
Design Pattern Based Approach
for Embedded System Design

Yassine Manai, Joseph Haggège, Mohamed Benrejeb
LA.R.A, Ecole Nationale d'Ingénieurs de Tunis, BP 37, le Belvédère, 1002 Tunis, Tunisie

yacine_manai@yahoo.fr, joseph.haggege@enit.rnu.tn, mohamed.benrejeb@enit.rnu.tn

Abstract —This paper deals with a proposed strategy for
embedded system design based on the design pattern approach
and the concept of object-oriented, supported by Unified
Modeling Language (UML). It benefits from a set of
methodologies as co-design approach, design pattern
approach, the language of unified models and abstraction of
information.
The new view in design strategy lays on a proposed design
pattern we call Unified Structure. Further, it examines the
specification and the integration of fuzzy controllers on a DSP
board, in order to control the speed and the torque of a DC
drive. For an experimental validation of this controller a
simulation is carried out in order to generate the code to be
integrated on the DSP board.

Keywords — Embedded system, design pattern, UML, unified
structure, integration on DSP, source code generation.

I. INTRODUCTION
The embedded systems architecture, based on

elementary decomposition of the system, can be considered
as a set of modules, each one being managed by a smart
cell. Each cell, supervised by a main processor, is the
implementation of a processor which controls the operation
of the corresponding module. This architecture is called
“smarts cells structure”. Cell represents a revolutionary
extension of conventional microprocessor architecture and
organization [13].

The aim of this paper is to propose an integration
strategy of a fuzzy controller based on the approach of
design pattern and the object-oriented concept for the use of
a Digital Signal Processor (DSP).

The proposed integration strategy is based on a vision
of embedded systems design which considers the embedded
systems as interconnected smart cells. The structuration of
these cells has a unified characteristic for all the cells of the
system.

This paper is organized as follows: the design pattern
approach is presented as well as the unified model language
UML; then, is examined the embedded system design
process, based on the design partitioning into two parts a
hardware part and software one which will be integrated in
an advanced phase of the design process. Thereafter, the
embedded systems design methodology, based on the design

patterns approach, is developed. Subsequently, an
illustration of the embedded system design vision is treated
and, at this level, the design pattern entitled unified structure
is proposed. A study case is then discussed in order to
design a fuzzy logic controller by exploiting the approach of
the designs patterns. For an experimental validation of this
controller, a simulation is achieved in order to generate the
code to be integrated on a DSP board.

II. DEVELOPMENT OF EMBEDDED SYSTEM DESIGN
STRATEGY

In this section, the implementation of an embedded
system design strategy, by the use of the design pattern
approach, is examined. Furthermore, this approach
illustrates the use of an object-oriented language like UML
for the patterns development.

A. Methodology of embedded system design
The development of an embedded system design

process is considered and a methodology based on the
design patterns implementation and the exploitation of
UML language proposed.

1) Design methodology
Figure 1 illustrates the principle of the embedded

systems design process.

Figure 1. Process of embedded system design

mailto:yacine_manai@yahoo.fr
mailto:joseph.haggege@enit.rnu.tn
mailto:mohamed.benrejeb@enit.rnu.tn

Indeed, in the first phase the requirement definition is
carried out by developing the requirement pattern. The
second phase consists in the analysis by developing the
analysis pattern which divides the system into structural and
behavioral parts. The structural pattern enables us to
implement the design hardware of the system using an
embedded cells library, whereas the behavioral pattern
leads to software development of the embedded system
software. Finally, integration between hardware (HW) and
software (SW) leads to the final realisation of the system.
The major problem in the design process lays in
synchronisation and integration between HW and SW
components.

In this paper, the requirement pattern model is inspired
by the requirement pattern model used by Gamma [12, 13],
well-known in the design pattern world, and classified as
follows:
[Name and classification]: the name consist in describing
the pattern and classification gives the pattern nature:
structural or behavioral.
[Intention]: the intention describes the problem targeted by
the pattern.
[Structure]: the structure gives the pattern structure.
[Constraints]: the constraints describe the operating
conditions and the pattern applicability fields.
[Behavior]: the behavior allows to describe the different
dataflow which manage the design pattern operation
represented by corresponding UML diagrams.
[Consequences]: the consequences describe the objectives
they supported by such pattern.

