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Abstract: The study presented in this paper deals with an 

optimization control station keeping box manoeuvers for 

geostationary satellites equipped with electric propulsion. 

The station keeping box (SKBOX) represented the 

maximum permitted values of the excursion of the satellite 

in longitude and latitude. It can be represented as a 

pyramidal solid angle, whose vertex is at the centre of the 

earth, within which the satellite must remain at all times. 

In this work, the station keeping box is defined by the two 

half angles at the vertex, one within the plan of the 

equator (E-W width), and the other in the plan of the 

satellite meridian (N-S width). 

A number of different techniques are available for the 

numerical solution of the station keeping box problem. In 

this work we will consider the direct method for solution 

of continuous optimal control problem. Simulation results 

have demonstrated that the spacecraft can be tightly 

controlled within station keeping box.  

Keywords: geostationary satellites, SKBOX, box-limit, 

electric propulsion, specific impulse, quadratic 

programming. 

 

1. Introduction 

An astrodynamics orbital station-keeping is the 

orbital maneuvers made by thruster burns that are 

needed to keep a spacecraft in a particular assigned 

orbit. 

For many Earth satellites the effects of the non-

Keplerian forces, i.e. the deviations of the 

gravitational force of the Earth from that of a 

homogeneous sphere, gravitational forces from 

Sun/Moon, solar radiation pressure and air-drag 

must be counteracted. 

The deviation of Earth's gravity field from that of a 

homogeneous sphere and gravitational forces from 

Sun/Moon will in general perturb the orbital plane 

[1]. For geostationary spacecraft the inclination 

change caused by the gravitational forces of 

Sun/Moon must be counteracted to a rather large 

expense of fuel, as the inclination should be kept 

sufficiently small for the spacecraft to be tracked by 

a non-steerable antenna [1,2]. 
 

 

 
 

Solar radiation pressure will in general perturb the 

eccentricity (i.e. the eccentricity vector) [3]. For 

some missions this must be actively counter-acted 

with manoeuvers, for geostationary spacecraft the 

eccentricity must be kept sufficiently small for a 

spacecraft to be tracked with a non-steerable 

antenna. Also for Earth observation spacecraft for 

which a very repetitive orbit with a fixed ground 

track is desirable, the eccentricity vector should be 

kept as fixed as possible. A large part of this 

compensation can be done by using a frozen orbit 

design, but for the fine control manoeuvres with 

thrusters are needed [4]. 

 Electric propulsion engines are more efficient then 

chemical ones: they require significantly less 

propellant to produce the same overall effect, for 

example a specific increase in spacecraft velocity. 

The propellant is ejected up to 20 times faster than 

from chemically-based thrusters, and, thus the same 

propelling force is obtained with a log less 

propellant,  the forces EP produces can be applied 

continuously for very long periods-months or even 

years. 

To maintain the satellite within box, orbit 

corrections are achieved by applying velocity 

impulses to the satellite at a point in the orbit. These 

impulses are generated by activating the thrusters 

that are mounted on the satellite as part of the 

propulsion subsystem.  

The tool developed in the frame of this paper is 

based on numerical optimization techniques and uses 

a thrusters-based model of the satellite to take 

directly into account the activity of each thruster 

used for the control of the satellite on the optimization 

process. This paper presents the tool design and the 

main principle of the optimization algorithm. Usually, 

control strategies consider satellites as a point. The 

present work includes the mathematical definition 

and the satellite model that allow considering it as a 

system. The results of some simulations and their 

practical applications are presented. 
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2. Mathematical Modeling 

A. Coordinate Frames:  

The coordinate system used in this work for 

describing the perturbing forces is the satellite based 

Radial Tangent Normal (RTN) coordinate system 

with orthonormal basis �⃗� �⃗� �⃗⃗� , The �⃗�  axis is defined 

as always pointing from the Earth’s center along the 

radius vector toward the satellite, The �⃗⃗�  axis is 

normal to the orbit plane with direction of the 

satellite angular momentum vector, The 𝑇⃗⃗  ⃗axis is 

perpendicular to R in the orbit plane and with the 

direction toward the satellite movement. It 

completes, with the unit vectors R and N, a right-

handed orthogonal basis (see Figure 1). 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Coordinate frames 

 

In the flowing, a generic acceleration vector �⃗�  
induced from propulsive force acting on the satellite 

will be expressed as 

�⃗� = 𝑢𝑅�⃗� + 𝑢𝑇�⃗� + 𝑢𝑁�⃗⃗�                   (1) 

Where 𝒖𝑹, 𝒖𝑻, 𝒖𝑵 are the acceleration components 

along the radial, tangential and normal directions. 

