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Abstract: This paper proposes a hybrid Lagrangian 
relaxation – Dynamic programming (LR -DP) solution to the 
unit commitment problem of thermal units, known as 
Generation scheduling. The proposed algorithm is 
characterized by a Matlab function created to determine the 
optimal path of the dual problem. The initialization of 
Lagrangian multipliers in our algorithm is based on both 
unit and time interval classification. The proposed algorithm 
is distinguished by a flexible adjustment of Lagrangian 
multipliers, and dynamic search for uncertain stage 
scheduling, using a Lagrangian relaxation - dynamic 
programming method (LR-DP). After the LR best feasible 
solution is reached, a unit decommitment is used to enhance 
the solution when identical or similar units exist in the same 
system. The proposed algorithm is tested and compared to 
conventional Lagrangian relaxation (LR), genetic algorithm 
(GA), evolutionary programming (EP), Lagrangian 
relaxation and genetic algorithm (LRGA), and genetic 
algorithm based on unit characteristic classification 
(GAUC) on systems with the number of generating units in 
the range of 10 to 100. The total system production cost of 
the proposed algorithm is less than the others especially for 
the larger number of generating units. Computational time 
was found to increase almost increases linearly with system 
size, which is favorable for large-scale implementation. 
Keywords: Unit commitment, Generation Scheduling, 
Lagrangian Relaxation, Dynamic Programmin. 

1. Introduction 
       Unit commitment problem (UCP) is a nonlinear, 
mixed integer combinatorial optimization problem. 
It is defined as the problem of how to schedule 
generators economically in a power system in order 
to meet the requirements of load and spinning 
reserve. Usually this problem is considered over 
some period of time, such as the 24 hours of a day or 
the 168 hours of a week. It is a difficult problem to 
solve in which the solution procedures involve the 
economic dispatch problem as a sub-problem. 

Since the problem was introduced, several solution 
methods have been developed. However, they differ 
in the solution quality, computational efficiency and 
the size of the problem they can solve. These 
methods or approaches have ranged from highly 
complex and theoretically complicated methods to 
simplified methods. 
In the past, various approaches such as DP [1], 
branch-and-bound B&B [2] and Lagrangian 
relaxation (LR) [3] were proposed for solving the 
UCP. However, not all of these methods are 
regarded as feasible and/or practical as the size of 
the system increases.  
For moderately sized production systems, exact 
methods, such as dynamic programming (DP) or 
(B&B) [2] can be used to solve the UCP, 
successfully. For larger systems, exact methods fail 
because the size of the solution space increases 
exponentially with the number of time periods and 
units in the system. As a result, the computation time 
of exact methods becomes impractical. In these 
cases heuristic methods (evolutionary programming 
(EP), Tabu Search (TS), Simulated Annealing (SA), 
Genetic Algorithms (GA), etc) can be used to 
produce near optimal solutions in a reasonable 
computation time. For heuristic methods optimality 
is not given such a high priority but the emphasis is 
on finding good solutions in a short time. This often 
results in the solution method being more simple and 
transparent than exact solution methods [4].  
The application of LR in the scheduling of power 
generations was proposed in the late 1970s. These 
earlier methods used LR to substitute the common 
linear programming (LP) relaxation approach as a 
lower bound in the B&B technique [5]. In this 
regard, great improvement of computational 
efficiency was achieved compared with previous 
B&B algorithms.  



