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Abstract: This paper presents a new approach to solve the 
multi area unit commitment problem (MAUCP) using an 
evolutionary programming-based tabu search (EPTS) 
method. The objective of this paper is to determine the 
optimal or a near optimal commitment schedule for 
generating units located in multiple areas that are 
interconnected via tie- lines. The evolutionary 
programming-based tabu search method is used to solve 
multi area unit commitment problem, allocated generation 
for each area and find the operating cost of generation for 
each hour. Joint operation of generation resources can 
result in significant operational cost savings. Power 
transfer between the areas through the tie- lines depends 
upon the operating cost of generation at each hour and tie- 
line transfer limits. The tie -line transfer limits were 
considered as a set of constraints during optimization 
process to ensure the system security and reliability. The 
overall algorithm can be implemented on an IBM PC, which 
can process a fairly large system in a reasonable period of 
time. Case study of four areas with different load pattern 
each containing 26 units connected via tie- lines has been 
taken for analysis. Numerical results showed comparing the 
operating cost using evolutionary programming-based  tabu 
search method with conventional dynamic programming 
(DP), evolutionary programming (EP), Partical Swarm 
Optimization (PSO), Simulated Annealing (SA), 
Evolutionary Programming based Partical Swarm 
Optimization (EPPSO), Evolutionary Programming based 
Simulated Annealing (EPSA)) method. Experimental results 
shows that the application of this evolutionary 
programming-based tabu search method have the potential 
to solve multi area unit commitment problem with lesser 

computation time. 
 
Key words: Dynamic Programming (DP), Evolutionary 
Programming (EP), Evolutionary Programming-based tabu 
search (EPTS), Multi Area Unit Commitment Problem 

(MAUCP), Tabu Search (TS).  
 
1. Introduction 
 In multi area, several generation areas are 
interconnected by tie lines, the objective is to achieve 
the most economic generation to meet out the local 
demand without violating tie-line capacity limits 
constraints [1]. The main goal of this paper is to 
develop a multi area generation scheduling scheme that 
can provide proper unit commitment in each area and 
effectively preserve the tie line constraints. In an 

interconnected multi area system, joint operation of 
generation resources can result in significant 
operational cost savings [2]. It is possible by 
transmitting power from a utility, which had cheaper 
sources of generation to another utility having costlier 
generation sources. The total reduction in system cost 
shared by the participating utilities [3]. The exchange 
of energy between two utilities having significant 
difference in their marginal operating costs. The utility 
with the higher operating cost receives power from the 
utility with low operating cost. This arrangement 
usually on an hour to hour basis and is conducted by 

the two system operators. 
 In the competitive environment, customer request 
for high service reliability and lower electricity prices. 
Thus, it is an important to maximize own profit with 
high reliability and minimize overall operating cost [4]. 
    Multi Area unit commitment was studied by 
dynamic programming and was optimized with local 
demands with a simple priority list scheme on a 
personal computer with a reasonable execution time 
[5]. Even though the simplicity and execution speed are 
well suited for the iterative process, the commitment 
schedule may be far from the optimal, especially when 
massive unit on/off transitions are encountered. The 
tie-line constraint checking also ignores the network 
topology, resulting in failure to provide a feasible 
generation schedule solution [5]. The transportation 
model could not be used effectively in tie line 
constraints, as the quadratic fuel cost function and 
exponential form of start up cost were used in this 
study. 

 An Evolutionary algorithm is used for obtaining the 
initial solution which is fast and reliable [6]. 
Evolutionary Programming (EP) is capable of 
determining the global or near global solution [7]. It is 
based on the basic genetic operation of human 
chromosomes. It operates with the stochastic 
mechanics, which combine offspring creation based on 
the performance of current trial solutions and 
competition and selection based on the successive 
generations, from a considerably robust scheme for 
large scale real valued combinational optimization. In 
this work, the parents are obtained from a predefined 
set of solution (i.e., each and every solution is adjusted 
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to meet the requirements). In addition, the selection 
process is done using evolutionary strategy [8]-[10].     
    Tabu Search (TS) is a powerful optimization 
procedure that has been successfully applied to a 
number of combinational optimization problems [11]-
[15]. It has the ability to avoid entrapment in local 
minima by employing a flexible memory system. 
Specific attention is given to the short term memory 
component of TS, which has provided solutions 
superior to the best obtained with other methods for a 
variety of problems. 