2) Requirement pattern
The development of the requirement pattern consists of

the abstraction of information encapsulated in a smart cell
model.

Figure entary Unified Structure 2. Elem

The proposal in this domain is the use of a design
pattern called unified structure which allows modeling the

char

fied
stru

Tim

unsp

ication management of the unified structure with
the

e.

f the requirement pattern
cons

e of design pattern is
ttern has structural type.

ssing Unit (CPU), a

bility domains.

 whereas, the abstraction

acteristics of an embedded system starting with the
elementary components until the macroscopic system.

It is about unification in the vision of the control
devices architecture. Any control device is seen as a uni

cture or a network of interconnected unified structure.
The proposed unified structure is based on four basic
components: the Central Processing Unit (CPU) which the
communications components manage the communication
with inputs and outputs, the monitoring unit which allows
the monitoring of the unified structure and the control
component that control the errors. The unified structure is
seen as being a main processor, figure 2; it is on this level
that the programs are executed; each program is stored in an
internal memory. The processor can take various
realisations, a DSP or a microcontroller for examples.

The monitoring unit called the monitor, placed in the
internal memory of the central calculator represents the Real

e Operating System (RTOS) of the unified structure; it
allows the operation management of the unified structure.

The control unit contains an array gathering a system
errors which can be appear and put the system in an

ecified state as well as the corresponding correction
cycle.

Lastly, the communication unit allows the
commun

external world. This unit can contain a great number of
input and/or output modules.

In this paper, the systems, using only one unified
structure are considered.

We describe now the design pattern corresponding to
the proposed unified structur

While referring to the introduction on the design pattern
described higher, the model o

ists of four parts: the pattern name, the concerned
problem, the solution and the sequences which are involved
into this solution. The solution concerns the description of
the pattern structure and the system constraints, while the
sequences relates to the behavioral model description in the
dataflow form and to application consequences of this
pattern.

B. Requirement pattern model
[Name and classification]: the nam
unified structure; this design pa
[Intention]: the intention is an abstraction of the
constitutive components of an embedded system and
encapsulation of the methods and arguments by an object-
oriented technique using UML.
[Structure]: it is composed, as indicated in figure 2, of four
elements: a Central Proce
communication management unit, monitoring unit and
control unit.
[Constraints]: it describes the operating conditions and the
pattern applica
[Consequences]: the application of this pattern allows the
easy re-use of this model,

supported by the requirement pattern, because of the object-
oriented aspect that it supports, allows the data abstraction
which generates the generic pattern in relation to the
systems and what increases the applicability field of the
requirement pattern for the unified structure. The unified
structure, allows as before unifying the vision of
architectures design of the embedded systems.
[Behavior]: it allows describing the data different flows
which manage the operation of the unified structure

states where the unified

tion, the idle state, the standby state and the

2.
 communication with the external world.

4.
it must

represented by corresponding UML diagrams. Two families
of data flows are distinguish: the entity data flow family and
the functionalities data flow one. The first family concerns
the creation and states of unified structure, whereas the
second family data flow devoted to management of the
unified structure functionalities. Initially, the state data flow
of a unified structure is presented, and then the data flow of
management of the unified structure functionalities are
approached, once implemented.
- First data flow: state flow. The state flow chart, figure 2,
allows to describe the various
structure can be. It acts of determining the data flow of the
unit which manages the actions progress in the unified
structure, the monitor. In the monitor program, it is
necessary to take in consideration of the following
constraints:

1. It allows the startup unified structure, initialisation,
opera
stopped state. Thus, it manages the various states
in which the system can be, including extreme
cases.
The monitor allows the management of the unified
structure

3. It manages the priority of the controls and
messages as well as the standby state in the unified
structure, i.e. it manages the multitasking.
It identifies the system errors in collaboration with
the control unit. When the error identified,
execute the suitable correction cycle.

