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Abstract: Gliding Arc discharges are recently used in
many environmental, biomedical and industrial
applications. The discharge is generated between two
diverging electrodes at atmospheric pressure. In this
paper we present the computational study of the influence
of

I. the geometry shape of electrodes,

I1. distance of the gap between electrodes and

I11. the bias on the powered electrode

on electric field distribution between the electrodes. We
focused our attention especially on the influence of these
parameters on the breakdown voltage needed for the
discharge ignition. The mathematical model is based on
standard equations of electrostatics, the numerical
realization and data processing was performed in the
program COMSOL Multiphysics. It was found that the
geometry shape of electrodes significantly influences the
value of the breakdown voltage.

Key words: Gliding arc discharge, electric field
distribution, atmospheric pressure, geometry shape of
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1. Introduction

Plasma discharges in gases exist in a large variety
of forms, which differ significantly in many aspects.
For utilization of plasma in technical applications it

is usually appropriate to use discharges characterized
by the high electron density, high electron
temperature and high ability to transmit the energy
from power supply into plasma. These properties
increase the number of chemical reactions
undertaken by the particles in the volume, which
leads to the decreasing of the processing time and
higher efficiency of the device.

In several past decades microwave discharges at
low pressure were intensively studied, because this
kind of plasma meets sufficiently the above
mentioned criteria. In environmental applications it is
usually impossible to use this well established
technology, because the large volume of treated
material usually requires to work at atmospheric
pressure and in continual regime. In these situations
Gliding Arc discharges seems to be suitable
alternative providing similar advantages as the
microwave plasma, moreover with lower costs for
the acquisition of the equipment. Gliding Arc
discharges are being recently utilized for
decontamination of water and air [1-5], degradation
of various compounds [5-10] modification of surface
properties of solid materials [11-13] or production of
hydrogen [14-15]. The large number of applications
of gliding arc is possible due to the non-equilibrium



character of this kind of plasma discharge, which
consequently enables to produce relatively high
number of charged and highly reactive particles.

Gliding Arc discharge is usually generated
between two diverging electrodes, which are placed
in a gas flow. The breakdown starts in the place with
highest intensity of electric field, i.e. in the area with
shortest distance between electrodes. The ignition of
the discharge occurs, when the breakdown field
intensity in air is reached (about 3.000 V.mm™).
Consequently, the flowing gas blew the developed
discharge channel, whereas the discharge transmits
from the equilibrium stage to the non-equilibrium
one. The plasma channel perishes at the moment,
when the energy losses from the channel overcome
the amount of supplied energy. Flowing air cools
down the electrodes heated by plasma discharge and
it also reduces the temperature of the gas. It allows to
use this type of plasma discharge for treatment of
biologically active material [16-17].

The theme of this paper is motivated by some
problems with the ignition of the arc in our
experiments. The distribution of electric field
intensity in the vicinity of electrodes is mainly
influenced by
I.  the geometry shapes of electrodes,

Il. the size of the gap between electrodes and
I1l. the electric bias on the powered electrode.

We studied computationally the influence of these
parameters on the distribution of electric field in
plasma jet at the moment shortly before the electric
channel formation and discharge ignition.

2. Model description

The fluid computer model is based on the
numerical solution of the equations describing
electrostatic field:

V~(508,I§)=,0V (1)

E=-Vg, )

The variables are electric field intensity E and
potential of electric field ¢. The constant
£,=8.854x10?F.m™" denotes permittivity of
vacuum, &, =1.00059means the relative permittivity
of airand p,, is the volume charge density. The first

equation is the differential form of Gauss’s law.

The boundary equations were set to meet the
following criteria:

@=0V  -surface of the grounded electrode,

P=¢ - surface of the powered (right)
electrode,

n-D=0 - zerocharge at boundaries, which do
not represent a solid surface.

The distribution of electric field intensity in the
plasma jet was studied for three geometry shapes of
electrodes. The first one (type A) is represented by a
rectangle with rounded corner, the second one (type
B) is given as a quarter of ellipse and the third one is
represented by a half of circle (type C). (see scheme
in the Figures 1-3).

The model was solved numerically by Finite
Element Method (FEM) in the program COMSOL
Multiphysics as a steady-state simulation. This
program enables us to use adaptive mesh refinement
in order to improve the precision of the calculation in
areas characterized by sharp changes of the electric
intensity. At the beginning a mesh is generated in the
working area, which is being consequently refined
during the calculation. Due to this, the precision of
results increases, whereas both the calculation time
and the hardware requirements decrease. Examples
of the working area with various types of initial
meshes are shown in the Figure 4.
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Fig. 1. Geometry shape of the electrode (Type A).
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Fig. 2. Geometry shape of the electrode (Type B).
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Fig. 3. Geometry shape of the electrode (Type C).
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Fig. 4. Various types of meshes: extra coarse, normal and extra fine.




3. Results and discussion

For each geometry shape a series of calculations
was performed, whereas the distance between
electrodes was the main variable parameter. This
distance varied from 1 to 5 millimeters with the
spatial step 1 mm. The goal of the calculation was to
estimate such a bias at the powered electrode, which
will corresponds to the situation, when the
conduction channel is formed and the discharge is
being ignited.