 

In recent years, methods based on LR, have become 
the most dominant ones. This approach has shown 
some potential in dealing with systems that consist 
of hundreds of generating units and is motivated by 
the separable nature of the problem, and several 
examples have been reported in the literature.  
Based on the sharp bound provided by the 
Lagrangian dual optimum, it is expected that a 
suboptimal feasible solution near the dual optimal 
point can be accepted as a proper solution for the 
primal problem. A more direct and fairly efficient 
methodology which has used this idea was presented 
in [6] by Merlin, for UCP using LR method and 
validated at Electricite De France. Due to its 
reasonable performance, the successive 
improvement of the LR algorithm, in the last few 
years, has mainly followed the work in [6]. The 
problem which is supposed to be handled by this 
algorithm consists of thermal units only. 
In [7], they combined LR, sequential UC based on 
the least reserve cost index and unit decommitment 
(UD) based on the highest average spinning reserve 
cost index. However, this method could not 
decommit some units that violate the minimum up 
time constraints even though the excessive reserve 
exists, leading to a higher production cost. 
In the advent of heuristic approaches, GA [8], EP 
[9], SA [10], and TS [11] have been proposed to 
solve the UC problems. Nevertheless, the obtained 
results by GA, EP, and SA required a considerable 
amount of computational time especially for a large 
system size. There was an attempt to combine the 
LR and GA method (LRGA) to obtain a higher 
quality of UC solution in a shorter time by using 
normalized Lagrange multipliers as the encoded 
parameter [12]. 
 
2. Unit Commitment Problem Formulation 
       The objective of the UCP is to minimize the 
system operating costs, which is the sum of 
production and start-up costs of all units over the 
entire study time span (e.g., 24 h), under the 
generator operational and spinning reserve 
constraints. Mathematically, the objective function, 
or the total operating cost of the system can be 
written as follows:  
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(1) The start-up cost is modeled by the following 
function of the form: 
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(3) Spinning reserve requirements: 
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Fuel cost function ( )t
i iF P  is frequently represented 

by the polynomial function: 

Fi (Pi
t) = ai + bi Pi

t + ci  (Pi
t)2

                                (10) 

Where Pi
t: output power of unit i at period t (MW);   

Fi (Pi
t): fuel cost of unit i when its output power is 

Pi
t ($);   

Si
t: start-up price of unit i at period t ($);  

ui
t : commitment state of unit i at period t,(ui

t =1: 
unit is on-line and ui

t = 0 unit is off-line);  
N: total number of generating units;  
T: total number of scheduling periods;  
ai,, bi,, ci,: Coefficients for the quadratic cost curve 
of generating unit i; 
Xt

off, i, Xt
on i: number of hours the unit has been off-

line/on-line [h]; 
0
iX : Initial condition of a unit i at t = 0,  0

iX > 0: 
on-line unit,   0

iX < 0: off-line unit [h]; 
Ti

up  minimum up time [h]; 
Ti

down  minimum down time [h]; 
HSi, CSi :  the unit’s hot/cold startup cost [$]; 
CHi : is the cold start hour [h]; 
Dt: customers’ demand in time interval t; 



 

Rt: The spinning reserve requirements; 
 
3. An Improved Flexible Lagrangian Relaxation 
Technique   
       In the Lagrangian relaxation approach, the 
system operating cost function of eq(1) of the unit 
commitment problem is related to the power balance 
and the spinning reserve constraints via two sets of 
Lagrangian multipliers to form a Lagrangian dual 
function.  
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The LR procedure solves the UCP through the dual 
problem optimization procedure attempting to reach 
the constrained optimum.  
The dual procedure attempts to maximize the 
Lagrangian with respect to the Lagrangian 
multipliers λt and μt, while minimizing it with 
respect to the other variables ,t t

i iP u  subject to the 
unit constraints in eq(5) through eq(9). The dual 
problem is thus the search of the dual solution (Q) 
expressed as: 
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The Lagrangian function of eq (11) is rewritten as 

1 1

max

1 1 1 1

( , , , ) ( , ) .