Figure 3. State diagram of unified struture

Thus, the monitor operation can be described graphically
using UML diagrams, namely the state – transition diagram
and the activity diagram.
The following states are distinguished: the normal behavior
state, the stopped state, the wait state and idle state. The
state diagram, figure 3, allows describing these various
states of the system.
- Second Data flow: the main program flow. It is about
the program which manages the tasks progress in the unified
structure, figure 4, the UML activity diagram is used to
describe this function.

Figure 4. Programs execution

The central computer allows executing the programs which
are classified by set of priorities by the unit of monitoring.
The central computer can be in various states according to
events which occur. During the execution of such a
program, it can occur: an intervention by the monitor which
requires the program to stop to execute a high priority
instruction. When a system error occurs, the monitor saves
the system state, launches a correction cycle according to
the error, then takes again the program starting from the
stopped point.

- Third data flow: communication management flow.
This data flow allows the management of the input/output
flow.

Figure 5. Input/Output flow management

The communication interface includes the interfacing
components with the unified structure, i.e. the input/output
flow mandatory circulates through this component. The
monitor allows, by the means of a program, to manage this
interfacing flow. First, the monitor identifies the flow
nature: input or output; if flow is an input flow, then launch
the reception program so not launch the emission program.
An output flow is identified from a message sent by the
central processor to the monitor. To identify an input flow,
the communication interface sends a message to the monitor
to inform it of the signal entering to the system. The monitor
receives various messages, affects to it a priority level and
decides suitable action to take: either it answers the message
by launching the corresponding program, or it puts it into a
queue.
In figure 5, the data flow graph, responsible for the
communication management in the unified structure, is
presented. The UML activity diagram is used to describe the
communication sequences.

- Fourth data flow: errors management flow. The errors
are managed by the control unit. When an error occurs, it
will be detected by the program controller, and will be
executed according to the following flow diagram, figure 6.

Figure 6. Search of errors

III. CASE STUDY
In this section, we propose to apply the unified structure

technique to control the speed and the torque of a
DC drive.

w emC

 The controller architecture is given by the figure 4. The
objective of the programmable control device, based on
DSP TMS320LF2812, is to allow the implementation of a
fuzzy logic control law [2, 3, 6] to control the speed of a DC
drive and to limit the current. The control device will be
modelled as a unified structure, applying the proposed
approach of the designs pattern developed higher.
We propose to model the DSP fuzzy logic control device by
the means of the unified structure; its structure is given by
figure 7.

C
om

m
un

ic
at

io
n

un
it

 Monitoring
unit

 Central
processing

unit

Control
unit

DSP
TMS 320F2812

 Speed
measurement

DC Drive

Driver

H_Bridge
converter

Figure 7. Control structure

The model of this controller, with the requirement pattern, is
as follows:
[Name and classification]: [FuzzyController; structural
pattern].
[Intention]: abstraction of the designed controller
containing fuzzy logic and encapsulation of the methods and
the arguments by the object-oriented technique, supported
by UML.
[Structure]: the fuzzy controller unified structure has two
inputs, the error ε and the delta_error Δε, and one output
control signal Δu is given by figure 8.

Translation
 to
fuzzy sets

 Inference
mechanism

Translation
 to
real values

Knowledge base

Fuzzification Defuzzification

uc
uΔ

Δε

ε

Figure 8. Fuzzy logic controller structure

By examining the unified structure during the design of
such a controller, the inference mechanism is seen as the
central processing unit of the design pattern, the
fuzzification as an input communication interface and the
defuzzification as an output interface.

Monitoring Unit

Monitor(): void

Central Processing
 Unit
Inference() :void
Add_Rule():void
Delete_Rule():void

Control Unit

Control(): void

Interface Unit

Reception(): void
Emission (): void

Fuzzifier
Fuzzification()

Defuzzifier
Defuzzification()

Figure 9. Control Unified Structure

Design pattern implementation of the fuzzy controller,
according to the unified structures technique, figure 9, is
presented as follows:
- the basic classes definition: central processing unit class,
admits the following functions:

 inference mechanism method: Inference();
 addition rule method: Add_Rule();
 suppression rule method: Delete_Rule().

