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Abstract: This paper presents an alternative approach for 
the design of linear phase digital low pass FIR filter using 
Craziness based Particle Swarm Optimization (CRPSO) 
approach. FIR filter design is a multi-modal optimization 
problem. The conventional gradient based optimization 
techniques are not efficient for digital filter design. Given 
the filter specifications to be realized, the CRPSO 
algorithm generates a set of optimal filter coefficients and 
tries to meet the ideal frequency response characteristics. 
In this paper, for the given problem, the realization of the 
optimal FIR low pass filters of different orders has been 
performed. The simulation results have been compared to 
those obtained by the well accepted evolutionary 
algorithm such as Parks and McClellan algorithm (PM), 
classical particle swarm optimization (PSO). A maximum 
-28.64 dB stop band attenuation has been achieved 
compared to -27.17 dB attenuation for the case PSO. The 
results justify that the proposed optimal filter design 
approach using CRPSO outperforms PM and PSO, not 
only in the accuracy of the designed filter but also in the 
convergence speed and solution quality. 

Key words: FIR Filter, PSO, CRPSO, Parks and 
McClellan Algorithm, Magnitude Response, Convergence, 
Low Pass Filter 

 
1. Introduction  
A digital filter is a system that performs 
mathematical operations on samples of discrete-time 
signals to reduce or enhance certain aspects of the 
signals. This is in contrast to the other major type of 
electronic filter, the analog filter, which is an 
electronic circuit operating on continuous-time 
analog signals. Digital filters are basic building 
blocks in many digital signal processing systems. 
They have wide range of applications in 
communication, image processing, pattern 
recognition, etc. There are two major classes of 
digital filters, namely, finite impulse response (FIR) 
filters and infinite impulse response (IIR) filters 

depending on the length of the impulse response [1]. 
FIR filter is an attractive choice because of the ease 
in design and stability. By designing the filter taps to 
be symmetrical about the centre tap position, a FIR 
filter can be guaranteed to have linear phase. FIR 
filters are known to have many desirable features 
such as guaranteed stability, the possibility of 
achieving exact linear phase characteristic at all 
frequencies and digital implementation as non-
recursive structures. Linear phase FIR filters are also 
required when time domain features are specified 
[2]. The most frequently used method for the design 
of exact linear phase weighted Chebyshev FIR 
digital filter is the one based on the Remez-exchange 
algorithm proposed by Parks and McClellan [3]. 
Further improvements in their results have been 
reported in [4]. The main limitation of this procedure 
is that the relative values of the amplitude error in 
the frequency bands are specified by means of the 
weighting function, and not by the deviations 
themselves. Therefore, in case of designing low-pass 
filters with a given stop band deviation, filter length 
and cut-off frequency, the program has to be iterated 
many times [5]. A number of models have been 
developed for the FIR filter techniques and design 
optimization methods. This is a thrust research area, 
aiming at obtaining more general and innovative 
techniques that are able to solve or optimize new and 
complex engineering problems [6]. In some cases, 
such initiatives were successful and proven to 
exhibit better performance than the conventional 
approaches. However, there are few drawbacks 
associated to these methods, e.g., increased 
computational cost and non-existence of theoretical 
proof of convergence to global optimum in 
sufficiently general conditions. Consequently, there 
is a need to explore for some more pervasive 
methods to overcome such drawbacks. Different 
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heuristic optimization algorithms such as simulated 
annealing algorithms [7], genetic algorithm (GA) 
[8], artificial bee colony algorithm [9], etc. have 
been widely used for the synthesis of design methods 
capable of satisfying constraints which would be 
unattainable. When considering global optimization 
methods for digital filter design, the GA seems to 
have attracted considerable attention. Filters 
designed by GA have the potential of obtaining near 
global optimum solution [8]. Although standard GA 
(also known as Real Coded GA (RGA)) shows a 
good performance for finding the promising regions 
of the search space, they are inefficient in 
determining the global optimum in terms of 
convergence speed and solution quality. The 
approach detailed in this paper takes the advantage 
of the power of the stochastic global optimization 
technique called particle swarm optimization. 
Although the algorithm is adequate for applications 
in any kind of parameterized filters, the authors have 
chosen to focus on real-coefficient FIR low pass 
filters, in view of their importance in engineering 
practice. Particle Swarm Optimization (PSO) is an 
evolutionary algorithm developed by Kennedy and 
Eberhart in 1995 [10-11]. Several attempts have 
been made towards the optimization of the FIR Filter 
[12] [20] and in other areas also [13], using PSO 
algorithm. The PSO is simple to implement and its 
convergence may be controlled via few parameters.  
The limitations of the conventional PSO are that it 
may be influenced by premature convergence and 
stagnation problem [14-15]. In order to overcome 
these problems, the PSO algorithm has been 
modified in this paper and is employed for FIR filter 
design. 
This paper describes an alternative technique for the 
FIR low pass digital filter design using Craziness 
based Particle Swarm Optimization Technique 
(CRPSO). CRPSO algorithm tries to find the best 
coefficients that closely match the ideal frequency 
response. Based upon the improved PSO approach, 
this paper presents a good and comprehensive set of 
results, and states arguments for the superiority of 
the algorithm. Simulation results demonstrate the 
effectiveness and better performance of the proposed 
designed method. 
The rest of the paper is arranged as follows. In 
section II, the FIR filter design problem is 
formulated. Section III briefly discusses on the 
algorithm of classical PSO and the CRPSO 
algorithm. Section IV describes the simulation 
results obtained for low pass FIR digital filter using 
PM algorithm, classical PSO and the proposed 
CRPSO approach. Finally, section V concludes the 
paper.  