. ( )

T N
t t t

i i
t i

T N T T
t t t t t t t

i i
t i t t

L P u f P u u P

u P D D R

λ μ λ

μ λ μ

= =

= = = =

= − −

+ + +

∑ ∑

∑ ∑ ∑ ∑
      (13) 

When the Lagrangian multipliers λt(k) and μt(k) are 
fixed for iteration k, the last two terms of the  
Lagrangian in eq(13) are constant and can be 
dropped from the minimization problem.  
Hence, the system (coupling) constraints can be 
relaxed and the search for the dual  
solution can be done through the minimization of the 
Lagrangian as: 
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Then, the minimum of the Lagrangian function is 
solved for each generating unit over the time 
horizon, that is 
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Subject to constraints in eq(5) through eq(9). 

3.1. The Dual problem optimization: 

In the Lagrangian relaxation method, the dual 
solution is obtained for each unit separately. 

When the state ui
t = 0, the value of the function to be 

minimized is equal zero (the unit is off-line). 

When the state ui
t = 1, the value to be minimized is: 

( )( )t t k t
i i iF P Pλ−                                  (16) 

The startup cost and the last term in eq(15) are 
dropped since the minimization is with respect 
to t

iP . 
When the units’ fuel cost functions are represented 
as polynomial functions as in eq(10), the minimum 
of eq(16) can be found by taking its first derivative. 
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t(k) = Pi
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For known ( )t kλ , then ( )t k
iP is obtained by eq(18) 

through eq(20).  

3.1.1. A new Matlab function to determine the 
optimal path  

        To minimize the term in eq(15) for each unit, 
over the scheduled time T, subject to minimum up 
and down time constraints in eq(6) through eq(9) , 
DP is often used to determine the optimal schedule. 
Dynamic programming CPU time increases at least 
linearly with N and T (upper bounded by N [4 (T - 1) 
+ 2] additions and 2 N (T - 1) comparisons), [3] and 
[13]. 
A reduction of the search domain, which is defined 
by 2T combinations, can be made by discarding the 
infeasible combinations from the domain. The 
optimal combination which minimize eq(15) for a 
unit i can be determined by direct evaluation of all 
feasible combinations. A Matlab function is 
developed for this purpose. 



 

This function gives all feasible combinations (mi) of 
a unit i over the scheduling period T which satisfy 
the minimum up and down time constraints given its 
initial state and condition.  
Function input: 0

iX , T, Ti
up, Ti

down. 

Function output: ,[ ]t
i ju which is a ( iT m× ) matrix 

containing all feasible combination as   
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Then the optimal solution ( )k
iP  and its 

corresponding path ui,j (combination), given the 
Lagrangian multipliers ( ) ( ),k kλ μ  of iteration k, is 
obtained by the following procedure:  
Step 1: Running the Matlab function to obtain all 
feasible combinations (mi) of unit i over the 
scheduling period T which satisfies the minimum up 
and down time constraints, given its initial state and 
condition.  
Step 2: For each ui,j, j = 1,…,mi, t = 1,…,T calculate 
the contribution term of unit i in a specific period t 
using the following equation 
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Step 3: For each ui,j, j = 1,…,mi , calculate the 
contribution term which correspond to unit i over the 
total period T using the following equation: 
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Step 4: Obtain optimal solution ( )k
iP  and its 

corresponding path ui,j (combination), by taking the 
least valued contribution term obtained in step 3. We 
have not to check the path vis-à-vis the minimum up 
and down time since it is a feasible one. 

Step 5: repeat step 1 to step 4 for all units to 
obtain ( ) ( ),k kP u . 
The values of the system variables 