From the literature review, it has been observed that 
there exists a need for evolving simple and effective 
methods, for obtaining an optimal solution for the 
MAUCP. Hence, in this paper, an attempt has been 
made to couple EP with TS for meeting these 
requirements of the MAUCP, which eliminates the 
above mentioned drawbacks. In case of TS, the 
demand is taken as control parameter. Hence, the 
quality of solution is improved. The algorithm is based 
on the annealing neural network. Classical optimization 
methods are a direct means for solving this problem. 
EP seems to be promising and is still evolving. EP has 
the great advantage of good convergent property, and, 
hence, the computation time is considerably reduced. 
The EP combines good solution quality for TS with 
rapid convergence for EP. The EP-based TS (EPTS) is 
used to find the multi area unit commitment. By doing 
so, it can help to find the optimum solution rapidly and 
efficiently [7]. 

 EP is capable of determining the global or near 
global solution. It is based on the basic genetic 
operation of human chromosomes. It operates with the 
stochastic mechanics, which combine offspring 
creation based on the performance of current trial 
solutions and competition and selection based on the 
successive generations, from a considerably robust 
scheme for large-scale real-valued combinational 
optimization. In this proposed work, the parents are 
obtained from a predefined set of solution’s (i.e., each 
and every solution is adjusted to meet the 
requirements). In addition, the selection process is done 
using evolutionary strategy [8]-[10]. The application on 
this 26 unit shows that we can find the optimal solution 
effectively and these results are compared with the 
conventional methods. 

 
2. Problem Formulation 

The cost curve of each thermal unit is in quadratic 

form [3] 

   Rs/hr  (1) 

 k = 1 … NA          

The incremental production cost is therefore 
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The start up cost of each thermal unit is an exponential 

function of the time that the unit has been off                 
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 The objective function for the profit based multi-area 

unit commitment is to minimize the entire power pool 

generation cost as follows [1]. 
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To decompose the problem in above Eq.  (5), it is 

rewritten as 
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Subject to the constraints of Eqs. (9), (11) and (14–

18). Each  
,i j

k k

gF P   for K=1 ……NA is represented 

in the form of schedule table, which is the solution of 

mixed variable optimization problem  
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Subject to following constraints are met for optimization.  
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Redefining the UC problem for the competitive 

environment involves changing the demand and 

reserve constrains from an equality to less than or equal 

to the forecasted level if it creates more profit. Here 

forecasted demand reserve and prices are important 

inputs to profit based UC Algorithm; they are used to 

determine the expected revenue, which affects the 

expected profit. 

1) System power balance constraint 
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Sum of real power generated by each thermal unit must 

be sufficient enough to meet the sum of total demand 

of each area while neglecting transmission losses.  

2) Spinning reserve constraint in each area 
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3)  Generation limits of each unit 
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  i=1…..Nk,  j=1….t,  k=1…NA 

4) Thermal units generally have minimum up time 

Ton and down time T
off   constraints, therefore 
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5)  In each area, power generation limits caused by tie-

line constraints are as follows 
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  6) Area generation limits  
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The objective is to select λsys at every hour to 

minimize the operation cost. 

                
k

j

k

j

k

j

k

g LEDP
j

              (19) 

 where 



k

jij

N

i

k

g

k

g PP
1

,

                               (20) 

 Since the local demand Dj
k is determined in 

accordance with the economic dispatch within the pool, 

changes of P
k

g j
 will cause the spinning reserve 

constraints of Eq. (10) to change accordingly and 

redefine Eq. (8). Units may operate in one of the 

following modes when commitment schedule and unit 

generation limits are encountered. 