 
 
2. Low Pass FIR Filter Design  
A digital FIR filter is characterized by, 

( ) ( ) n
N

n
znhzH −
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∑=

0
, n=0, 1… N   (1) 

where N is the order of the filter which has (N+1) 
number of coefficients. h(n) is the filter impulse 
response. It is calculated by applying an impulse 
signal at the input. The values of h(n) will determine 
the type of the filter e.g. low pass, high pass, band 
pass etc. The values of h(n) are to be determined in 
the design process and N represents the order of the 
polynomial function. This paper presents the most 
widely used FIR with h(n) as even symmetric and 
the order is even. The length of h(n) is N+1 and the 
number of coefficients is also N+1. In the algorithm, 
the individual represents h(n). In each iteration, these 
individuals are updated. Fitness of each particle is 
calculated using the new coefficients. In each 
iteration, this fitness is used to improve the search 
and result obtained after a certain number of 
iterations or after the error is below a certain limit is 
considered to be the optimal result. Because its 
coefficients are symmetrical, the dimension of the 
problem reduces by a factor of 2. The (N+1)/2 
coefficients are then flipped and concatenated to find 
the required N+1 coefficients. The least error is used 
to evaluate the fitness of the individual. It takes the 
error between the frequency response of the ideal 
and the actual filter. An ideal filter has a magnitude 
of one on the pass band and a magnitude of zero on 
the stop band. So, the error for this fitness function is 
the difference between the magnitudes of this filter 
and the filter designed using the evolutionary 
algorithms PSO and CRPSO. The individuals that 
have lower error values represent better filters i.e., 
the filters with better frequency responses. 
Various filter parameters which are responsible for 
the optimal filter design are the stop band and pass 
band normalized frequencies, the pass band and stop 
band ripples, the stop band attenuation and the 
transition width. These parameters are mainly 
decided by the filter coefficients as is evident from 
transfer functions in (1). Significance of these 
parameters in actual filter with respect to ideal filter 
is illustrated in Fig. 1 [16]. Several scholars have 
developed algorithms in which N, δp, and δs are fixed 
while the remaining parameters are optimized [17]. 
Other algorithms were originally developed by Parks 
and McClellan in which N, wp, ws, and the ratio δp/δs 
were fixed [3]. 
 
 

 



 
Fig.  1.  Filter Parameters. 