( ) ( ) ( ) ( ), , ,k k k kP u λ μ are substituted back into the 
Lagrangian eq(11) , ( ) ( ) ( ) ( )( , , , )k k k kL P u λ μ  to 
determine the dual solution Q(k) : 
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Provided that the dual solution is feasible with 
respect to the spinning reserve constraint of eq(4) 
and the following constraint regarding the minimum 
output power of the scheduled units is satisfied: 
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The inequalities related to the spinning reserve 
constraints eq(4) do not impose an upper bound on 
the amount of reserve. However, common sense for 
an economic schedule indicates that there should not 
be too much excess MW reserve because it would 
certainly increase the cost associated with the 
corresponding dual solution. Therefore, in the 
searching algorithm, a slack term (st) is included in 
the reserve constraint to assess the quality of the 
dual solution. The upper-bound limit introduced by 
the slack term restricts the solution space and 
therefore may prevent the optimal solution to be 
found. In addition, the value of the slack term may 
affect the convergence of the process. Unfortunately, 
there is no mathematical guideline for properly 
selecting the value of slack term (st) [13].  
Hence, in the searching algorithm, the following 
constraints are included implicitly to test the validity 
of the commitment schedule. 
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In this paper st is specified using a new heuristic 
algorithm based on both unit and time interval 
classification. 

3.2. A new initial scheduling of UC 

       The initial values of Lagrangian multipliers are 
very critical to the LR solution since they may 
prevent LR from reaching the optimal solution or 



 

require a longer computational time to reach one 
[14]. Different initial values may also lead LR to 
different solutions. In [15], the initial multiplier λt 
was set to the hourly system marginal cost of the 
schedule to satisfy the power balance constraint and 
the initial multiplier μt was set to zero, leading to an 
infeasible initial solution. Alternatively, the initial 
multiplier λt was set to the hourly system marginal 
cost of the schedule to satisfy both the power 
balance and spinning reserve constraint, whereas the 
initial multiplier μt was set to zero which was 
generally lower than the optimal value [16].  
An initialization procedure which intends to create a 
high quality feasible schedule in the first iteration is 
described here, based on unit and time interval 
classification. 

3.2.1. Unit Classification 

       In general, generation units can be classified 
into three types: base load units with low operation 
cost Fi, high startup cost Si, and long minimum 
up/down times ,up down

i iT T ; intermediate load units 
with medium operating cost, medium startup cost 
and medium minimum up/down time, and peak load 
units with high operation cost, low startup cost and 
short minimum up/down time. Base load units 
should not be shut down. In other words they 
constitute the must run constraint. Intermediate load 
units could be committed during on-peak and 
decommitted during off-peak periods. Finally, peak 
load units could be frequently turned on and off.  
Following this classification, the N units of an N-unit 
system can be classified into a set Nb of base load 
units, a set NI of intermediate load units and a set Np 
of peak load units according to unit full load average 
production costs (flac) and unit operational 
constraints where:     

Where max max( )  in $/MWhi iflac F P P=             (27) 

3.2.2. Time interval classification 

        The overall study period is decomposed into 
several interval classes as follow: 
(1) Tbd presents the set of scheduling intervals t 
where bt T∈  and the upper-bound limit of the 
spinning reserve is satisfied: 

max
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scheduling intervals t where base units can produce 
enough power to satisfy the 
inequality max
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the intervals (Tbd) only base units are committed.  
(2) TId presents the set of scheduling intervals t 
where 0I It T T∈ ∩ , and in which 
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b I

t t t
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P D R s
∈ ∪

− − ≤∑ . Here TI presents 

the set of scheduling intervals t where the group of 
base and intermediate units cannot produce enough 
power to satisfy the constraint: 

max maxmin( )
b I I

t t
i ii N N i N

P D R P
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≤ + +∑ ∪
, while TI0 

presents the set of scheduling intervals t where the 
base and intermediate units grouped can produce 
enough power to satisfy the spinning reserve 
constraint max

b I

t t
ii N N

P D R
∈

≥ +∑ ∪
. At these 

intervals (TId) both base and intermediate units are 
committed. Note that 0b IT T⊂ . 
(3) TI -TId  give the set of scheduling hour's t, where 
peak units must be committed, for these scheduling 
periods the peak units are selected one by one, based 
on the flac, until enough capacity is reached to fulfill 
the spinning reserve constraints. 
(4) TI0-TId-Tbd give the set of scheduling hour's t, 
where intermediate units must be committed, for 
these scheduling periods intermediate units are 
selected one by one, based on the flac, until enough 
capacity is reached to fulfill the spinning reserve 
constraints. 
The slack term (st) is defined as  
If  bt T∈ , maxmax( )t

ii Nb
s Pα

∈
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If It T∈ , maxmax( )t
ii Np
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I

t
ii N

s Pα
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Where α is a tuning constant. Through the 
application of the method, its most suitable value 
was found to be 2. 
Table 1 gives the initial commitment states of 
different sets Nb, NI and Np during different time 
interval classes.   

