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Abstract: This paper proposes a new Neural Network 

based MRAS speed observer for sensorless vector 

controlled induction motor drive. This neural network 

replaces reference model (voltage model) in conventional 

MRAS. In conventional MRAS, reference model equations 

depends on stator resistance that changes with 

temperature during running condition. This change in 

stator resistance is predominant in low and zero speed 

operation. In proposed MRAS, all drive non-linearities are 

included. Hence need for separate stator resistance 

estimator and integrator problem are eliminated in the 

proposed neural network based MRAS. Simulation work is 

done in various operating conditions using 

MATLAB/Simulink software. Better steady state and 

dynamic performances are achieved with proposed neural 

network based MRAS. 
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1. Introduction 

Sensorless vector control is the most popular control 

in induction motor Drives [1]-[6]. Drive cost, size, 

maintenance requirements are reduced with the help 

of sensorless control. Hence, in sensorless drives, 

robustness and reliability are increased. However it 

has some problems like parameter sensitivity, 

stability at low and zero speed and high 

computational effort [1],[2],[5],[10],[14].Various 

techniques like MRAS, luenberger observer, Kalman 

filter observer, sliding mode observer and artificial 

intelligence are proposed in various literatures for 

flux and speed estimation. Among these techniques, 

MRAS is the most popular strategy because of its 

less computational effort and simpler implementation 

[5], [10]. MRAS observers are of different types, 

they are rotor flux based, reactive power based and 

back emf based [5]. The rotor flux MRAS observer  

 

 

introduced by schauder is the widely used scheme 

[14]. Inverter non-linearity, pure integration problem 

and parameter sensitivity are the drawbacks of this 

scheme. These drawbacks affect the low speed 

operation of the drive [1], [14].  

At low speed region, the performance of the MRAS 

system can be improved by online stator resistance 

estimation. However, it increases the complexity of 

the drive system [1], [5]. Pure integrator can be 

replaced by LPF with low cut-off frequency but 

phase and gain errors are introduced. Hence dynamic 

performance of the drive may be affected [1]. In [1], 

8-25-2 neural network is used for rotor flux 

estimation. In [18], a programmable cascaded LPF is 

introduced to replace pure integration. Several neural 

network methods are discussed for flux estimation in 

research literatures[1],[5],[7],[9],[12],[13],[17]. 

 In [5], Artificial neural network is used in adjustable 

model of the QMRAS  to estimate speed. In [12], a 

two layer neural network is used to represent the 

adaptive model (CM) in which simple forward Euler 

integration method is used. Advancement of the 

previous work is done in [13], [17] in which total 

least square algorithm is used. In [19], predictive 

control using Dspace is discussed for permanent 

magnet synchronous generator. Backpropagation and 

Radial Basis Function (RBF) neural networks  are 

used in [20].  In this paper, a novel neural network 

based MRAS is used. A multilayer feed forward 

neural network is used to replace reference model in 

the conventional MRAS. Present and past samples of 

terminal voltage and current are used as input values 

to the neural network. Flux values from current 

model is used as target values. This method does not 

use LPF for flux estimation since, the neural network 

does not use pure integration. 

 



 

Fig.1. Block diagram of Sensorless Induction Motor Drive with MRAS 

 

In this paper, a sincere attempt is made to eliminate 

the need of separate stator resistance estimator and  

pure integrator. The proposed neural network flux 

estimator is trained with input /target data set 

including stator resistance Rs changes. Hence 

separate stator resistance Rs estimator is not needed. 

MATLAB /Simulink software is used for simulation 

work. Comparison between proposed neural network 

based MRAS and conventional rotor flux MRAS is 

carried out. In low and zero speed operating regions, 

superior performance is achieved with proposed 

neural network based MRAS. It dispenses the direct 

use of complex mathematical model of the system. 

Hence integrator problem is also eliminated. 