 
In this paper, swarm and evolutionary optimization 
algorithms are applied in order to obtain the actual 
filter response as close as possible to the ideal 
response  
Now for (1), coefficient vector {h0, h1… hN} is 
represented in N+1 dimension. The particles are 
distributed in a D dimensional search space, where D 
= N+1 for the case of FIR filter.  
The frequency response of the FIR digital filter can 
be calculated as, 
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   where ( )kjweH  is the Fourier transform complex 
vector. This is the FIR filter frequency response. The 
frequency is sampled in [0,π  ] with N points; the 
position of each particle in this D dimensional search 
space represents the coefficients of the transfer 
function. In every iteration, each particle finds a new 
position, which is the new set of coefficients. Fitness 
of all particles is calculated using the new 
coefficients. These fitnesses are used to improve the 
search in each iteration, and the result obtained after 
a certain number of iterations or after the error is 
below a certain limit is considered to be the final 
result. Different kinds of fitness functions have been 
used in different literatures. An error function given 
by (3) is the approximate error used in Parks–
McClellan algorithm for filter design [3]. 
( ) ( ) ( ) ( )[ ]ωωωω j

i
j

d eHeHGE −=    (3) 
where ( )ωG  is the weighting function used to 
provide different weights for the approximate errors 
in different frequency bands,  is the frequency 
response of the desired filter and is given as, 
 ( )
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and ( )ωj
i eH is the frequency response of the 

approximate filter [17].  
 ( ) ( ) ( ) ( ) ( )[ ]TKddddd HHHHH ωωωωω ,...,, 321= and  

( ) ( ) ( ) ( ) ( )[ ]TKiiiii HHHHH ωωωωω ...,,, 321=  
The major drawback of PM algorithm is that the 
ratio of δp/δs  is fixed. To improve the flexibility in 
the error function to be minimized, so that the 
desired level of δp and δs may be specified, the error 
function given in (5) has been considered as fitness 
function in many literatures [18].   
The error to be minimized is defined as: 
 ( )( ) ( )( )sp EEJ

sp

δωδω
ωωωω
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≥≤
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where pδ   and sδ  are the ripples in the pass band 

and stop band, pω  and sω are pass band and stop 
band normalized cut off frequencies, respectively. 
The error function given in (5) represents the fitness 
function to be minimized using the evolutionary 
algorithms. The algorithms try to minimize this error 
and thus increase the fitness. Since the coefficients 
of the linear phase filter are matched, meaning the 
first and the last coefficients are the same; the 
dimension of the problem is reduced by one-half. By 
only determining one half of the coefficients, the 
filter could be designed. This greatly reduced the 
computational complexity of the algorithms.  
 
3. Evolutionary Techniques Employed 
 
3. A.  Particle Swarm Optimization (PSO) 
PSO is a flexible, robust population-based stochastic 
search/optimization technique with implicit 
parallelism, which can easily handle with non-
differential objective functions, unlike traditional 
optimization methods. PSO is less susceptible to 
getting trapped on local optima unlike GA, 
Simulated Annealing, etc. Eberhart and Shi [11] 
developed PSO concept similar to the behaviour of a 
swarm of birds. PSO is developed through 
simulation of bird flocking in multidimensional 
space. Bird flocking optimizes a certain objective 
function. Each particle (bird) knows its best value so 
far (pbest). This information corresponds to personal 
experiences of each particle. Moreover, each particle 
knows the best value so far in the group (gbest) 
among pbests. Namely, each particle tries to modify 
its position using the following informations: 
• The distance between the current position and the 
pbest, 
• The distance between the current position and the 
gbest. 
Similar to GA, in PSO techniques also, real-coded 
particle vectors of population np are assumed. Each 

 



particle vector consists of components or sub-strings 
as required number of normalized filter coefficients, 
depending on the order of the filter to be designed.  
Mathematically, velocities of the particle vectors are 
modified according to the following equation: 
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where  is the velocity of i( )k
iV th particle at kth 

iteration; w is the weighting function; and are 
the positive weighting factors;  and  

are the random numbers between 0 and 1; 

1C 2C

1rand 2rand
( )k
iS  is the 

current position of ith particle vector at kth iteration; 
 is the personal best of i( )k

ipbest th particle vector at 

kth iteration;  is the group best of the group 
at k

( )kgbest
th iteration. The searching point in the solution 

space may be modified by the following equation: 
( ) ( ) ( )11 ++ += k

i
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i
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i VSS                (7) 
The first term of (6) is the previous velocity of the 
particle vector. The second and third terms are used 
to change the velocity of the particle. Without the 
second and third terms, the particle will keep on 
‘‘flying’’ in the same direction until it hits the 
boundary. Namely, it corresponds to a kind of inertia 
represented by the inertia constant, w  and tries to 
explore new areas.  
 