 

Table 1. Initial scheduling of UCP based on unit and 
time interval classification 

 Unit Sets 
Time set Nb NI Np 

b dt T∈  1t
iu =  0t

iu =  0t
iu =  

t ∈TId 1t
iu =  1t

iu =  0t
iu =  

t∈TI - TId 1t
iu =  1t

iu =  t
iu  variable 

t ∈TI0-TId-Tbd 1t
iu =  t

iu variable 0t
iu =  

 



 

3.2.3 Initial value of Lagrangian multipliers 
       The initial value of Lagrangian multipliers λt(0) 
are set as follow:  
(1) For each hour t∈TI0-TId-Tbd and t∈TI - TId, the 
group of identical units with the least (flac) will be 
committed one group by one group until the 
spinning reserves constraint is satisfied as shown in 
Table 1. Subsequently, economic dispatch in each 
hour is carried out to obtain the hourly equal lambda 
which is initially set to Lagrangian multipliers λt(0).  
(2) For each t∈  Tbd ∪ TId, as at these periods a 
predefined UC is established as shown in Table 1. 
Lagrangian multipliers λt(0) are set to the hourly 
equal lambda, after running an economic dispatch 
program for these periods.   
The initial value of each non-negative Lagrangian 
multipliers (0)tμ is set as follow:  

(0) max

1,...,

(0)

max( max ((1 )( ( ) .
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λ
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Mt : is the marginal unit with the highest (flac), 
giving the sufficient spinning reserve at hour t. 

3.3. Updating of the Lagrangian Multiplier  

       In general, adjusting Lagrangian multiplier by 
sub-gradient method is not efficient in the presence 
of the spinning reserve constraint [6]; one of the 
shortcomings of this method is the slow 
convergence. The LR performance is heavily 
dependent on the method used to update the 
multipliers. In this paper, a flexible sub-gradient rule 
is proposed to update the Lagrangian multiplier and 
designed such that the step size is large at the 
beginning of iterations and smaller as the iteration 
grows. Each nonnegative tλ and tμ are adaptively 
updated by, 
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1 2 2 2 2norm( )= ( ) ( ) ............ ( )  T
M M M MP P P P+ + +  (36) 

1 2 2norm( )= ( ) .... ( )  T
M M MSR SR SR+ +           (37) 

The values of ρ  and θ are divided into four cases 
depending on the signs of MP and MSR .  
Case 1) 0t

MP ≥ and 0t
MSR ≥ : updating both tλ and 

tμ by using ρ =0.03 and θ =0.06.      
Case 2) 0t

MP < and 0t
MSR < : updating both tλ and 

tμ by using ρ =0.5 and θ =0.3.                  
Case 3) 0t

MP < and 0t
MSR > : updating only tμ by 

using ρ =0.03 and θ =0.06.      
Case 4) 0t

MP > and 0t
MSR < : updating only tλ by 

using ρ =0.5 and θ =0.3.       
The general guidelines for selecting their values are 
explained in [17]. 
In fact, updating the two multipliers tλ and tμ in 
hour t must move them in the same direction. In 
hour t, if t

MP and t
MSR have the same signs, either 

positive or negative, tλ and tμ  will be updated 
(increase or decrease) by eq(32) and eq(33), 
respectively. 
When the total dual generation output is larger than 
the load in that hour ( 0t

