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Abstract— Distribution System monitoring become a very
important function in today’s deregulated power markets
and thus, state estimators have become the essentialtools of
choice for the implementation of this function.
Determination of the best possible combination of meters
for monitoring a given Distribution System is referred to as
the optimal meter placement. Whether a new state estimator
is put into service or an existing one is being upgraded,
placing new meters for improving or maintaining reliability
and the observability of the measurement system, is of great
concern. This paper proposes an PSO optimization
algorithm suitable to choose the optimal number and
position of the measurement devices needed to operate
management and control issues, such as energydispatching
and protection coordination, in modern electric distribution
networks.
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1. Introduction

Distribution state estimation (SE) [1] [2] [3] [4] [5], is
used to facilitate data collection. It is performed by
processing a set of measurement data consisting of
power line flows and bus voltage measurements. These
measurements are collected by RTU’s and transmitted
to the control center through telemeter lines. The
success of state estimation depends on the number,
type and location of established meters and RTUs in
the system. This paper presents a new measurement
placement method that allows determining, in a
straightforward manner, where to install meters and
RTUs in a distribution system in order to obtain a
measurement placement plan that satisfies the
reliability criteria.

Electric power system SE [6] was first
introduced by Fred Schweppes of MIT in 1969. Power
system meter placements have been addressed by
various researchers in the past. Koglin [7] adopted a

criterion for estimation accuracy with respect to
quantities of interest. He proposed the Koglin
algorithm on the basis of measurement elimination
procedure with measurement sensitivity as the
performance criterion. Baran et al. [8] developed rule
based meter placement scheme which identifies the
data requirements for real-time monitoring and control
of distribution systems. J.C.S.Souza et al. [9] presented
an optimal meter placement methodology for real-time
power distribution system monitoring where Genetic
Algorithms technique is employed to achieve a trade-
off between investment costs and real-time monitoring
capability. J.Wan et al. [10] proposed heuristic
incremental meter placement zonal method which
addressed the meter placement problem with respectto
load estimation in radial power distribution systems.
H.Wang et al. [11] developed a revised branch-current-
based three-phase distribution system SE algorithm for
studying impact of meter placement on the proposed
estimator. A.Shafiu et al. [12] developed a heuristic
approach to identify the best locations for placing
voltage measurements for distribution SE with
distributed generation. The method identifies busbars
on which a given number of voltage measurements are
to be placed, so as to reduce the standard deviation of
the voltages at those busbars in the network which do
not have a measurement. C.Muscaset al. [13] proposed
an optimization algorithm for choosing the optimal
number and position of the measurement devices
needed for energy dispatching and protection
coordination in modern electric distribution networks.
The goal of the proposed dynamic programming
procedure is to guarantee the minimum cost and the
accuracy required to the measured data. V.Cecchi et al.
[14] designed a unique and flexible Instrumentation
and Measurement system consisting of software and
hardware instruments to perform network
reconfiguration and meter placement studies; it can



adapt to power system planning and operating
scenarios. C.Muscas et al. [15] also proposed an
optimization algorithm, based on dynamic
programming technique, suitable for choosing the
optimal number and position of measurement devices
in modern distribution networks. A.Moradi et al. [16]
discussed how to determine the optimum number and
location of two types of switches in distribution
systems. A novel multistage version of a discrete PSO
algorithm is presented in this paper to determine the
optimum number and locations of CBs and
sectionalizes in a distribution system.The convergence
rate and the ability of the proposed algorithm for
finding near global minimum are tested on the RBTS
BUS 4 and the IEEE 123-node feeder standard test
system

In their previous paper [17] [18], the authors addressed
on intelligent meter placement algorithm in power
system SE. This method allows the cost optimal
selection of meters so that the system remains
observable under any single or multiple measurement
losses, branch outages, bus splitting and any other pre-
defined contingency. The proposed qualitative method
and Genetic Algorithm is tested with IEEE 6 and IEEE
14 Bus system. This paper proposes a PSO algorithm
for optimal meter and RTU placement in a distribution
network. The algorithm identifies the minimum
number of meters required by considering the meter
cost to make the system observable. The algorithm is
tested with IEEE and Indian distribution system. The
superiority of PSO is validated by comparingthe tested
result with branch and bound technique.