a)  Coordinate mode : The output of unit i is 

determined by the system incremental cost  

              isysi max,min,  
 

    (21)  

  b)   Minimum mode : Unit i generation is at its 

 minimum level 

           
sysi  min,

    (22) 

c) Maximum mode : unit i generation is at its 

maximum level 

                 sysi  max,    (23) 

d) Shut down mode : unit i is not in operation,    

                 Pi = 0 

Besides limitations on individual unit generations, in a 

multi- area system, the tie-line constraints in Eqs. (12), 

(13) and (15) are to be preserved. The operation of 

each area could be generalized into one of the modes as 

follows. 

      (i) Area coordinate mode 
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       (ii) Limited export mode 

When the generating cost in one area is lower than the 

cost in the remaining areas of the system, that area may 

generate its upper limits according to Eq. (14) or (17) 

therefore 

               
sys
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For area k, area λk is the optimal equal incremental cost 

which satisfies the generation requirement. 

       (iii) Limited import mode  

An area may reach its lower generation limit 

according to Eq. (15) or (18) in this case because of 

higher generation cost  

              sys

k  min
          (27) 

 

3.Tie Line Constraints  

To illustrate the tie-line flow in a multi-area system, the 

four area system given in Fig.1 is studied. An 

economically efficient area may generate more power 

than the local demand, and the excessive power will be 

exported to other areas through the tie lines [1]. For 

example assume area 1 has the excessive power the tie 

line flows would have directions from area1 to other 

areas, and the maximum power generation for area1 

would be the local demand in area1 plus the sum of all 

the tieline capacities connected to area1. If we fix the 

area 1 generation to its maximum level than the 

maximum power generation in area 2 could be 

calculated in a similar way to area 1. Since tie line C12 

imports power at its maximum capacity, this amount 

should be subtracted from the generation limit of area 

2. According to power balance equation (9) some areas 

must have a power generation deficiency and requires 

generation imports. The minimum generation limits in 

these areas is the local demand minus all the connected 

tie-line capacities. If any of these tie-lines is connected 

to an area with higher deficiencies, then the power flow 
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Fig. 1. Multi-area connection and tie-line limitations 

 

4. Tabu Search  

4.1. Overview 

In solving the MAUCP, two types of variables to be 

determined. The unit’s status variables U and V, which 

are integer variables and the units, Output power 

variables P that are continuous variables. The problem 

can then be decomposed into two sub problems, a 

combinational problem in U and V and a nonlinear 

optimization problem in P. TS is used to solve the 

combinational optimization, and the nonlinear 

optimization is solved via a quadratic programming 

routine [17]. The proposed algorithm contains three 

major steps:   

First, generating randomly feasible trial solutions; 

Second, calculating the objective function of the given 

solution by solving the Economic Load Dispatch 

(ELD); Third, applying the TS procedures to accept or 

reject the solution in hand. 

4.2. TS General Algorithm 

The flowchart for TS general algorithm is shown in 

Fig. 2. 

Step 1: Assume that the fuel costs to be fixed for each 

hour and all of the generators share the loads equally. 

Step 2: By optimum allocation, find the initial feasible 

solution (Ui , Vi).  

Step 3: Demand is taken as the control parameter. 

Step 4: Generate the trial solution.  

Step 5: Calculate the total operating cost Ft as the 

summation of running cost, start up and shut down 

cost. Step 6: Tabulate the fuel cost for each unit for 

every hour. 

4.3. Generating Trial Solution  

The neighbours should be randomly generated, 

feasible, and span as much as possible the problem 

solution space. Because of the constraints in MAUCP, 

this is not a simple matter. The most difficult 

constraints to satisfy are the minimum up/down times. 

The implementation of new rules to obtain randomly 

feasible solutions faster is done by the rules are 

described in [17]. 

 4.4. Generating an Initial Solution  

The TS algorithm requires a starting feasible schedule, 

which satisfies all of the system and units constraints. 