 

2. Conventional rotor flux MRAS 

 

 
 

Fig.2. Block diagram of Conventional MRAS 

 

Block diagram of indirect vector control for 

sensorless induction motor drive is shown in Fig.1, in 

which MRAS is used to estimate induction motor 

speed.  

MRAS is used to estimate induction motor speed. 

Conventional MRAS block diagram is shown in 

Fig.2.It consists of reference model, adaptive model 

and an adaptive mechanism. Voltage model 

equations represents reference model of the MRAS. 

Current model equations represents adaptive model 

of the MRAS. Adaptive model is dependent on rotor 

speed, whereas reference model is independent of 

rotor speed. Reference model equations are written as 

[2], [10] 

𝑝𝜓𝑟𝑑 =
𝐿𝑟

𝐿𝑚

{𝑣𝑠𝐷 − 𝑅𝑠𝑖𝑠𝐷 − 𝜎𝐿𝑠𝑝𝑖𝑠𝐷}                      (1) 

𝑝𝜓𝑟𝑞 =
𝐿𝑟

𝐿𝑚
{𝑣𝑠𝑄 − 𝑅𝑠𝑖𝑠𝑄 − 𝜎𝐿𝑠𝑝𝑖𝑠𝑄}                      (2) 

Adaptive model equations are represented as follows 

[2], [10] 

𝑝�̂�𝑟𝑑 =
𝐿𝑚

𝑇𝑟
𝑖𝑠𝐷 −

1

𝑇𝑟
�̂�𝑟𝑑 − �̂�𝑟�̂�𝑟𝑞                            (3) 

𝑝�̂�𝑟𝑞 =
𝐿𝑚

𝑇𝑟
𝑖𝑠𝑄 −

1

𝑇𝑟
�̂�𝑟𝑞 + �̂�𝑟�̂�𝑟𝑑                             (4) 

where 

𝑣𝑠𝐷,𝑣𝑠𝑄Stator voltage components in the stator 

frame. 

𝑖𝑠𝐷,𝑖𝑠𝑄Stator current components in the stator frame. 

𝜓𝑟𝑑, 𝜓𝑟𝑞Components of the rotor flux linkage vector 

𝑇𝑟 Rotor time constant. 

𝐿𝑚 Mutual inductance. 



𝐿𝑟 Self-inductance at the rotor side. 

𝐿𝑠 Self-inductance at the stator side. 

𝜎 Total leakage factor. 

�̂�𝑟 Estimated rotor speed. 

𝜔𝑟 Rotor speed. 

𝑅𝑠 Stator resistance. 

𝑅𝑟 Rotor resistance. 

𝑝 Differential operator. 

 

Popov’s hyper stability theory is used to design 

adaptation mechanism. 

An adaptation law is defined as [2] 

�̂�𝑟 = 𝜑2(𝜀) + ∫ 𝜑1(𝜀)𝑑𝜏
𝑡

0

(5) 

Popov’s integral inequality [2] is defined as 

∫ 𝜀𝑇
𝑡

0

𝑾𝑑𝑡 ≥ −𝛾0
2                                                         (6) 

Using Popov’s criteria for globally asymptotically 

stable system, the estimated speed can be written 

as[2] 

�̂�𝑟 = (𝑘𝑝 +
𝑘𝑖

𝑝
) ℰ𝜔                                                       (7) 

where 

ℰ𝜔 isSpeed tuning signal which is defined as 

ℰ𝜔 = 𝜓𝑟𝑞�̂�𝑟𝑑 − 𝜓𝑟𝑑�̂�𝑟𝑞                                             (8) 

when�̂�𝑟𝑑=𝜓𝑟𝑑 and �̂�𝑟𝑞=𝜓𝑟𝑞,the speed tuning signal 

will be zero i.e. in steady state.  

 

3. Proposed Neural Network based MRAS 

 

 
Fig. 3. Proposed NN based MRAS 

 

Fig 3 shows the block diagram of proposed NN 

based MRAS. Parameter sensitivity, inverter non-

linearity, pure integration problems are the problems 

associated with conventional rotor flux MRAS 

scheme. In order to overcome these problems, Neural 

Network is used to replace (voltage model) reference 

model. This method greatly improves the overall 

performance of the drive system. Basic unit of 

artificial Neural Network is neuron which consists of 

summer and activation function. 