2. Problem Definition

2.1 Meter Placement Strategy
In distribution system planning [19][20], optimal
metering is formulated as optimization problem. The
investment costs should be minimized subject to some
constraints in order to guarantee a good performanceof
SE. The formulated problem is expressed as Equation
(1) given below:
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Wi = the cost of meter including RTU
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= a vector whose entries are all ones.
X = a binary decision variable vector, whose
entries are defined in Equation (2):
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f(x) = a vector function whose entries are non-zero if
the corresponding bus voltage is solvable using the
given measurement set and zero otherwise.

The product of the binary decision variable vector and
the cost vector represents the total installation cost of
the selected meters. Constraint functions ensure full
network observability while minimizing the total
installation cost of the meters. The procedure for
building the constraint equations is described in this
paper by considering a system with no conventional
measurements or zero injections. In this case, the flow
measurement and the zero injection are ignored. In
order to form the Constraint set, the binaryconnectivity
matrix A is first formed as:
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For demonstration, the authors consider the 8-bus
example system shown in Fig.1.,where M represents
RTU location and X represents meter location with
respect to RTU.

Fig. 1 Network diagram for the 8-bus system with RTU
and meter location



Assumptions are made that a given RTU provides
measurement for the branch current with respect to
connected neighbour buses. Once a bus is assigned a
RTU, voltages at all to of its neighbours are assumed to
be known. An easy way of determining all such known
buses are to use the binary connectivity Matrix A as
defined in Equation (2)

This yields the following matrix in Equation (4) for
the 8-bus system of Fig. 1:

1 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 1 1 1 0 0 0 0

A = 0 0 1 1 0 0 0 0
0 1 0 0 1 1 0 0 (4)
0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1
0 0 0 0 0 0 1 1

The product of this matrix and the binary decision
vector X provides the desiredvectorfunction. Elements
of this vector function will be at least equal to one, if at
least one neighbor of the corresponding bus is assigned
a RTU. Hence, the constraint equations for the above
example for this case are as given by Equations (5) and
(6):

f(X) = A.X

f1= x1+ x2 >= 1 (5)
f2= x1+x2+x3+x5+x7 >=1
f3= x2+x3+x4 >=1

f(X) = f4=x3+x4 >=1 (6)
f5=x2+x5+x6 >=1
f6=x5+x6 >=1
f7=x2+x7+x8 >=1
f8=x7+x8 >=1

The operator “+” implies logical “OR” and the use of 1
in the right hand side of the inequality ensures that at
least one of the variables appearing in the sum will be
non-zero. For example, the constraints associated with
bus 1 and bus 2 are as given by Equations (7) and (8):

f1= x1+ x2 >= 1 (7)
f2= x1+x2+x3+x5+x7 >=1 (8)

The first constraint f1≥1 implies that at least one RTU
must be placed at either one of or both bus 1 and bus 2
to make bus 1 observable. Similarly, the second
constraint f2 ≥1 indicates that at least one RTU should
be installed at any one of the buses 1, 2, 3, 5, or 7 in
order to make bus 2 observable.

Matrix A can be directly obtained from the bus
admittance matrix by transforming its entries into
binary form. Matrix A is solved for obtaining possible
combination of optimal placement of meter and then
solved for considering cost minimization.

2.2 Meter Cost

The aim of the RTU is to perform Wide Area
Monitoring (WAM) protection and control for electric
power distribution system. Here the power system is
managed by Supervisory Control and Data
Acquisition/Energy Management System
(SCADA/EMS) including a RTU. The RTU is likelyto
be located at the substation of the power distribution
system and at the nodes of the system where the RTU
comprises first level of data acquisition. This means
acquiring measurement data which is to be evaluated
by the SCADA/EMS system.The formulated problem
for cost of meter to be installed is in (9):

W i = Min (Crtu+ Cm) (9)
subject to performance requirements
where:
Cm = cost of meters that will be installed
Crtu = cost of RTUs

The meters are placed to collect data at branches 1-2,
2-3, 2-7 and 2-5, but the RTU is placed at node 2 in the
figure 1. To calculate the cost of metering this system,
the following method is adopted. The cost of RTU
would be Crtu=1 unit. One unit equals to 100 US $.
The cost of meter at each node is 0.2 units, so the cost
of placing the meters at all the 4 nodes is: Cm=0.2 x
4=0.8 units. Therefore the total cost of metering the
system would be: C=Cm+Cr=1.8 units. The same
procedure is adapted to all the systems to calculate the
cost function.