3. A. i. Craziness based Particle Swarm 
Optimization (CRPSO) 
The global search ability of above conventional PSO 
is improved with the help of the following 
modifications. This modified PSO is termed as 
Craziness based Particle Swarm Optimization 
Technique (CRPSO). 
The velocity in this case can be expressed as follows 
[19]: 
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Where ,1r 2r  and are the random parameters 
uniformly taken from the interval [0,1] and 

3r
( )3rsign  

is a function defined as: 
( )
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05.0r        where1

3

33
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                       (9) 

The two random parameters rand1 and rand2 of (6) 
are independent. If both are large, both the personal 
and social experiences are over used and the particle 
is driven too far away from the local optimum. If 
both are small, both the personal and social 

experiences are not used fully and the convergence 
speed of the technique is reduced. So, instead of 
taking independent rand1 and rand2, one single 
random number  is chosen so that when  is 
large, 

1r 1r
( )11 r−  is small and vice versa. Moreover, to 

control the balance of global and local searches, 
another random parameter  is introduced. For 
birds’ flocking for food, there could be some rare 
cases that after the position of the particle is changed 
according to (7), a bird may not, due to inertia, fly 
towards a region at which it thinks is most promising 
for food. Instead, it may be leading toward a region 
which is in opposite direction of what it should fly in 
order to reach the expected promising regions. So, in 
the step that follows, the direction of the bird’s 
velocity should be reversed in order for it to fly back 
to the promising region.  is introduced for 
this purpose. In birds’ flocking or fish schooling, a 
bird or a fish often changes directions suddenly. This 
is described by using a ‘‘craziness’’ factor and is 
modelled in the technique by using a craziness 
variable. A craziness operator is introduced in the 
proposed technique to ensure that the particle would 
have a predefined craziness probability to maintain 
the diversity of the particles. Consequently, before 
updating its position the velocity of the particle is 
crazed by, 

2r

( )3rsign

( ) ( ) ( ) ( ) craziness
i

k
i

k
i vrsignrPVV ** 44

11 += ++        (10) 
where  is a random parameter which is chosen 
uniformly within the interval [0, 1]; 

4r

craziness
iv is a random parameter which is uniformly 

chosen from the interval [ ]maxmin , ii vv ; and P( ) and 4r
( )4rsign  are defined respectively as: 
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where Pcr is a predefined probability of craziness and 
iter means iteration cycle number. 
The design aim in this paper is to obtain the optimal 
combination of the filter coefficients, so as to 
acquire the maximum stop band attenuation with 
least transition width increment. The values of the 
parameters used for the CRPSO technique is given in 
Table I. 
 
 
 
 
 

 



Table 1. 
CRPSO Parameters 

Parameter Value 
Population Size 

 
120 

Generation number 
 

1000 

C1 & C2 
 

1.5 

min
iv  

1 

max
iv  

10 

pcr 
 

0.3 

 
 
4. Results and Discussions 
 
4.1. Analysis of Magnitude Response of Low pass 
FIR filters  
 
The MATLAB simulation has been performed 
extensively to realize the low pass FIR filter of the 
orders of 20, 30 and 40. Hence, the lengths of the 
filter coefficients are 21, 31 and 41, respectively. 
The sampling frequency has been chosen as fs = 
1Hz. Also, for all the simulations the sampling 
number is taken as 128. Algorithms are run for 30 
times to get the best solutions. 
The parameters of the filter to be designed are as 
follows: 

• Pass band ripple (δp) = 0.01 
• Stop band ripple (δs) = 0.001 
• Pass band normalized cut-off frequency (ωp) 