This schedule is randomly generated. The algorithm 

given in [17] is used to find this starting solution. 

 4.5. Operating Cost Calculation 

 Once a trial solution is obtained, the corresponding 

total operating cost is determined. Since the production 

cost is quadratic function, the Economic Load Dispatch 

(ELD) is solved using a quadratic programming 

routine. The start up cost is then calculated for the 

given schedule. 

4.6. Stopping Criteria  

There may be several stopping criteria for the search. 

For this implementation, the search is stopped if the 

following conditions are satisfied.   

  The load balance constraints are satisfied. 

  The spinning reserve constraints are satisfied 

  The tie line constraints are satisfied 

4.7. Tabu List (TL)  

Tabu List (TL) is controlled by the trial solutions in the 

order in which they are made. Each time a new element 

is added to the “bottom” of a list, the oldest element on 

the list is dropped from the “top”. Empirically, TL 

sizes, which provide good results, often grow with the 

size of the problem and stronger restrictions are 

generally coupled with smaller sizes [17]. Best sizes of 

TL lie in an intermediate range between these 

extremes. In some applications, a simple choice of TL 

size in a range centered on seven seems to be quite 

effective. 

Find initial feasible solution

Take Demand as control parameter

Check for 
Aspiration level

Check for Best 
Move

Replace the current solution

Set Hour = 1

Check for   
Stopping Criteria

Generate the Optimal Solution

Calculate the Total Operating Cost

Stop

Decrement System 
Peak Demand

Update the best 
Solution

Increment Hour 
by one

Yes

No

Yes

No

Start

 
Fig. 2. Flowchart for TS general algrithm 



 

4.8. Aspiration Criteria 

 Another important criteria of TS arises when the move 

under consideration has been found to be tabu. 

Associated with each entry in the tabu list there is a 

certain value for the evaluation function called 

“aspiration level”. Normally, the aspiration level 

criteria are designed to override tabu status if a move is 

“good enough”[17]. 

 

5. Evolutionary Programming 

5.1. Introduction  

EP is a mutation-based evolutionary algorithm applied 

to discrete search spaces. D. Fogel (Fogel, 1988) [6][7] 

extended the initial work of his father L. Fogel (Fogel, 

1962) [6][7] for applications involving real-parameter 

optimization problems. Real-parameter EP is similar in 

principle to evolution strategy (ES), in that normally 

distributed mutations are performed in both algorithms. 

Both algorithms encode mutation strength (or variance 

of the normal distribution) for each decision variable 

and a self-adapting rule is used to update the mutation 

strengths. Several variants of EP have been suggested 

(Fogel, 1992). 

5.2. Evolutionary Strategies 

For the case of evolutionary strategies, Fogel remarks 

“evolution the chromosome, the individual, the species, 

and the ecosystem” [6][7] can be categorized by several 

levels of hierarchy: the gene, the chromosome, the 

individual, the species, and the ecosystem” [6][7]. 

Thus, while genetic algorithms stress models of genetic 

operators, ES emphasize mutational transformation that 

maintains behavioural linkage between each parent and 

its offspring at the level of the individual. ES are a joint 

development of Bienert Rechenberg and schwetel. The 

first applications were experimental and addressed 

some optimization problems in hydrodynamics.  

5.3. EP General Algorithm  

Evolutionary programming is conducted as a sequence 

of operations and is given below. The flowchart for EP 

general algorithm [7] is shown in Fig. 3. 

1.  The initial population is determined by setting  

si=Si~ U(ak,bk) k i =1,…,m, where Si is a random 

vector, si is the outcome of the random vector, 

U(ak,bk)k denotes a uniform distribution ranging 

over [ak,bk] in each of k dimensions, and m is the 

number of parents. 