3 PSO Methodology

PSO was formulated by Edward and Kennedy in
1995. The algorithm was inspired by the social
behavior of animals, such as bird flocking or fish
schooling. PSO is similar to the continuous GA in that
it begins with a random population matrix. Unlike the
GA, PSO has no evolution operators such as crossover
and mutation. The rows in the matrix are called
particles (same as the GA chromosome). They contain
the variable values and are not binary encoded. Each
particle moves about the cost surface with a velocity.
The particles update their velocities and positions



based on the local and global best solutions:

new old localbest old globalbest old
m,n m,n 1 1 m,n m,n 2 2 m,n m,nV =V +Γ*r*(P -P )+Γ*r *(P -P )

Where

m,nV
= particle velocity, m,nP

= particle variables

1r , 2r = independent uniform random numbers

1Γ, 2Γ = learning factors = 2

The PSO algorithm [21] [22] [23] [24] updates the
velocity vector for each particle then adds that velocity
to the particle position or values. Velocity updates are
influenced by both the best global solution associated
with the lowest cost ever found by a particle and the
best local solution associatedwith the lowestcost in the
present population. If the best local solution has a cost
less than the cost of the current global solution, then
the best local solution replaces the best global solution.
The particle velocity is reminiscent of local minimizes
that use derivative information, because velocity is the

derivative of position. The constant 1Γ is called the

cognitive parameter. The constant 2Γ is called the
social parameter. The advantages of PSO are that it is
easy to implement and there are few parameters to
adjust. The PSO is able to tackle tough cost functions
with many local minima. The initial random swarm set
loose on the cost surface. The particle swarming
becomes evident as the generations pass. The largest
group of particles ends up in the vicinity of the global
minimum and the next largest group is near the next
lowest minimum. A few other particlesare roamingthe
cost surface at some distance away from the two

groups. Figure 3.1 shows plots of m,nP
local best and

m,nP global best as well as the population average as a

function of generation. The particle m,nP
global best

serves the same function as elite chromosome in the
GA.

3.1Binary PSO
The initial development of PSO is on continuous-
valued search spaces. The first discrete PSO to operate
on binary search spaces was developed by Kennedy
and Eberhart [25].The binary PSO can be applied to
real value optimization problem after real-binary
transformation using gray coding. Each element of a
particle’s position vector can take on the binary value
0 or 1.By proper mutation of bits, position of particles

will change. A particle may then be seen to move to
near and far corners of the hypercube by flipping bits.
One of the first problems to be addressed in the
development of the binary PSO is how to interpret the
velocity of a binary vector.

3.2 PSO Meter Placement Problem

Binary PSO algorithm is used for solving the meter
placement problem. In this context, the algorithm
stated above is not used because of the level of
randomness is present in the above stated algorithm.
Due to this randomness it becomes difficult to satisfy
the constraint equations when the program is run. To
deal with the difficulty that occurred, the original PSO
algorithm is used for solving the continuous
optimization problems, but a few changes are made to
the algorithm. First of all, the range of the particles is
restricted to [0, 1]. Then the velocity is calculated in
the normal procedure; but while updating the position
of the particles it is rounded off to either 0 or 1.The
flowchart for binary PSO is shown in Fig. 2.

Fig. 2: PSO binary algorithm flowchart



4 Test Cases & Meter Placement

In this paper we plan to install a new metering system
to make a distribution system observable. To validate
the proposed approach, the optimization procedurehas
been applied to IEEE standard networks [26]. Cost of
RTU is taken as 1 unit and cost of meter is taken as 0.2
units. The PSO algorithm is tested with IEEE 37 and
IEEE 123 Bus distribution systems. To check the
effectiveness and flexibility of PSO, it is verified by
comparing the result with Branch and Bound
technique. The program has been developed using
MATLAB for PSO and Branch and Bound
Optimization.