= 0.40 
• Stop band normalized cut-off frequency (ωs) 

= 0.45 
The best optimized coefficients for the designed 
filters with the orders of 20, 30 and 40 have been 
calculated by PM algorithm, PSO and CRPSO and 
given in Tables II-IV, respectively. Figs. 2 and 3 
show the magnitude plot, gain plot, respectively, for 
the low pass FIR filter of the order of 20.  Figs. 4 
and 5 show the magnitude plot, gain plot, 
respectively, for the low pass FIR filter of the order 
of 30.  Figs. 6 and 7 show the magnitude plot, gain 
plot, respectively, for the low pass FIR filter of the 
order of 40.  From the figures it is evident the 
proposed filter design approach produces higher stop 
band attenuation and smaller ripples compared to 
those of classical PSO for different filter orders. The 
stop band ripple (or attenuation) in both normalized 
and in dB for a given transition bandwidth has been 
shown in Table V. From Table V it may be noted 
that the CRPSO algorithm can result a maximum 
stop band attenuation of 20.43 dB, 25.94 dB, 28.64 
dB for the filter orders of 20, 30, 40, respectively.  

The filters designed by the CRPSO algorithm have 
sharper transition band responses than those 
produced by PSO algorithm. For the stop band 
region, the filters designed by the CRPSO method 
results in the improved responses than the PSO.  
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Fig.  2.  Normalized Frequency response for the FIR Filter 

of order 20. 
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Fig.  3.  Gain (dB) Plot of the FIR Filter of Order 20. 
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Fig.  4.  Normalized Frequency response for the FIR Filter 

of order 30. 
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Fig.  5.  Gain (dB) Plot of the FIR Filter of order 30. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

M
ag

n
itu

d
e 

(N
o
rm

al
iz

ed
)

 

 

PM
PSO
CRPSO

 
Fig.  6.  Normalized Frequency response for the FIR Filter 

of order 40. 

 

Table 2. 

Optimized Filter Coefficients for the FIR filter of order 20 

H(N) PSO CRPSO 
H(1)=H(21) 0.022408286457300 0.019895614917157 
H(2)=H(20) -0.029147712107531 -0.041996103784208 
H(3)=H(19) -0.043973123083511 -0.053810975826974 
H(4)=H(18) 0.009526198999545 -0.008213123009929 
H(5)=H(17) 0.055415671508159 0.050827622341680 
H(6)=H(16) 0.022714060120439 0.032684232836611 
H(7)=H(15) -0.072195797899834 -0.057362493416407 
H(8)=H(14) -0.067827560918525 -0.070214680502808 
H(9)=H(13) 0.078603595140571 0.070573334804444 

H(10)=H(12) 0.301031346152943 0.296256191283642 
H(11) 0.424852775587723 0.424800670522855 

Table 3. 

Optimized Filter Coefficients for the FIR filter of order 30 

H(N) PSO CRPSO 
H(1)=H(31) 0.022950203459264 0.016137130589114 
H(2)=H(30) -0.005984343078409 -0.005206618657744 
H(3)=H(29) -0.026912021362354 -0.023055331668834 
H(4)=H(28) -0.010674555089066 -0.008813949545769 
H(5)=H(27) 0.019226714230719 0.012260667376161 
H(6)=H(26) 0.015996855131320 0.022679403163700 
H(7)=H(25) -0.015175152933991 -0.009443431710420 
H(8)=H(24) -0.035661239760689 -0.032005090671930 
H(9)=H(23) 0.005824456995417 -0.001343631142177 

H(10)=H(22) 0.053371741025761 0.050322645950852 
H(11)=H(21) 0.022940616917854 0.031498730994013 
H(12)=H(20) -0.057547352445369 -0.058847892502176 
H(13)=H(19) -0.077361722742027 -0.083894280282535 
H(14)=H(18) 0.071928817380659 0.069834919034240 
H(15)=H(17) 0.300000534093426 0.307436782689523 

H(16) 0.424086365330878 0.424115577461817 
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Fig.  7.  Gain (dB) Plot of the FIR Filter of order 40. 

