0.796 0.2451 1.1023 1.4191 
3 0.0466 0.177 0.7963 0.261 1.248 1.6438 
4 0.0411 0.1775 0.795 0.3372 1.4932 2.1774 
5 0.044 0.177 0.796 0.4863 1.692 2.8754 

 
Table 3: Standard deviations of detailed coefficients of 
permanent and transient faults at 96km, voltage- maximum 
Cycle 
No. 

Permanent fault Transient fault 
d3 d4 D5 d3 d4 d5 

1 2.9019 1.2269 1.2635 9.1286 16.756 16.035 
2 0.0489 0.1858 0.8126 0.2486 1.1061 1.4178 
3 0.0616 0.18 0.8194 0.2534 1.2448 1.6453 
4 0.0397 0.1831 0.8133 0.3423 1.4958 2.1764 
5 0.0527 0.1809 0.8175 0.4813 1.6902 2.8769 

 
 
 
 
 
 
 
 
 
 



 
 

Table 4: Standard deviations of detailed coefficients of 
permanent and transient faults at 96km, zero-crossing 
Cycle 
No. 

Permanent fault Transient fault 
d3 d4 d5 d3 d4 d5 

1 2.9453 1.2278 1.2576 9.328 16.47 16.025 
2 0.0450 0.1834 0.8163 0.2451 1.1023 1.4191 
3 0.0470 0.1815 0.8165 0.261 1.248 1.6438 
4 0.0423 0.182 0.8152 0.3372 1.4932 2.1774 
5 0.0451 0.1815 0.8162 0.4863 1.692 2.8754 

 
      The tables show clear variations between the standard 
deviations of permanent and transient faults. These clear 
variations will make decision making by neural networks 
easy. The first cycle data are different from the others owing 
to high frequency transients that exist immediately after CB 
opening. 
     Tables 5 and 6 show percentage of energies of d2 and d4 
for transient faults at 32km and 96km starting from the 3rd 
cycle – time when the algorithm will begin to determine arc 
extinction after a fault has been determined to be transient. . 
 
Table 5: Percentage of energies of d2 and d4 for transient 
faults at 32km, voltage-zero and voltage-maximum 

Cycle 
No. 

32km Voltage-zero 32kmVoltage-max. 
d2 d4 d2 d4 

3 0.0179 1.9835 0.0136 2.0131 
4 0.0128 2.0201 0.0146 2.049 
5 0.0215 1.7309 0.0197 1.7298 
6 0.0224 1.3023 0.0234 1.3043 
7 0.0204 0.7546 0.0198 0.7522 
8 0.0107 0.2881 0.0109 0.2879 
9 0.0043 0.4875 0.0043 0.4864 

10 0.0065 0.9183 0.0064 0.9167 
11 0.0097 1.34 0.0097 1.3379 
12 0.0114 1.4825 0.0114 1.4802 
13 0.0127 0.6831 0.0127 0.6821 
14 0.0045 0.2036 0.0045 0.2036 
15 0.0069 0.1202 0.0069 0.1204 
16 0.007 0.1403 0.007 0.1405 
17 0.0075 0.1525 0.0076 0.1527 
18 0.0079 0.1601 0.008 0.1603 

 
 
 
 
 
 
 
 
 

 Table 6: Percentage of energies of d2 and d4 for transient 
faults at 96km, voltage-zero and voltage-maximum 

Cycle 
No. 

96km Voltage-zero 96kmVoltage-max. 
d2 d4 d2 d4 

3 0.0179 1.9835 0.0136 2.0131 
4 0.0128 2.0201 0.0146 2.049 
5 0.0215 1.7309 0.0197 1.7298 
6 0.0224 1.3023 0.0234 1.3043 
7 0.0204 0.7546 0.0198 0.7522 
8 0.0107 0.2881 0.0109 0.2879 
9 0.0043 0.4875 0.0043 0.4864 
10 0.0065 0.9183 0.0064 0.9167 
11 0.0097 1.34 0.0097 1.3379 
12 0.0114 1.4825 0.0114 1.4802 
13 0.0127 0.6831 0.0127 0.6821 
14 0.0042 0.1303 0.0042 0.1303 
15 0.0039 0.0651 0.0039 0.0651 
16 0.0029 0.0581 0.0029 0.0582 
17 0.0028 0.0567 0.0028 0.0568 
18 0.0028 0.0556 0.0028 0.0556 

 
The responses of the neural network for fault distinguishing, 
to some test data are shown in tables 7, 8, 9 and 10.  
 
Table 7: Neural network responses to transient and 
permanent faults at 32km voltage-zero  

 
Cycle 
No. 

 
Permanent   fault 

 
Transient  fault 

ANN 
response 

Desired ANN  
response 

Desired 

1 0.9981 1 0.0000138 0 
2 0.9995 1 0.0003935 0 
3 0.9995 1 -0.0000936 0 
4 0.9995 1 0.000004 0 
5 0.9995 1 0.0000136 0 

 
 

Table 8: Neural network responses to transient and 
permanent faults at 32km voltage-maximum  

 
Cycle 
No. 