2. Each si R and denotes(si)=G(F(si),vi), where F 

maps si , i=1,…,m, is assigned a fitness score  the 

true fitness of si , vi , represents random alteration in 

the instantiation of si , random variation imposed on 

the evaluation of F(si), or satisfies another relation si 

,and G(F(si), vi) describes the fitness score to be 

assigned. In general, the functions F and G can be 

as complex as required. For example, F may be a 

function not only of a particular si, but also of other 

members of the population, conditioned on a 

particular si. 

 
start

Initialize Population

Randomly vary individuals

Evaluate Fitness

Apply Selection

Stop  
Fig.3. Flowchart of an Evolutionary Algorithm 

3. Each si, i=1,…,m, is altered and assigned to si +m 

such that  

Si+ m= si,j+N (0,βj (si)+zj), j=1,…,k 

N(0,βj(si)+zj) represents a Gaussian random 

variable with mean µ and variance σ2, βj is a 

constant of proportionality to scale  (si), and 

zjamount of variance,  

4. Each si+ m, i=1,…,m, is assigned a fitness score 

(si+m) = G(F(si+m),vi+m)  

5. For each si ,i=1,…,2m, a value wi is assigned 

according to c  wtwi =  * t = 1 (sρ);(si)≤1, if  wt 

* = 0, otherwise; Where ρ=[2mu1+1],ρ≠ i,[x] 

denotes the greatest integer less than or equal to x, c 

is the number of competitions, and u1~U(0,1).  

6. The solutions si , I = 1…2m, are ranked in 

descending order of their corresponding value Wi 

(si) if there are more than m solutions attaining a 

value[with preference to their actual scores  (si) to 

be theof c]. The first m solutions are transcribed 

along with their corresponding values  basis of the 

next generation. 

7. The process proceeds to step 3, unless the available 

execution time is exhausted or an acceptable 

solution has been discovered. 

 

6. EVOLUTIONARY PROGRAMMING-BASED   

           TABU SEARCH FOR MAUCP  

6.1. Tabu Search 

1. Take the parent as the initial feasible solution. 

2. Take demand as control parameter and generate the  

     trial solution.  

3. Check for the stopping criterion.  

4. If false, decrement system peak demand, and go to    

    step 2. 



 

 

5. If true, generate the optimal solution, and calculate   

    the total operating cost.  

6.2. EP- Based TS  

In the EPTS technique for solving MAUCP, initial 

operating schedule status in terms of maximum real 

power generation of each unit is given as input. As we 

that TS is used to improve any given status by avoiding 

entrapment in local minima, the offspring obtained 

from the EP algorithm is given as input to TS, and the 

refined status is obtained. In addition, evolutionary 

strategy selects the final status.  

1. Get the unit data, tie-line data, load demand profile   

    for n areas and number of iterations to be carried       

    out. 

2. Generate population of parents (N) by adjusting the  

     existing solution to the given demand to the form of 

     state variables.  

3. Unit down time makes a random recommitment.  

4. Check for constraint in the new schedule by TS. If    

     the constraints are not met, then repair the schedule 

     as 6.3.  

5.Perform ELD and calculate total                           

production cost for each parent.  

6. Add the Gaussian random variable to each state 

variable and, hence, creation of offspring. This will 

further undergo some repair operations as given in 

section 6.4. Following these, the new schedules are 

checked in order to verify that all constraints are 

met. 

7. Improve the status of the evolved offspring, and    

verify the constraints by TS.  

8. Formulate the rank for the entire population.  

9. Select the best N number of population for next 

iteration.  

10. Has the iteration count been reached? If yes, go to 

step 11, else go to step 2.  

11. Select the best population by evolutionary strategy. 

12. Check for n areas are completed. If yes go to 

step 13, else go to step 1.  

13.Export power from lower operating cost areas to 

higher operating cost areas by following tie-line 

constraints.  

14.Print the commitment schedule of n areas and tie-

line flows.  

6.3. Repair mechanism  

A repair mechanism to restore the feasibility of the 

constraints is applied and described as follows [13]  

  Pick at random one of the OFF units at one of the 

violated hours. 

  Apply the rules in section IV.3 to switch the selected 

units from OFF to ON keeping the feasibility of the 

down time constraints.   