4.1 PSO Optimal Meter Placement

The PSO Algorithm tested for IEEE 13, 34, 37, 61,123
standard different node systems is to make the system
observable with total meter cost, location and optimal
number of meters. Table 1 shows the results for
optimal meter placement obtained by the proposed
PSO technique with the location of meter and total
investment cost. Table 2 shows the results for meter
position branches in IEEE 13 bus system. Table 3
shows the results for meter position branches in IEEE
34 bus system. Due to page limitation only meter
location in branches for IEEE 13 and 34 bus systemsis
displayed in table 2 and 3.

Table 1
Test Results for IEEE Systems
Test
System

Total
Cost RTU Placement Buses

No. of
Meters

IEEE 13 8.79 1,4,6,9,10,13 6

IEEE 34 18.8
2,5,7,11,13,17,21,24,26,29,
31,33 12

IEEE 37 20.4
1,3,6,10,13,14,19,21,24,28,
31,35 12

IEEE 61 35.4

2,5,8,11,14,17,19,21,25,28,
31,33,35,37,39,41,44,46,49,
52,55,58,60 23

IEEE 123 69.4

1,2,6,8,14,15,20,22,24,28,3
1,33,37,39,41,43,47,52,56,5
8,62,65,68,71,74,76,78,82,8
5,88,90,92,94,95,98,103,10
5,107,110,114,116,118,119,
121 44

Table 2
Meter position in IEEE 13 Bus Systems

S.No

Meter
Placement
Branches

RTU
Location

Bus
1 1--2 1
2 3--4 4
3 5--6 6
4 8--9 9
5 10--11 10
6 10--7 10
7 10--12 10
8 7--13 13

Table 2
Meter position in IEEE 34 Bus Systems

S.No

Meter
Placement
Branches

RTU
Location

Bus
1 2--3 2
2 4--5 5
3 6--7 7
4 7--8 7
5 10--11 11
6 11--12 11
7 9--13 13
8 13--14 13
9 13--15 13
10 16--17 17
11 17--18 17
12 17--19 17
13 20--21 21
14 21--22 21
15 23--24 24
16 25--26 26
17 26--27 26
18 28--29 29
19 30--31 31
20 31--32 31
21 31--34 31
22 32--33 33



Fig. 3 PSO optimization particle position for IEEE 37
Bus System

The position of particle to make the IEEE 37 bus
system observable is shown in Fig.3.

Algorithm is tested for an Indian system of TamilNadu
Electricity Board (TNEB). The system has 17 nodes
with 6 meters to make the system observable with total
meter cost of 9.6 units. Table 4 shows the results for
optimal meter placement obtained by the proposed
PSO technique with the location of meter and total
investment cost. Fig 4 represents the one line diagram
of TNEB 17 bus distribution feeder, where M
represents the optimal location of RTU placement.

Fig. 4 represents TNEB 17 bus distribution feeder with
meter position.

Table 4
Test result for TNEB System

Test
System

Total
Cost RTU Placement Buses

No. of
Meters

TNEB 17 9.6 2,6,9,11,14,15 6

TNEB 40 24.6
3,5,8,10,11,15,16,19,20,24,
25,31,32,36,37,40 16

The proposed algorithm executed for TNEB 32 node
real time feeder assuming zero injection, zero switch
position and zero transformers connected. Thirteen
number of RTU needed to monitor the feeder .RTUs
are placed at bus number
2,6,7,9,12,14,16,19,21,24,26,28,and 31,where line
meters are placed at respective branches with
investment cost of meter is 20.2 units.

The number of particle taken as input is 26.Figure 5
shows the optimization output and particle position.
The green color in inner plot represents the particle
position when global best positionis occurred. Another
plot shows the gbest value and number of epoch
.The value 20.2 in the top of the plot represents the
total minimum investment cost of RTU/Meter.

Figure 5 : TNEB 32 node PSO particle position



5 Conclusion

The optimal number/location of RTU and meter by
minimizing the total cost in distribution system is
formulated using Particle Swarm Optimization
Algorithm. The proposed PSO algorithms were tested
on IEEE and Indian standard bus distribution systems.
The case study results indicate that PSO is superior in
all respect. This paper can be extended for loss of
branch outages and different hybrid algorithms,
considering distributed generation.
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