 

 
Fig. 4. Inputs and outputs of NN based Flux Estimator 

 

 In this work,a multilayer feed forward NN is 

used. It consists of an input layer, hidden layer and 

output layer. Each layer consists of neurons. Fig. 

4.shows block diagram of NN based flux estimator 

with 8 inputs and 2 target values. In this work 8-20-2 

multilayer feed forward NN is used to estimate the 

rotor flux. The present and past samples of d-q 

components of stator voltages {𝑣𝑠𝐷(𝑘), 𝑣𝑠𝐷(𝑘 −
1), 𝑣𝑠𝑄(𝑘), 𝑣𝑠𝑄(𝑘 − 1)}and stator currents 

{𝑖𝑠𝐷(𝑘), 𝑖𝑠𝐷(𝑘 − 1), 𝑖𝑠𝑄(𝑘), 𝑖𝑠𝑄(𝑘 − 1)} are used as 

input to the NN. Direct and quadrature axis rotor 

fluxes {𝜓𝑟𝑑(𝑘),  𝜓𝑟𝑞(𝑘)} are used as target values. 

Around 7500 input/output data set for various 

operating conditions is used for training the NN. 

Stator resistance variations are included in the 

training data set. Hence separate stator resistance 

estimator is not needed. Tansigmoid activation 

function is used for hidden layer. Purelin is used for 

output layer. The number of hidden layer neuron is 

selected by trial and error method. Hence duration 

for training the data is increased. This is the major 

drawback of NN design. Levenberg-Marquardt (LM) 

training algorithm is used. After training, mean 

square error (MSE) between target and NN output 

reaches to 1.203x10-3. This offline trained NN is used 

to replace Voltage Model of conventional MRAS. 

 

4. Simulation Results and Discussion 

 

The induction motor drive is tested under low and at 

or around zero speed operating regions. The motor 

rating and its parameters values are listed in the 

Table II. Computer simulation is carried out using 

MATLAB/Simulink Software. Some of the 

simulation results of the tests are discussed below. 



 
Fig.5. Performances of Conventional MRAS under Test 1 (a) Rotor speed (b) Rotor flux 

 

 
Fig.6. Performances of NN based MRAS for under Test 1 (a) Rotor speed (b) Rotor flux 

 

 
Fig.7. Performances of conventional MRAS under Test 2 (a) Rotor speed (b) Rotor flux 

 

 
Fig.8. Performances of NN based MRAS under Test 2 (a) Rotor speed (b) Rotor flux 



 
Fig.9. Performances of conventional MRAS under Test 3 (a) Rotor speed (b) Rotor flux 

 
Fig.10. Performances of NN based MRAS under Test 3 (a) Rotor speed (b) Rotor flux 

 
Fig.11. Performances of conventional MRAS under Test 4 (a) Rotor speed (b) Rotor flux 

 

 
 

Fig.12. Performances of NN based MRAS under Test 4 (a) Rotor speed (b) Rotor flux 

 



 
Fig.13. Performances of conventional MRAS under Test 5 (a) Rotor speed (b) Rotor flux 

 

 
Fig.14. Performances of NN based MRAS under Test 5 (a) Rotor speed (b) Rotor flux 

4.1. Test1-Staircase speed Transients from +150 

rpm to 0 to -150 rpm at No load: 

In this test, the induction motor is subjected to 

staircase speed command from +150 rpm to 0 rpm 

and then continuing to -150 rpm at no load. The 

performances of both conventional MRAS and 

proposed NN-MRAS are shown in Fig.5 and 6. In 

NN-MRAS, the estimated speed closely tracks the 

actual speed with negligible error. Stable operation is 

ensured with proposed estimator. Fig. 5(a) and 5(b) 

shows rotor speed and rotor flux for the conventional 

MRAS speed estimator. Fig. 6(a) and 6(b) shows 

rotor speed and rotor flux for the proposed NN based 

MRAS speed estimator. 