MP < ) but the spinning 
reserve is insufficient ( 0t

MSR > ), more committed 
unit(s) are required to satisfy the spinning reserve 
constraints. However, updating tλ  by eq(32) will 
decrease its value, resulting in committing less units. 
Therefore, when ( 0t

MP < ) and ( 0t
MSR > ), only 

tμ will be updated. 
On the contrary, when the spinning reserve is 
sufficient ( 0t

MSR < ), but the total dual generation 
output is less than the load in that hour ( 0t

MP > ), 
updating tμ  by eq(33) will decrease its value, 
resulting in committing less units. Therefore, when 
( 0t

MP > ) and ( 0t
MSR < ), only tλ will be updated. 

Note that the sub-gradient method generally needs a 
large number of iterations to converge to near the 
dual optimum [17]. The proposed flexible sub-
gradient method using high-quality initial feasible 
multipliers proved to require much lower number of 
iterations to converge, leading to much less 
computational time. 

 



 

3.4. Dynamic Economic Dispatch (DED) [18] 

       To replace conventional economic dispatch 
algorithm, a more accurate and flexible problem 
formulation of DED is developed to facilitate the 
interaction with UC schedule, The DED solver use 
the Hopfield Neural Network, which make it a very 
fast solver and suitable to UCP. 
If the 24-h schedule is feasible at iteration k, a DED 
is carried out to determine the optimal generation 
power outputs for each of the 24 h, and the total 
production cost J(k). 

3.5. Checking for Convergence 

       The convergence of the proposed LR-UC 
algorithm can be measured by the relative duality 
gap between the primal and dual solutions. 

Relative duality gap = . 

          . ( ) ( ) ( )(( - ) / )  100k k kJ Q Q ×                        (38) 

The process stops when the relative duality gap is 
smaller than a pre-specified toleranceε , or when a 
pre-specified maximum number of iterations is 
reached.  
The sensitivity of the integer variables 
corresponding to the generating unit statuses (ui

t) to 
small adjustments in the Lagrangian multipliers may 
cause the algorithm to oscillate around the optimal 
solution. As such, there is no guarantee that the 
solution achieved in the last iteration of the iterative 
process will be feasible or optimal. Hence, in the 
computational model developed in the paper, a 
running record of the feasible solutions is kept so 
that the final solution is the one corresponding to the 
most economical schedule, i.e., the one with the 
minimum primal solution (J). 

4. Identical Unit Decommitment 

       When identical or similar units exist the LR 
could find only sub-optimal solutions [14]. These 
units have the identical cost parameters ai, bi, ci, and 
startup cost which will be simultaneously committed 
or decommitted. This will not lead to the optimal 
solution because committing one unit at a time will 
be less expensive than committing a whole group of 
units, which may lead to over commitment. Thus, 
after committing a group of identicall units, a unit of 
which is decommitted one at a time if it does not 
violate the minimum up time constraint until either 
the spinning reserve requirement is not satisfied or 
there is only one unit left. The identical unit 
decommitment procedure is as follows: 

Step 1) Get the initial feasible solution[ ]t
iu , i = 

1,…,N,  t = 1,…,T. 

Step 2) Calculate the excess spinning reserve of 
every hours,  

maxNt t t t
ex i ii

R u P D R= − +∑                           (39) 

Step 3) Initialize t =1 

Step 4) Initialize i =1 

Step 5) If the excess spinning reserve t
exR is greater 

than the maximum generation of unit i, and this unit 
is already committed, check if decommitting the unit 
would violate its minimum up time constraints.   

Decommit the unit i,  
if, ,

t
on iX = 1, and 1

,

up
it T

on iX + − = up
iT                       (40) 

or if  ,
t
on iX > up

iT , and 1
,

t
off iX + = 1               (41) 

or  if ,
t
on iX = 1, and 1

T
k
i

k t

u T k
=

= − +∑           (42) 

or if  up
iT = 1                                                                          

Otherwise, let the unit committed. 