 

B. Orbit elements: 

A total of six independent parameters are required 

to describe the motion of a satellite around the earth 

[3,4].Two of these elements, semi-major axis a and 

eccentricity e describe the form of the orbit, one 

element the mean anomaly M defines the position of 

satellite along the orbit, the three others, the right 

ascension Ω, inclination i and argument of perigee ω 

define the orientation of the orbit in space. Given 

these six elements, it is always possible to uniquely 

calculate the position and velocity vector (see figure. 

2). 

In many application, satellite orbits are chosen to 

be near-circular, to provide a constant distance from 

the surface of the Earth or a constant relative 

velocity. Typical examples are low-altitude remote 

sensing satellite or geostationary satellite. 

While there is no inherent difficulty in calculating 

position and velocity from known orbital elements 

with e and i close to zero, the reverse task may cause 

practical and numerical problems. These problems 

are due to singularities arising from the definition of 

some of the classical orbital elements. The argument 

of perigee ω, for example, is not a meaningful 

orbital element for small eccentricities, since the 

perigee itself is not well defined for an almost 

circular orbit. Similar consideration apply to small 

inclination i where the line of node is no longer well 

defined and where the equations for Ω become 

singular. Several attempts have therefore been made 

to substitute other parameter for the classical 

keplerian elements. These elements are usually 

referred to as non-singular, regular or equinoctial 

elements [4]. 

The satellite orbit plane is defined thanks to the 

component of the inclination vectors (with modulus 

tan(i⁄2)) direct alone the line of nodes and pointing 

towards the ascending node. 

𝑖 = [𝓅  𝓆]𝑇 =      2tan (
𝑖

2
)[ 𝑐𝑜𝑠𝛺  𝑠𝑖𝑛𝛺]𝑇 

≅ [ 𝑐𝑜𝑠𝛺  𝑠𝑖𝑛𝛺]𝑇 , 𝑖 → 0                (2) 

 

The satellite trajectory on its orbit is defined to the 

semi major axis a, and supposing the parameters Ω 

and ω in the same plane, to the component of the 

eccentricity vector directed alone the line of apsis 

and pointing towards the perigee.  

 

𝑒 == [𝒽  𝓀]𝑇 =     𝑒[ 𝑐𝑜𝑠(𝛺 + 𝜔)  𝑠𝑖𝑛(𝛺 + 𝜔)]𝑇 

= 𝑒[ 𝑐𝑜𝑠�̃�  𝑠𝑖𝑛�̃�]𝑇                        (3)  

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2. Orbit elements 
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Finally, the position of the satellite along its orbit is 

represented by the mean longitude 

 𝑙 = �̃� + 𝑀 − 𝛩(𝑡)                     (4) 

Where Θ is the Greenwich sidereal angle. 

 

C. Dynamics for a GEO satellite: 

The motion of GEO satellite can be described by 

the rat of change of the equinoctial orbital 

parameters under the influence of the forces acting 

on the satellite. The geostationary dynamics results 

in the flowing nonlinear time varying system  

�̇�(𝑡) = 𝒦(𝑥(𝑡)) + 𝔏(𝑡, 𝑥(𝑡)) + 𝒢(𝑡, 𝑥(𝑡))𝑢(𝑡)    (5) 

Where 

  𝑥 = [𝑎   𝓅  𝓆  𝒽  𝓀   𝑙  ]𝑇      (6) 

   𝑢 = [𝑢𝑅   𝑢𝑇  𝑢𝑁  ]𝑇        (7) 

And the functions, 𝓚,𝕷 and 𝓖 are the variation 

contribution to the equinoctial elements coming 

respectively from the Kipler's, Lagrange's and 

Gausse planetary equations [6] and [7].  

𝓚: Describes the satellite motion under the effect 

of the gravitational attraction of the earth considered 

with takes into account the effect of the natural 

perturbing forces. 