In order to estimate this value, the bias on the
powered electrode increased from the initial value
with the step +100 V, till the electric field intensity
somewhere between electrodes reached the value
about 3.000 V.mm, which is the breakdown electric
intensity in air.

The Figure 5 summarizes data obtained by the
calculation and it clearly demonstrates the significant
dependence of the breakdown voltage on the
geometry shape of electrodes. The usage of the
elliptical electrodes (Type B) enables to ignite the
plasma discharge at the voltages about 22 percent
lower in comparison with the Type A or Type C
electrodes and at the same distance between them. As
shown in Figure 5 the breakdown voltage increases
linearly with the distance of electrodes.

Distribution of electric field intensity shortly
before the discharge channel formation for various
distances of electrodes is presented in the Figures 6-
8. Equipotential curves of the electric field between
the electrodes show huge gradient of intensity of
electric field. The difference between intensity of
electric field between electrodes and other areas are
massive.

The above presented calculations were performed
with respect to the assumption, that the voltage
required for the discharge ignition is independent on
the velocity of the flowing air. Naturally, primary
electrons are presented in the gas and in the initial
phase they are playing a key role in the process of
channel formation. These electrons are drifted
together with the flowing gas away from the nozzle,
so at higher velocities they could not gain enough
energy in order to form the discharge channel.

Friedman et al. [18] derived the characteristic

time 7, of the arc formation from the Kkinetic
equation for electrons

on n
¢ =knn ~—-=%. 3
o g ©

In Equation 3 Kk, denotes the ionization
coefficient, t is time and n, and nq are the electrons
and gas concentrations. In the case of clear air the
value of characteristic time is about lpus [19].
Ordinary plasma jets operate with the gas velocity in

order of several of tens meters per second. For these
parameters, the displacement of conducting channel
from the initial position because of the gas flow is

only about 1x107° m, so it does not significantly
affect the channel formation.
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Fig. 5: Dependence of the bias on the distance of electrodes
at the moment of discharge ignition for studied geometries.

Finally, two remarks should be stated:

a) The distribution of the electric field intensity
was calculated for the predetermined value of
breakdown electric intensity. The precise moment of
the discharge ignition and the precise breakdown
voltage is not given by this value only, but it depends
also on other parameters, for example, whether an
AC or a DC voltage is used.

b) Although the influence of the geometry shape
of electrodes on the distribution of the electric field
intensity was discussed in the paper, one should have
in mind that the choice of the best electrode profile
should be done also with respect to the discharge
lifetime. Different shapes of the electrodes with
spikes and sharp edges can make for lower values of
the breakdown voltage, but their lifetime is very
short because of the high temperature on the pikes so
they can be damaged quickly by heat. This is
important for the most of environmental applications.
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Fig. 6: Distribution of electric field intensity in dependence on the distance of electrodes (type A).

A 3,0233%10°
x10
29622
258401
27170
25958
24738
23515
22293
2.1072

1985
18628
1.7407
15185
1.4354
13742
1.2521
11289
1.0078
0.8856
07635
06213
05192
0397
02748
0527
00305
v 3.0538x 10"

LLLLELLELE DR DR RIS aEed

A 3.0243x10°
*x10'

0.0305
v 3.0548x10°



20

25

-30

-35

40

45

50

=5

60

65

70

s

20

2

30

35

40

45

50

55

60

65

70

s

d=1mm, U=2.600V

A 310552107

d=2mm, U=5.000V

x10¢ o
3.0428
5
29173
27918 10
2.8884
25408 s
24154 i
2.2890
2.1685 -25
2033
19135 3
1788 35
16626
15371 A0
14116 4,
12861
11606 50
10352
0.80a7 BB
0.7842 &0
0.6587
05333 65
0.4078
70
02823
0.1568 75
0.0314
a0 L 20 10 o 1 20 30 40 w 31368 10% a0 ET) 40
d=3mm,U=7.200V
A 30477 %10°
x10® o
2.9861
5
2.853
27308 £
26167
2.4935 £
23700 -
22473
2.1241 25
2001
18779 a
17547 35
16316
15084 -40
13853 G,
12622
1138 50
10159
0.8928 P
07535 Ea
06465
05233 65
0.4002
70
02771
0.1538 75
0.0308
a0 0 20 10 o 1 20 30 40 w 30785 % 10% a0 ET) 20 10 o 1 B 20 40
A 3.0377x10°
o x108
20783
5
28538
10 27300
26081
15 24854
- 23528
22390
-25 21172
15934
0 18717
35 1748
15262
40 15035
e 13808
1258
-50 11353
10128
2R 08828
Eo 07671
06420
-85 05215
03980
70
02782
75 0,530
00307
-40 -30 -20 -10 3 10 20 30 40 w 30s8ax10%

Fig. 7: Distribution of electric field intensity in dependence on the distance of electrodes (type B).
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Fig. 8: Distribution of electric field intensity in dependence on the distance of electrodes (type C).



4, Conclusion

It can be concluded that the electrode geometry
shape significantly influences the distribution of the
electric field between electrodes of the plasma jet. In
the studied case, the breakdown surface potential
reached the value about 22 percent lower in the case
of the elliptic-shaped electrodes (Type B) in
comparison with the rectangle-shaped ones (Type A)
or half of the circle-shaped (Type C).

The surface bias, which is necessary for the gliding
arc discharge ignition, increases linearly with the
distance of electrodes.
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