Step 6) If t = T stop, else go to step 7 

Step 7) Update [ ]t
iu  and t

exR , replace i by i + 1, 

Step 8) If i = N, replace t by t + 1, and go to step 4. 
Otherwise, go to step 5. 

5. Numerical Results 
       A 10-unit system [8] is selected as a test system. 
System data and load demand are given in Tables 2 
and 3. The spinning reserve is assumed to be 10% of 
the demand. The 20, 40, 60, 80, and 100 unit 
systems are obtained by duplicating the 10-unit base 
case, whereas the load demand are adjusted in 
proportion to the system size. The proposed LRUC 
uses the developed Matlab function to determine the 
optimal path. A maximum allowable number of 50 
iterations was set as a stopping criteria. 

5.1. An improvement to the method 

       The behavior of the units during the iterative 
search of the LR based solution and the preliminary 
schedule itself is assessed to define the uncertain 
intervals, in which commitment states of some units 
are not certain. In this example these stages are [22, 
23]. Then, a dynamic search is performed at these 
stages, using a DP solution to UC combined with LR 
(LR-DP), as shown in figure 1, where all possible and 



 

feasible paths with respect to minimum up and down 
time  constraints are shown. The optimum path is 
distinguished by bold lines. The UC solution schedule 

using the proposed Lagrangian Relaxation combined to 
DP is shown in table 4, dynamic search for uncertain 
stages are highlighted. 

 

Table 2. Unit data of the 10-unit 24 hour test system 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit10 
Pmax (MW) 455 455 130 130 162 80 85 55 55 55 
Pmin (MW) 150 150 20 20 25 20 25 10 10 10 

a  ($/h) 1000 970 700 680 450 370 480 660 665 670 
b ($/MWh) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79 
c ($/MW2h) 0.00048 0.00031 0.00200 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173 

Ti
up (h) 8 8 5 5 6 3 3 1 1 1 

Ti
down (h) 8 8 5 5 6 3 3 1 1 1 
HS 4500 5000 550 560 900 170 260 30 30 30 
CS 9000 10000 1100 1120 1800 340 520 60 60 60 
CH 5 5 4 4 4 2 2 0 0 0 
X0

i 8 8 -5 -5 -6 -3 -3 -1 -1 -1 
flac 18.61 19.53 22.24 22.01 23.12 27.45 33.45 38.14 39.48 40.06 

 

Table 3. Demand of the 10 unit 24 hour test system 

Hour Load (MW) Hour Load (MW) Hour Load (MW) 
1 700 9 1300 17 1000 
2 750 10 1400 18 1100 
3 850 11 1450 19 1200 
4 950 12 1500 20 1400 
5 1000 13 1400 21 1300 
6 1100 14 1300 22 1100 
7 1150 15 1200 23 900 
8 1200 16 1050 24 800 

 

 

 

 
 
 
 
 
 
 
 
 

Fig 1. Dynamic programming search for uncertain stages 22 and 23. 
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Table 4. Solution of 10 – unit 24-hour using the proposed LRUC method 

 

 
 
Table 5 shows simulation results (production 
costs) obtained by the proposed LR method 
compared with results obtained by LR [8], GA 
[8], EP [19], and the combined LRGA [20] and 
DPLR [21] methods. Table 6 shows the 
simulation time obtained by the proposed LR 
method which is carried out on Pentium M 1.73 

GHz processor. Because simulations were carried out 
on different types of computers, simulation times are 
not compared. It can be seen that the results of the 
proposed method is better than other methods in term 
of total production cost. It can be seen that 
computational time increases almost linearly with 
system size. 