𝕷 : Take into account the effect of the natural 

perturbing forces. 

𝓖 : Given by the acceleration by thrusts. 

The translation of nonlinear model (equation 5) 

into the linear model we use the Taylor series up to 

first order around the nominal operating points 

 𝑥0 = [𝑎0  0  0 0  0 𝑙0 ]
𝑇        (8) 

   𝑢0 = [0  0  0 ]𝑇                            (9) 

We obtain  

𝔵(𝑡) = 𝒜(𝑡)𝔵(𝑡) + ℬ(𝑡)𝓊(𝑡) + 𝒟(𝑡)          (10) 

Where 

𝔵 = 𝑥 − 𝑥0  and  𝓊 = 𝑢 − 𝑢0                (11) 

The 𝓐(𝑡) and 𝓓(𝑡) matrices turn out to be time 

varying because of the presence of periodic terms 

with periods equal to multiples of the periodicities of 

the earth, sun and Moon motion relative to the 

satellite. 

The matrix 𝓑(𝑡) is a periodic function with period 

equal to 24 hours. 
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Where  

v0 station keeping velocity equal to √
µ

𝑎0
 , µ is the 

earth gravitational coefficient. 

And                                   

𝜓0 = 𝑙0 + 𝛩(𝑡)                              (13) 

The GEO orbits are characterized by very small 

values of eccentricity e and inclination i. the 

longitude and latitude can be defined 

𝜆 = 𝑙 + 2 𝒽 𝑠𝑖𝑛(𝑙 + 𝛩) − 2𝓀 𝑐𝑜𝑠(𝑙+Θ   (14) 

𝜑 = 2𝓅 𝑠𝑖𝑛(𝜆 + 𝛩) − 2𝓆 𝑐𝑜𝑠(𝜆+Θ     (15) 

We denote y the spacecraft position vector, which 

can be considered as the output variable of the 

nonlinear model                        

 𝑦 = 𝑓(𝑥, 𝑡)                                         (16) 

The output equation into its Taylor series up to the 

first order around x0 [8], we get the output equation 

of the linear time varying system (eq.10) 

  𝑦 = 𝐶(𝑡)𝔵                                      (17) 

Where 

𝑦 = [𝜆 − 𝑙0    𝜑 ]𝑇                                      (18) 

And 

𝐶(𝑡) =


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(19) 

 

3. Station Keeping Box Problem Formulation  

 The station keeping box represents the maximum 

permitted values of the excursion of satellite in 

longitude λ and latitude 𝜑. The SK box can be 

considered as pyramidal solid angle, whose vertex is 

at centre of the earth.  

Is defined by the two half angles of vertex, one 

within plan of equator E-W width 2λmax and other in 

the plan satellite meridian N-S width 2𝜑max (see 

Figure. 3). 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 3. Station keeping box 
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 The station keeping problem can be formulated as 

constrained linear quadratic continuous time optimal 

control problem [9]. Given the linear model equation 

(10) and equation (17) with initial condition �̅�(𝑡𝑖) =
�̅�𝑖, the problem is to find the control optimal 

�̅�𝑜𝑝𝑡(𝑡) over a finite time horizon tf-ti the minimize 

the criterion 

𝐽 =
1

2
∫ (𝑦𝑇(𝑡) 𝑄(𝑡) 𝑦(𝑡) + 𝓊𝑇(𝑡) 𝑅(𝑡) 𝓊(𝑡) )

𝑡𝑓

𝑡𝑖
𝑑𝑡 

(20) 

Subject to the conditions 

−𝑦𝑚𝑎𝑥 ≤  𝑦 ≤ 𝑦𝑚𝑎𝑥          (21) 

Where  

𝑦𝑚𝑎𝑥 = [𝜆𝑚𝑎𝑥    𝜑𝑚𝑎𝑥]                      (22) 

The thruster accelerations are defined as control 

laws in the optimization problems. These control 

variables can thus take at any time any value 

comprised between zero and the maximum thruster 

acceleration, in general with j thruster, we can write 

the control vectors in RTN fram as 

𝓊𝑗 =
1

𝑚
𝛤𝐹𝑗                             (23) 

 

Where m is the spacecraft and 𝛤 is the thruster 

system configuration matrix can be defined for a 

satellite equipped with four electric thrusters as 
𝛤 =

[
−𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜎 −𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜎 −𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜎 −𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝜎

𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝜎 𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝜎 𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝜎 𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝜎
−𝑐𝑜𝑠𝛾 −𝑐𝑜𝑠𝛾  𝑐𝑜𝑠𝛾             𝑐𝑜𝑠𝛾

]  

(24) 

 And F is the thrust vector of the thruster system  

0 ≤ 𝐹 ≤  𝐹𝑚𝑎𝑥                              (25) 

We defined the constraints on the control variable by  
−𝐹𝑚𝑎𝑥

𝑚
≤ 𝛤(𝛤𝛤𝑇)−1𝓊 ≤ 

𝐹𝑚𝑎𝑥

𝑚
                 (26) 

 

 

4. Numerical solution of the problem 

A number of different techniques are available 

for the numerical solution of the station keeping box 

problem. In this work we will consider the direct 

method for solution of continuous optimal control 

problem, the idea behind direct method is to discrete 

the control time history and/or stat variable history 

[10,11].  

In this technique, the control inputs have to be 

written explicitly as function of the stat and its rate 

of change so that bounds on the control variables 

have translated in bunds on the attainable rates of 

change of the state variable [12].  

The linear model (equation 10) can be written in 

different form, characterized by matrix B. to this 

purpose, we can use the Lyapunov transformation 

[9,13], in the stat space defined as 

�̃� = ℒ(𝑡)𝔵                            (27) 

Where  
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(28) 

The linear system (equation 10) can be written in the 

new state variables �̃�  as 

 �̇̃�(𝑡) = �̃�(𝑡)�̃�(𝑡) + �̃�(𝑡)𝓊(𝑡) + �̃�(𝑡)    (29) 

And we can write the control variable of the linear 

dynamics as a function of the state variable, so 

𝓊(𝑡) = �̃�−1 �̇̃�(𝑡) − �̃�−1�̃�(𝑡)�̃�(𝑡) − �̃�−1�̃�(𝑡)    (30) 

Where  

�̃�−1 = [ℒ(𝑡)𝐵(𝑡)]−1      (31) 

We obtained 

𝓊(𝑡) = 𝑀�̇̃�(𝑡) − 𝑀�̃�(𝑡)�̃�(𝑡) − 𝑀�̃�(𝑡)            (32) 

Where  

𝑀 = �̃�−1 = [
0 0 1
0 0 0
0 0 0

   
0 0 0
1 0 0
0 1 0

]    (33) 

 

And can be write the state variable as 

�̇̃�(𝑡) = �̃�(𝑡)�̃�(𝑡) + �̃�(𝑡)                          (34) 

 And the output equation given by   

   𝑦(𝑡) = �̃�(𝑡)�̃�(𝑡)                      (35) 

Where   

 �̃�(𝑡) = 𝐶(𝑡)ℒ−1(𝑡)                          (36) 

The station keeping problem formulated in the 

previous section as a constrained continuous time 

optimal control problem can be translated in a 

quadratic programming problem with constraint only 

on the state variables. 

 Above a finite time horizon tf-ti discretized in N 

intervals of length equal h each. The control optimal 

𝓾𝑜𝑝𝑡(𝑡) is taken constant equal to 

𝓊𝑘
𝑜𝑝𝑡

                       With k=0,1,…,N-1             (37) 

The problem is consist in finding the optimal 

sequence �̃�𝑘
𝑜𝑝𝑡

 that minimized the criterion  

 𝐽 =
1

2
∑ 𝑦𝑘

𝑇 𝑄𝑘  𝑦𝑘
𝑁
𝑘=1 +

1

2
∑ 𝓊𝑘

𝑇  𝑅𝑘  𝓊𝑘
𝑁−1
𝑘=0      (38) 

With 

𝑦𝑘 = �̃�𝑘�̃�𝑘                                          (39) 

𝓊𝑘 = 𝑀
�̃�𝑘+1−�̃�𝑘

ℎ
− 𝑀�̃�𝑘

�̃�𝑘+1−�̃�𝑘

2
− 𝑀�̃�𝑘             (40) 

 Subject 



 The output variable y(t) 

−𝑦𝑚𝑎𝑥 ≤ 𝑦𝑘 ≤ 𝑦𝑚𝑎𝑥           (41) 