- the second class: fuzzifier class, contains the methods:
 fuzzification method: Fuzzification();
 input reception method: Reception();
 output emission method: Emission().

-the third class: defuzzifier class, contains the method:
 defuzzification method : Defuzzification().

- the fourth class monitor class, allows managing the
operation progress of the system using the method:

 monitoring method: Monitor().
 - the last class, control class, controls the system against the

errors with the method:
 control method: Control().

[Constraints]: Knowledge Base
The establishment of the relation between the inputs

and the outputs of the system represents the significant part
of the fuzzy controller. This relation must be correctly
implemented in order to obtain the desired performances of
the fuzzy logic controlled system.

The setting of the rules is managed by the Add_Rule()
methods and Delete_Rule() of the central processing unit.

Table 1 shows the base of rules Ri chosen in this study.

TABLE I. Inference

 ε
εΔ

GN

MN

ZE

MP

GP

GN ZE PP MP GP GP
MN PN ZE PP MP GP
ZE MN PN ZE PP MP

MP GN MN PN ZE PP
GP GN GN MN PN ZE

[Behavior]: The behavior part in the model of the
requirement pattern for the unified structure is
described by the methods Fuzzification(), Inference() and
Defuzzification(). These methods are illustrated as follows:
- Fuzzification
This fuzzy logic controller development phase is managed
by the module Fuzzifier class. Initially, the reception
method of the input is launched, thereafter the method of
membership functions is launched to transform the data in
the linguistic field. The cycle starts again if there is new
input. This algorithm, implemented by the Fuzzification()
method, belongs to the Fuzzifier class of the communication
interface.
The membership functions are chosen of triangular form;
this choice is justified by the simplicity of implementation
of these functions on a digital computer.
- Inference mecanism

The sum-product inference method is adopted in the
inference mechanism. This method is given by the following
algorithm, where:

; ; ; iruleisRiconditioniscon iis operatio iii

 condition membership function evaluation :
() ()

⎩
⎨
⎧ Δ×

=
otherwise 0

 verifiediscondition theif εμεμ
μ ii

i

OO
C

 membership function of the rule Ri computing :
() () 1,2,...,

i i iR C Ou u iμ μ μΔ = × Δ = m
 resultant membership function calculation :

() () () ()[uuu
m

u
mRRRRES Δ++Δ+Δ=Δ μμμμ . . . 1

21
](1)

The Inference() method of the central processor is
developed according this algorithm. Thus, the value of the
control signal variation to be applied to the engine is
obtained. This quantity is then defuzzified into a real value.
The main program is responsible of the organisation of the
tasks execution progress in the unified structure. This
program is given by the flow chart described in the
preceding sections.
To examine the flow management supported by the monitor,
figure 10 illustrate the principle of flow management in
fuzzy logic controller.

Figure 10. Management of fuzzification and defuzzification flow

- Defuzzification:
In this last stage, the results obtained by the inferences

rules must be defuzzified to convert them into concrete
numerical values.

To achieve this goal, the centroid method is used; it is
given by the following expression:

()

()∑

∑

=

=

Δ

Δ⋅Δ
= m

u
RES

m

u
RES

c

u

uu
u

1

1

μ

μ
 (2)

Where m is the number of rules contained in the rules base.

IV. EXPERIENTAL VALIDATION
In order to design a fuzzy logic controller following

stages are taken into account:
 choosing the inputs and outputs variables;
 defining inference rules of and the memberships

functions;
 developing inference mechanism;
 choosing a defuzzification strategy.

A Proportional Integral (PI) control law, given by
equation 3 is considered:

() k
i

pkkpk
Tkku ε
τ

εε +−=Δ −1 (3)

 where constant integral gain; alproportion isis k ip τ

A. Application to D.C. drive
The proposed fuzzy controller of studied system

combines a conventional controller with a fuzzy one by
adaptation of the virtual set point [2]. The developed
simulation blocks include PI-fuzzy controller block,
a DC-PWM block, a DC drive model block, a speed
measurement block and an H-Bridge converter block,
figure 11.