 

4.2. Test2-Load torque change from 0 to 20 Nm at 

100 rpm: 

This test is used to test the load disturbance 

capability of the induction motor drive. Load torque 

20 Nmis applied at 1 sec. The proposed NN based 

MRAS estimator shows better dynamic performance 

than the conventional one. At 1 sec, the estimated 

speed undershoots like the actual speed. Fig. 7 and 8 

shows the performances of both conventional and 

proposed estimator.Fig. 8(a) and 8(b) shows rotor 

speed and rotor flux for the proposed NN based 

MRAS speed estimator. 

4.3.Test3-Load torque change from 20 Nm to 10 

Nm at 100 rpm: 

This test also proves the load disturbance capability 

of the drive. Initially load torque of 20 Nm is applied 

and it is reduced to 10 Nm at 1sec. Fig. 9 and 10 

shows the performance of the drive under test 3. At 1 

sec, the estimated speed overshoots like actual speed. 

Minimum tracking error is observed in NN-MRAS 

scheme. 

4.4. Test4-±20 rpm at 2Nm load torque: 

The performance for very low speed reversal under 

load condition is examined in this test. ±20 rpm 

speed command is given when working under 2Nm 

load.Fig.11. shows the performance of the 

conventional method.Fig.12. shows that the proposed 

estimator has better performance with minimum 

steady state error. 

4.5. Test5-Speed step down from 75 rpm to 0 rpm 

in four steps each of 25 rpm at 2 Nm load torque: 

Performance under low and zero speed with load is 

examined in this test. Fig.13. shows the performance 

of the conventional MRAS. Fig.14. shows that the 

NN-MRAS provides negligible steady state error and 

better performance. Stable operation is achieved with 

proposed estimator. Summary of the test results are 

given in Table I. 



 

TABLE I 

 PERFORMANCE COMPARISON BETWEEN CONVENTIONAL AND PROPOSED NN BASED SPEED 

ESTIMATOR

 

 Test 1 Test 2 Test 3 Test 4 Test 5 

 

Conventional 

MRAS 

Overshoot=10rpm At t=1 sec 

overshoot=36 rpm 

undershoot=100 rpm 

At t=1 sec 

overshoot=55 rpm 

undershoot=15 

rpm 

Overshoot=15 

rpm 

Overshoot=10 rpm 

NNbased 

MRAS 

Stable operation At t=1 sec 

undershoot=30 rpm 

At t=1 sec 

overshoot=15 rpm 

Stable 

operation 

Stable operation 

 

 
TABLE II 

INDUCTION MACHINE RATING AND 

PARAMETERS 

Symbol Parameter Values 

- 

- 

- 

P 

f 

Lls 

Llr 

Lm 

Rs 

Rr 

J 

Rated shaft power 

Line to line voltage 

Rated speed 

Pole pair 

Frequency 

Stator Leakage inductance 

Rotor Leakage inductance 

Mutual inductance 

Stator resistance 

Rotor resistance 

Machine inertia 

4 kW 

400V 

1430 rpm 

2 

50 Hz 

0.005839 H 

0.005839 H 

0.1772 H 

1.405 ohm 

1.395 ohm 

0.0131 kg m2 

 

5. Conclusion  

Thus, the proposed Neural Network based MRAS 

eliminates integrator problems which occurs in 

conventional rotor flux MRAS. It performs well in 

low speeds including zero speed. It eliminates the 

need for separate stator resistance Estimator. It is less 

rigorous when compared to the integral equation, 

which are present in the reference model of the 

conventional MRAS. It is evident from the 

simulation results that the proposed neural network 

based MRAS performs well in low speed and zero 

speed operating regions than the conventional 

estimator. Hence this proposed controller is used to 

improve the performance of the drive in low speeds 

without separate stator resistance estimator and  pure 

integrator.  
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