 
Table 5. Comparison of total production costs 

 
   COST($)    
  No of units   

METHOD 10 20 40 60 80 100 
LR [8] 565,825 1,130,660 2,258,503 3,394,066 4,526,022 5,657,277 
GA [8] 565,825 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437 
EP [19] 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885 

LRGA [20] 564,800 1.122.622 2,242,178 3,371,079 4,501,844 5,613,127 
DPLR [21] 564,049 1.128.098 2,256,195 3,384,293 4,512,391 5,640,488 
GAUC [21] 563,977 1.125.516 2,249,715 3,375,063 4,505,614 5,640,488 
Proposed LR 563937.69 1,122,637 2,243,245 3,363,376 4,484,915 5,604,470 

 
 

Unit Number H D (MW) 
1 2 3 4 5 6 7 8 9 10 

Initial state 0 1 1 0 0 0 0 0 0 0 0 
Fuel cost Transfer 

cost 
cumulative 

cost 

1 700 1 1 0 0 0 0 0 0 0 0 13683.13 0 13683.13 
2 750 1 1 0 0 0 0 0 0 0 0 14554.50 0 28237.63 
3 850 1 1 0 0 1 0 0 0 0 0 16809.45 900 45947.08 
4 950 1 1 0 0 1 0 0 0 0 0 18597.67 0 64544.75 
5 1000 1 1 0 1 1 0 0 0 0 0 20020.02 560 85124.77 
6 1100 1 1 1 1 1 0 0 0 0 0 22387.04 1100 108611.81 
7 1150 1 1 1 1 1 0 0 0 0 0 23261.98 0 131873.79 
8 1200 1 1 1 1 1 0 0 0 0 0 24150.34 0 156024.13 
9 1300 1 1 1 1 1 1 1 0 0 0 27251.06 860 184135.19 
10 1400 1 1 1 1 1 1 1 1 0 0 30057.55 60 214252.74 
11 1450 1 1 1 1 1 1 1 1 1 0 31916.06 60 246228.80 
12 1500 1 1 1 1 1 1 1 1 1 1 33890.16 60 280178.96 
13 1400 1 1 1 1 1 1 1 1 0 0 30057.55 0 310236.51 
14 1300 1 1 1 1 1 1 1 0 0 0 27251.06 0 337487.57 
15 1200 1 1 1 1 1 0 0 0 0 0 24150.34 0 361637.91 
16 1050 1 1 1 1 1 0 0 0 0 0 21513.66 0 383151.57 
17 1000 1 1 1 1 1 0 0 0 0 0 20641.82 0 403793.39 
18 1100 1 1 1 1 1 0 0 0 0 0 22387.04 0 426180.44 
19 1200 1 1 1 1 1 0 0 0 0 0 24150.34 0 450330.78 
20 1400 1 1 1 1 1 1 1 1 0 0 30057.55 490 480878.33 
21 1300 1 1 1 1 1 1 1 0 0 0 27251.06 0 508129.38 
22 1100 1 1 0 0 1 1 1 0 0 0 22735.52 0 530864.90 
23 900 1 1 0 0 0 1 0 0 0 0 17645.36 0 548510.27 
24 800 1 1 0 0 0 0 0 0 0 0 15427.42 0 563937.69 
                                    dynamic search 



 

Table 6. CPU time  
 CPU time 
   No of units   

METHOD 10 20 40 60 80 100 
Proposed LR 10 14 25 39 64 80 

 
6. Conclusion 

      This paper presents a Lagrangian relaxation 
solution to the generation scheduling problem of 
thermal units. An initialization procedure intends 
to create a high quality feasible schedule in the 
first iteration is proposed, based on unit and time 
interval classification. The proposed LR is 
efficiently and effectively implemented to solve 
the UC problem. The proposed LR total 
production costs over the scheduled time horizon 
are less than conventional LR, GA, EP, LRGA, 
and GAUC especially for the larger number of 
generating units. Moreover, the proposed LR CPU 
times increase almost linearly with the system size 
as shown in Table 6, which is favorable for large-
scale implementation.  
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