Figure 11. Composite PI-Fuzzy Control of speed

The figure 12 shows the behavior of the controlled
system with a composite controller PI–fuzzy at the time of
the application of order speed , which

become at .The resistant torque

is

1.150 −= sradwref

1.300 −= sradwref st 40=

N.mCr 10= as initial value which become

N.mCr 50= from . The advantage of this control
that is the speed does not present any overshot.

st 50=

0 20 40 60 80 100
-50

0

50

100

150

200

250

300

350

t(s)

w
(r

ad
/s

)

wref pass
from 150 to 300 rad/s

Cr pass
from 10 to 50 Nm

Figure 12. Answer of speed

Figure 13 shows the behavior of the current. The
starting current of the system is less than 40 A, at the time
of application of the resistant torque the current present a
surpassing and his value stabilises to 45 A.

0 20 40 60 80 100
0

10

20

30

40

50

60

t(s)

Ia
(A

)

Cr

Cr pass
from 10 to 50 Nm

wref pass
from 150 to 300 rad/s

Figure 13. Current behavior

To integrate the code in DSP board, an example of this code
generated for the initialisation part is given by the following
listing:
 .def _DSP28x_usDelay
 .sect ʺramfuncsʺ
 .global __DSP28x_usDelay
_DSP28x_usDelay:
 SUB ACC,#1
 BF _DSP28x_usDelay,GEQ ; Loop if ACC >= 0
 LRETR
;There is a 9/10 cycle overhead and each loop
;takes five cycles. The LoopCount is given by
;the following formula:
;DELAY_CPU_CYCLES = 9 + 5*LoopCount
;LoopCount = (DELAY_CPU_CYCLES ‐ 9) / 5
.def _DSP28x_usDelay

B. Results
To determine the behaviour of the system showing the

different states and events, the Gantt diagram, figure 14,
allows to illustrate the different tasks according to the
number of cycles T, with examining the different states in
which the system can be.
The following states can be identified:

- The normal behavior state, during which the system
determines the control signal and sends it to the driver
to adjust the speed of the DC drive by the means of the
communication interface. The computing of the fuzzy
logic control signal is executed as follow: fuzzification
of the error, fuzzification of the error variation,
constraints establishment, mechanism of inference and
defuzzification. The setting of the rules base is
independent of the fuzzification.

- The power turn-on management: which allows
optimising the power consumption, the stopped state is
entered when the initialisation of the system fails.

- The errors management: during which the system
makes the error identification, this is achieved during a
cycle, and consequently, the monitor launches the cycle
of correction during two cycles or three cycles
according to the error category.

- The priority management is necessary during the
management of a message flow of various places.
Initially, the monitor receives the new message; if it has
a high priority, it is sent to the processing unit to be
processed, if not, it is stored into a queue.

- The Identification of the messages in order to launch
the suitable program: after the reception of the message
in a cycle, the monitor identifies the message into the
same period; if the message is a reception order then the
monitor launches the program of reception which lasts
two cycles, if the message is an emission order, the
monitor carries out the emission program during two
machine cycles.

V. CONCLUSION
The presented works are related to the design and the

integration of an intelligent controller on a DSP. A strategy
of integration of a controller based on the concept of design
pattern by using a digital signal processor was developed
and implemented. The proposed strategy is based on the
partitioning of the design in two parts: a hardware part and a
software part which will be integrated in an advanced phase
of the process of design. In order to simplify the re-use of
the control components, a vision of embedded systems
design based on the introduction of a unified structure is
illustrated. This vision consists with the implementation of
a design pattern called unified structure, responsible for the
modeling of control device in an embedded system. The
approaches using this principle are based on the use of the
designs pattern. A case study based on the fuzzy logic
control of a DC drive is discussed in order to validate the
approach of design, based on the unified structure. Lastly,

the experimental validation of the integration of the control
device on DSP board was made.