 
Permanent   fault 

 
Transient  fault 

ANN 
response 

Desired ANN  
response 

Desired 

1 0.9994 1 0.0000138 0 
2 0.9996 1 0.0003634 0 
3 0.9995 1 -0.0000927 0 
4 0.9995 1 0.000004 0 
5 0.9995 1 0.0000136 0 

 



 
 

Table 9: Neural network responses to transient and 
permanent faults at 96km voltage-zero  

 
Cycle 
No. 

 
Permanent   fault 

 
Transient  fault 

ANN 
response 

Desired ANN  
response 

Desired 

1 0.999 1 0.0000138 0 
2 0.9995 1 0.0003935 0 
3 0.9995 1 -0.0000936 0 
4 0.9995 1 0.000004 0 
5 0.9995 1 0.0000136 0 

 
Table 10: Neural network responses to transient and 
permanent faults at 96km voltage-maximum  

 
 

Cycle 
No. 

 
Permanent   fault 

 
Transient  fault 

ANN 
response 

Desired ANN  
response 

Desired 

1 0.9987 1 0.0000138 0 
2 0.9995 1 0.0003934 0 
3 0.9995 1 -0.0000936 0 
4 0.9995 1 0.000004 0 
5 0.9995 1 0.0000136 0 

 
      A comparison between the desired and obtained ANN 
outputs clearly shows that the results attained are 
satisfactory; ANN responses in most cases are very close to 
the ideal outputs of either ‘0’ or ‘1’. The results show that 
fault distinguishing can be achieved within one cycle(20ms), 
with confirmation by the subsequent cycles. 
     Tables 11 and 12 show the responses of the neural 
network which determines the extinction time of transient 
fault arcs to test data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11: Neural network responses to transient faults at 
32km 

 
Cycle 
No. 

32km, Voltage-zero 32km, voltage-
maximum 

ANN 
response 

Desired ANN  
response 

Desired 

3 0.9999 1 0.9999 1 
4 0.9999 1 0.9999 1 
5 0.9999 1 0.9999 1 
6 0.9999 1 0.9999 1 
7 0.9999 1 0.9999 1 
8 0.9994 1 0.9994 1 
9 1 1 1 1 
10 0.9999 1 0.9999 1 
11 0.9999 1 0.9999 1 
12 0.9999 1 0.9999 1 
13 1 1 1 1 
14 0.0936 0 0.0933 0 
15 0.00075127 0 0.00075988 0 
16 0.0024 0 0.0025 0 
17 0.0049 0 0.005 0 
18 0.0076 0 0.0077 0 

 
Table 15: Neural network responses to transient faults at 
96km 

 
Cycle 
No. 

96km, Voltage-zero 96km, voltage-
maximum 

ANN 
response 

Desired ANN  
response 

Desired 

3 0.9999 1 0.9999 1 
4 0.9999 1 0.9999 1 
5 0.9999 1 0.9999 1 
6 0.9999 1 0.9999 1 
7 0.9999 1 0.9999 1 
8 0.9994 1 0.9994 1 
9 1 1 1 1 
10 0.9999 1 0.9999 1 
11 0.9999 1 0.9999 1 
12 0.9999 1 0.9999 1 
13 1 1 1 1 
14 0.0014 0 0.0014 0 
15 -0.00010554 0 -0.00010502 0 
16 -0.00014839 0 -0.00014793 0 
17 -0.00015689 0 -0.00015639 0 
18 -0.00016407 0 -0.00016364 0 

   
     A comparison between the desired and obtained ANN 
outputs show satisfactory results; ANN responses in most 
cases are very close to the ideal outputs of either ‘0’ or ‘1’. 
A change from near ‘1’ to near ‘0’ signifies the extinction of 
a transient fault arc and no change indicates the persistence 



 
 

of a transient fault arc. Additionally, the time at which the 
change occurs, gives the precise arc extinction time. Since 
there is always a deviation of the ANN output around ‘0’ 
and ‘1’, small threshold levels will have to be set.  
 
7. Conclusion 

An adaptive single-pole autoreclosure scheme based on 
Discrete wavelet analysis and multi-layer perceptron ANN is 
developed in this paper. The proposed technique uses 
standard deviations of detailed coefficients of Daubechies 
db4 in the frequency ranges: 750 – 375Hz, 375 –187.5Hz 
and 187.5 – 93.75Hz to distinguish between transient and 
permanent faults. The determination of arc extinction time 
for transient faults is achieved using the percentages of wave 
energy of detailed coefficients from db4 in the frequency 
ranges: 1500 – 750Hz and 375 –187.5Hz. The scheme can 
distinguish between transient and permanent faults within 
20ms after circuit breaker opening and also determine 
secondary arc extinction times. The test results reveal that 
the standard deviation and energy content of detailed 
coefficients from db4 can be effectively used to detect and 
identify relevant permanent and transient fault features in 
EHV transmission systems. 
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