Table 4. 

Optimized Filter Coefficients for the FIR filter of order 40 

H(N) PSO CRPSO 
H(1)=H(41) 0.007344512754673 0.006514733837337 
H(2)=H(40) -0.000759066513506 -0.000793546803820 
H(3)=H(39) -0.012955069139996 -0.009715934911209 
H(4)=H(38) -0.003429993950846 -0.007496804419303 
H(5)=H(37) 0.013452816832404 0.005458238309970 
H(6)=H(36) 0.013414622028248 0.012172026646061 
H(7)=H(35) -0.005407458851593 -0.003872743850380 
H(8)=H(34) -0.017445105936959 -0.016918320492523 
H(9)=H(33) -0.005831105005441 -0.008166009176146 

H(10)=H(32) 0.020098094309249 0.020419995452682 
H(11)=H(31) 0.019550305005331 0.016112117294538 
H(12)=H(30) -0.019726721713318 -0.015600387866908 
H(13)=H(29) -0.035204199271079 -0.034254073511217 
H(14)=H(28) 0.007183194774913 0.004685162084647 
H(15)=H(27) 0.052107169836207 0.049574987558485 
H(16)=H(26) 0.026757554231160 0.027207712041898 
H(17)=H(25) -0.066403671009133 -0.061349758604805 
H(18)=H(24) -0.082929921233006 -0.077016973040211 
H(19)=H(23) 0.074863736908197 0.068289602273310 
H(20)=H(22) 0.311438927744235 0.312051249215373 

H(21) 0.424178535533852 0.423649126868468 
 

Table 5. 

Comparison summery of the parameters of interest 

Maximum Stop-band ripple (dB) Maximum Stop-band ripple 
(Normalized) 

Filter Order 

PM PSO CRPSO PM PSO CRPSO 
20 -15.63 -17.75 -20.43 0.1661 0.1295 0.0952 
30 -20.44 -22.74 -25.94 0.0951 0.0729 0.0505 
40 -25.1 -27.17 -28.64 .05542 .04378 0.0369 

 

 

 

 

 

 

 



4.2. Comparative effectiveness and convergence 
profiles of PSO and CRPSO 
In order to compare the algorithms in terms of the 
error convergence speed, Fig. 8 shows the evolution 
of best solutions obtained when PSO is employed. 
Fig. 9 shows the evolution of the best solutions 
obtained when the proposed CRPSO is employed. 
The convergence graph has been shown for the filter 
order of 40. A similar plot can be obtained for the 
FIR filter of orders 20 and 30.  From the figures 
drawn for this filter, it is seen that the CRPSO 
algorithm is faster than the PSO algorithm for 
finding the optimum filter. The CRPSO converges to 
much lower error fitness in lesser number of 
iterations, as compared to PSO, which yields 
suboptimal higher values of error fitness. PSO and 
CRPSO converge to their respective minimum ripple 
magnitudes in less than 500 iterations. With a view 
to the above fact, it may finally be inferred that the 
performance of CRPSO technique is better as 
compared to PSO. All optimization programs are run 
in MATLAB 7.5 version on core (TM) 2 duo 
processor, 3.00 GHz with 2 GB RAM. 
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Fig.  8.  Convergence Profile for PSO in case of 40th  

Order Low Pass FIR Filter. 
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Fig.  9.  Convergence Profile for CRPSO in case of 40th  

Order Low Pass FIR Filter. 
 

 

 

 

 

5. Conclusions 
This paper presents a novel alternative method for 
designing the linear phase digital low pass FIR filters 
by using nonlinear stochastic global optimization 
technique based on Craziness based Particle Swarm 
Optimization (CRPSO) approach. Filters of orders 
20, 30 and 40 have been realized using PM 
algorithm, conventional PSO as well as the proposed 
PSO algorithm called CRPSO. Extensive simulation 
results justify that the proposed algorithm 
outperforms PSO and PM in the accuracy of the 
magnitude response of the filter as well as in the 
convergence speed and is adequate for use in other 
related design problems. 
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