[10] M. Broy, “Requirements Engineering for Embedded Systems”, Proc.
First Workshop Formal Design of Safety Critical Embedded Systems
(FemSys), Apr. 1997.

[11] Z. Balanyi and R. Ferenc, “Mining Design Patterns from C++ Source
Code”, Proceedings of the International Conference on Software
Maintenance (ICSM’03), IEEE 2003.

VI. REFERENCES
[1] F. BETIN, “Energie Electrique et Systèmes Associés”, CREA –

UPRES 2002. [12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns :
Elements of Reusable Object-Oriented Software”, Addison-Wesley
Pub Co, 1995.

[2] P. BORNE, J. ROZINOER, J. Y. DIEULOT, “Introduction à la commande
floue”, Technip, Paris, 1998.

[3] H. BÜHLER, “Réglage par logique floue”, Presses Polytechniques et
Universitaire Romandes, Lausanne, 1994.

[13] J. A. Kahle, M. N. Day, and D. Shippy, “Introduction to the Cell
multiprocessor”, IBM Journal of research and Developemnt, Volume
49, Number 4/5, 2005 [4] J. Y. HAGGEGE, “Sur La Synthèse de processus complexe par des

méthodes neuro-floues”, Thèse de Doctorat, Enit, Tunis, 2003. [14] S. Konrad and B.H.C. Cheng, “Requirements Patterns for Embedded
Systems”, Proc. IEEE Joint International Conference Requirements
Eng. (RE ’02), Sept. 2002, Washington, DC, USA.

[5] D. DUBOIS, H. PRADE, “Fuzzy sets for intelligent systems”, Morgan
Kaufman Publishers, San Mateo, 1993.

[15] S. Konrad, B.H.C. Cheng, and L.A. Campbell, “Object Analysis
Patterns for Embedded Systems”, Technical Report MSU-CSE-04-29,
Computer Science and Eng., Michigan State Univ., East Lansing,
Oct. 2004.

[6] E. MAMDANI, “An experiment in linguistic synthesis with a fuzzy
logic controller”, International Journal on Man Machine Studies, 7,
pp. 1-13, 1975.

[7] T.TAKAGI and M.SUGENO, “Fuzzy Identification of Systems and Its
Applications to Modelling and Control”, IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-15, N° 1, 1985.

[16] F. Pospiech, S. Olsen, “Embedded Software in the SoC World. How
HdS Helps to Face the HW and SW Design Challenge”, IEEE 2003
CIC Conference, pp 653-558 ; [8] G. Majauskas, V. Stuikys, “Application of Design Patterns for

Hardware Design”, DAC 2003, Anaheim, California, pp. 48-53. [17] B.P. Douglass, “Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks and Patterns”, Addison-Wesley,
Cambridge, 1999.

[9] R. Ernest, “Codesign of embedded system : Status and Trends”. IEEE
Design & Test, pp. 45–54, 1998.

[18] C. Alexender, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King and S. Angel, “A Pattern Language ”, Oxford University Press,
Oxford, 1977.

Tasks T 2T 3T 4T

State1 : Normal Behavior
 Get input, ε error
 Fuzzification of error
 Fuzzification of delta error
 Inference mechanism
 Defuzzification
 Emitting of the control signal

State 2 : State of error management
 Error identification
 Launch of correction cycle

State 3 : Identification of message
 Getting message
 Identification test
 Reception Reception program
 Emitting Emitting programme

State 4 : Priority management
 Getting message
 Priority test
 Priority send message
 Non priority store message

State 5 : Power management
 Initialisation
 Put on standby
 Setting in idle state
 Setting in stopped state

Figure 14. Gantt Diagram of operating state of unified structure of PI-fuzzy controller

	I. Introduction
	II. Development of embedded system design strategy
	A. Methodology of embedded system design
	1) Design methodology
	2) Requirement pattern

	B. Requirement pattern model
	III. Case study
	[Constraints]: Knowledge Base

	IV. Experiental Validation
	A. Application to D.C. drive
	B. Results

	V. Conclusion
	VI. References