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig.3 Flowchart for EP-TS algorithm for MAUCP 
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 Check for the reserve constraints at this hour. 

Otherwise repeat the process at the same hour for 

another unit. 

6.4. Making Offspring Feasible 

While solving the constrained optimization problem, 

there are various techniques to repair an infeasible 

solution [8] [11]. In this paper, we have chosen the 

technique, which evolves only the feasible solutions. 

That is, the schedule which satisfies the set of 

constraints as mentioned earlier. Here, in this paper, the 

selection routine is involved as “curling force” to 

estimate the feasible schedules. Before the best solution 

is selected by evolutionary strategy, the trial is made to 

correct the unwanted mutations.  

6.5. Implementation 

Software program were developed using MATLAB 

software package, and the test problem was simulated 

for ten independent trials using EPTS. The training and 

identification part as implemented in the EPTS 

technique is employed here and considered as a process 

involving random recommitment, constraint 

verification, and offspring creation  

 

7. Numerical Results 

There are two test systems considered for case studies. 

The first test system consists of four areas, and each 

area has 26 thermal generating units [1] and second test 

system consists of four areas, and each area has 7 unit 

NTPC system. Units have quadratic cost functions, and 

exponential start up cost functions. Generating unit 

characteristics like the minimum up/down times, initial 

conditions and generation limits of units in every area, 

The cost functions of units given in the four area [1] 

are taken for analysis. Load demand profile for each 

area is different and is given in Fig. 4. The tie line flow 

pattern at 11 am and 4 pm are shown in Fig. 5 and Fig. 

6 respectively. The total operating cost in pu 

comparison between DP, EP, TS and EPTS method is 

shown in Table 3. Comparison of total operating cost 

in each area by DP, EP, TS and EPTS method is shown 

in Fig. 3. The comparison of total operating cost in 

each area of 7 unit and 26 unit systems are shown in 

Fig. 7 and Fig. 8 respectively.  The proposed algorithm 

quickly reaches smallest total operating cost compared 

to DP, EP, TS and EPTS method, which indicates that 

the proposed algorithm could determine the appropriate 

schedule within a reasonable computation time. It is 

noted that cost in one iteration may be lower than that 

of the previous iteration, indicating that our 

optimization rules always comply with the equal 

incremental cost criterion for dispatching power 

generation among thermal units. 

 

 
 

Fig. 4. Load demand profile of area1, area 2, area 3 and 

area 4 

 

Table 1. Hourly operating cost of each area of EP-TS 

method for 7 unit (NTPS) 
 

 
 

 

 

 

 

HOUR 

Total operating cost (Rs) 

Area 1 

(7 unit) 

Area 2 

(7 unit) 

Area 3 

(7 unit) 

Area 4 

(7 unit) 

1 20400.700 26527.941 23542.672 25695.026 

2 19667.972 26570.953 23159.928 24828.362 

3 19839.029 26463.033 22785.838 24780.120 

4 19818.114 26395.781 20138.432 24052.184 

5 19786.989 26593.695 20393.241 24567.751 

6 19870.654 25296.935 20556.315 24922.850 

7 19667.972 25464.125 20480.583 24922.850 

8 19870.654 25125.554 20665.329 24539.458 

9 19786.989 25535.964 20699.536 24609.341 

10 19725.642 25772.541 20658.661 24568.515 

11 18889.525 25737.376 20666.536 24207.573 

12 18871.296 25648.140 20086.395 23945.222 

13 18229.986 25492.775 20918.131 24671.288 

14 18178.411 25609.125 20280.313 24016.337 

15 18160.185 25701.082 21339.897 25015.983 

16 17716.198 25572.693 20158.200 24459.126 

17 17550.439 25102.953 20684.690 23884.841 

18 17476.034 24709.484 21158.299 19042.802 

19 17716.198 24534.000 21285.858 24703.397 

20 17684.775 25048.966 19660.481 23839.987 

21 17653.652 25712.484 21424.913 18306.983 

22 17439.230 25855.839 21669.122 18524.511 

23 18469.675 25364.656 21671.936 18524.511 

24 20400.700 25837.039 21609.092 18475.733 



 