 The control variable 𝓊 (t) 
−𝐹𝑚𝑎𝑥

𝑚
≤ 𝛤(𝛤𝛤𝑇)−1𝓊𝑘 ≤ 

𝐹𝑚𝑎𝑥

𝑚
     (42) 

 The auxiliary  state variable �̃�(𝑡) 

�̃�𝑘+1−�̃�𝑘

ℎ
= �̃�𝑘

�̃�𝑘+1+�̃�𝑘

2
+ �̃�𝑘                   (43) 

A step-by-step walkthrough of the algorithm is as 

follows: 

 
Step1: Formulation of SKBOX problem 

- Fixed the finite time horizon tf-ti=1 day. 

- The weighting matrices are equal to: R=I2×2 

and Q=I2×2. 

- Fixed the initial orbital elements vector x(ti). 

Step2: Finding the optimal solution with minimized the 

criterion J with a discretization step of length h=0.01 

day. 

Step3: Obtained the optimal control with equation (40). 

Step4: Finding the output variable with equation (39). 

Step5: Repeat the previous steps for 1yaer. 

 

5. Numerical simulation 

The initial orbital elements for this simulation can 

be found in Table 1. 
TABLE I   

INITIAL ORBITAL ELEMENTS 

 

The satellite is considered in this simulation is 

equipped with four thrusters mounted on its anti 

nadir face (see Figure 4).the configuration of the 

force vector is   

 𝐹 = [𝐹1 𝐹2 𝐹3 𝐹4]                                   (42) 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Configuration force vector 

 

The characteristics for this satellite can be found in 

Table 2. 

 

TABLE II  

CHARACTERISTICS OF SATELLITE 

 

The objective is to determine the set of manoeuvers 

to be executed in order to keep the satellite in a 

latitude and longitude box centered at the station 

longitude l0=10deg with λmax=0.01deg and 

𝜑max=0.01deg.  

Figure 5, Figure 6 and Figure 7 illustrates the 

historical time of the optimal acceleration control 

components in RTN frame for one year. 

Negative and positive values of optimal 

acceleration radial allow maintain the satellite in a 

latitude window equal to width 0.02deg, positive 

values of optimal tangential acceleration fix the 

satellite into a longitude width 0.02deg, and the 

variation of optimal acceleration normal centered the 

satellite in the box. 

 
Fig. 5. Optimal acceleration radial control for one year 

 

 

 
Fig. 6. Optimal acceleration tangential control for one 

year 
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Orbital parameter Value 

Semi major axis(km) 

Right ascension of A.N ( °) 

Eccentricity  

Inclination ( °) 

Argument of perigee ( °) 

Mean anomaly ( °) 

42166.279 
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Fig. 7. Optimal acceleration normal control for one year 

 

Figure 8. illustrates the evolution of the three 

components of propulsive force in RTN frame for 

one year with the maximum force modulus 

Fmax=0.17N.  

The variation in propulsive Force allows producing 

the optimal acceleration to control the satellite in 

latitude and longitude box. The thruster forces values 

are lower them maximum propulsive forces. 
 

 
Fig. 8. Propulsive force for one year in RTN frame 

 

Figure 9. Shows the controlled and uncontrolled 

manoeuvers time histories of the latitude for the 

station keeping box in width 0.02deg. In SKBox no-

controlled, the variation in latitude value is not 

fixing in the box. For this problem the SKBox 

controlled is used for fixing the variation in latitude 

into the box. 

 
Fig. 9. Time histories of the latitude for one year 

 

Figure 10. Illustrates the controlled and 

uncontrolled manoeuvers time histories of the true 

longitude for the station keeping box in width 

0.02deg. In SKBox no-controlled, the variation in 

longitude value is not fixing in the box. For this 

problem the SKBox controlled is used for fixing the 

variation in longitude into the box. 

 

 
Fig. 10. Time histories of true longitude for one 

year 
 

Conclusion 

In this paper a new method for station keeping 

box of geostationary satellite equipped with electric 

propulsion has been developed, we considered a novel 

approach based on direct method for solution of 

continues optimal control. Using this method, 

satellite position can be directly controlled based on 

the optimal acceleration for thruster, simulation 

results have demonstrated that the satellite can be 

tightly controlled in the station keeping box. 
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