 

Table 2. Hourly operating cost of each area of EP-TS 

method for 26 unit system 

 

HOUR 

Total operating cost (Rs) 

Area 1 

(26 unit) 

Area 2 

(26 unit) 

Area 3 

(26 unit) 

Area 4 

(26 unit) 

    
1 34247.613 21635.745 26285.365 20722.510 

2 24006.096 20746.916 21075.829 18412.843 

3 26693.395 22630.573 20256.472 18373.831 

4 29101.602 17646.246 24341.288 16859.248 

5 27973.368 17341.275 24355.627 17574.961 

6 35366.781 17323.293 22161.775 16631.335 

7 38686.666 27931.271 19264.885 22580.007 

8 37891.762 35938.554 18762.354 20023.085 

9 37636.501 33568.917 16431.516 19584.831 

10 35827.363 30725.834 20775.295 22449.433 

11 36131.495 30835.613 19168.434 21846.322 

12 37100.969 30615.283 19695.336 20613.366 

13 31819.468 33760.847 17151.481 25705.299 

14 30938.762 35780.701 15730.981 16158.451 

15 30096.612 32771.328 16315.102 23289.113 

16 35360.011 31686.516 21214.754 24835.924 

17 35896.723 31373.451 22258.292 24597.207 

18 34891.373 37529.304 25760.836 18735.462 

19 33818.913 39090.112 22311.038 21605.752 

20 34631.164 32072.805 20159.759 14747.794 

21 38468.814 28822.272 18263.422 19611.414 

22 29994.683 14821.752 18381.847 19689.300 

23 30794.876 18399.776 18381.847 21607.333 

24 28915.552 14635.707 14169.827 14597.297 
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 Fig. 5. Tie line flow pattern at 11 am of EP-TS method 

for 26 unit system 
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Fig. 6. Tie line flow pattern at 4 pm of EP-TS method for 

26 Unit system 

 
 

Table .3. Comparison of cost for 7 Unit (NTPS) and 26 

Unit systems 

 

 

Fig. 7. Comparison of  total operating cost in each area of 

7 unit  (NTPS) system 

System Method 
Total Operating Cost (pu) 

Area 1 Area 2 Area 3 Area 4 

7  unit 

(NTPS) 

DP[7] 1.00000 1.00000 1.00000 1.00000 

EP[7] 0.96623 0.98033 0.96142 0.96611 

PSO[7] 0.95478 0.97987 0.95989 0.95879 

SA[7] 0.95129 0.97095 0.94878 0.94911 

EPPSO[7] 0.94680 0.96320 0.94025 0.94201 

EPSA[7] 0.92657 0.93479 0.92599 0.92635 

EPTS 0.91247 0.92875 0.91959 0.91754 

26 unit 

DP[7] 1.00000 1.00000 1.00000 1.00000 

EP[7] 0.98876     0.99543 0.97675 0.98541 

PSO[7] 0.97211 0.97456 0.96467 0.97599 

SA[7] 0.96789 0.96845 0.96218 0.96946 

EPPSO[7] 0.96489 0.95323 0.95780 0.96154 

EPSA[7] 0.93568 0.94721 0.92587 0.93217 

EPTS 0.92571 0.93628 0.91579 0.92384 



 

 
 

Fig. 8. Comparison of total operating cost in each area of  

      26 unit system 

8. Conclusions  

This paper presents EPTS method for solving multi area unit 

commitment problem with import and export constraints. In 

comparison with the results produced by the technique DP, 

EP,  PSO, SA, EPPSO and EPSA method obviously 

proposed method displays satisfactory performance. Test 

results have demonstrated that the proposed method of 

solving multi area unit commitment problem with import 

and export constraints reduces the total operating cost of the 

plant. An effective tie line constraint checking procedure is 

implemented in this paper. This method provides more 

accurate solution for multi area unit commitment problem 

with import and export constraints. 
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