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Abstract: This paper proposes a design of a robust and a 
simplified dynamic model for a class of cables robots in an 
under-actuated mode. The objective is to use the under-
actuated mode to provide a robust dynamic model which is 
derived from geometric and Kinematic equations. The 
analysis of the system is ensured under severe constraints 
on the cables robot. An extension to control, based an 
observer by comparing two methods, is given when the 
observer is designed independently of the controller. The 
two observers are the EKE and the SODTSM Observer. 
High performances are shown through numerical 
simulation.  
 
Key words: Cables Robots Model, Under-Actuated Mode, 
Geometric/Kinematic Equations, Extended Kalman 
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1. Introduction 
 In automated systems, particularly on 

production lines, robot manipulators are often used to 

facilitate assembly procedures to improve the quality of 

the assembled product [1] and to increase the quantity 

produced by reducing assembly time. Their use, 

however, is not only limited to this type of activity but 

also extends to various other fields such as military, 

medical [2] and others. 

In recent years, a special class of parallel robots in 

which the rigid links are replaced by flexible links that 

are obtained thanks to the use of cables, have been 

studied. The effectors, terminal of the latter, east 

connects to the base by a number of active cables, the 

lengths of which make it possible to control the desired 

position and the orientation of this latter. This structure 

offers us several advantages compared to that of the 

classical robots [3]. Indeed, the use of cables facilitates 

the work on robots of high speed such as those 

presented by the work of [4] where the speed was of 13 

m.s−1 (all with observing the stability conditions and 

absence of the vibrations of the system). In the field as 

of parallel robots, much of research tasks are published 

on the dynamics and the aspects of control of the latter 

[5-6] 

However, in comparison with the great quantity of 

published works on the modelling of the classical 

robots, some articles were published on the control and 

state estimation of cable robots: approaches based on 

robust regulators PID [7], approach based on Lyapunov 

stability [8] and the genetic algorithms to generate a 

fuzzy PID [9]. However, an important part of recent 

works focuses on the state estimation to supervise and 

control these types of nonlinear systems [10-11-12-15] 

which exist in the literature. The use of observers can 

already guarantee fault detection, isolation and 

estimation [13]. 

But the disadvantages of these approaches are related 

mostly to two considerations: 

 * The consideration of the global model [5-6-22] with 

an extensive number of variables and parameters, 

which make the stability and the real time 

implementation very difficult (taking into account the 

computation time, the sampling time ...).  

* The use of control sequence structure which contains 

too many parameters [23] to be searched / or are 

dedicated to a typical example (robots with elastic or 

rigid cables, with or without disturbance ...) [24-25] / 

or based on the exact knowledge of all the states of the 

model [7-8] 

These limitations motivate the design of a simplified 

dynamic model in an under-actuated mode with a very 

simple strategy for observer based feedback control. 

This paper proposes a simple and effective model in 

under-actuated mode to reduce the complexity of the 

full model and to avoid later the large number of 

actuators / sensors based on work of [21]. This also 

allows reducing the control sequence. The control will 

be generated based on an observer while guaranteeing 

a desired vector position. Two observers will be later 

applied on the model found, in the comparison purpose 

based on the work of [14] and [16]. 
This work is organized as follows. In Section 2, we will 
state the problem and present the preliminary. Next, in 
Section 3, we will give in details the steps of modeling 
the cables robot in under-actuated mode. Section 4 is 
dedicated to an extension to the state estimation (using 
the EKF) and the feedback control condition. Section 5 
is devoted to the well-known performance of the 
proposed approach through a (validation of the 
proposed model and the feedback control) numerical 
simulation with a comparative study. 
 
 

mailto:assem.thabet@yahoo.fr


 

 

2. Problem Formulation 

The cables robot considered in this paper is presented 

in Fig.1.  

 

Fig.1. Cables Robot with 8 motors. 

This kind of robot is known for its high speed and high 

precision in order to record biological signals of the 

insects by moving the electrophysiology device to stay 

closer to the insect. For this robot, the cables 

connecting the base fixes at the mobile platform 

(effectors) are used as transmission resource. The 

coordinated control lengths and/or tensions in the 

cables make it possible to move and apply efforts to the 

level of the effectors. The modelling of the robot then 

consists in making a geometrical, kinematic and 

dynamic analysis by the adaptation of a mathematical 

tool of the behaviour of the robot [17-18-19-22-23-25]. 

As shown in figure 1, the robot considered in this work 

is composed of eight cables connecting a base, a 

parallelepiped form provided with eight engines and 

with mobile effectors with six degrees of freedom. The 

geometrical problem consists in determining the 

lengths of the cables (vector with eight elements) 

starting from the vector with six elements describing 

the position and the orientation of the effectors. The 

engines allow to roll up cables and thus to control the 

position of the mobile effectors [17-21]. 

In order to reduce the number of parameters and 

variables of the robot while guaranteeing the same 

sequences of operations, we have to reduce the number 

of actuators (motors). This is feasible with an under-

actuated mode. To do so, we reduce the number of 

motors: only 4 instead of 8. The reason for the choice 

of which engine must be considered, is the motor that 

is at the intersection of each three axis of a plane. 

Then, the considered robot becomes as given in Fig.2. 

 

 

 

 

Fig 2. Cables Robot with 4 motors (under-actuated mode). 

So, the considered robot contains:  four cables 
connecting the base to the effector moving in six 
degrees of freedom and four points of cable output, 
denoted “Ai” on the base. Also, there are four 
attachment points of the cables on the effector, rated 
“Bi”. The vectors rAi and rBi are the respective 
coordinates of these points: rAi  is expressed in the mark 
  0 0, , ,R x y z and rBi in  the mark  1 1 1 1 10 , , ,R x y z . 

This paper focuses thereafter on modelling to develop a 
robust model with fewer parameters and variables. An 
extension to the feedback control based on observer 
with a reference position vector is given. 
 
3. Model of Cables Robot 

This part focuses on developing a robust model of the 

cable robot in under actuated mode while maintaining 

the same performance in full order. In order to find a 

state space model, the geometric model and the 

kinematics and dynamics must be defined [21-22-23]. 

3.1. Geometric Model 

Choosing A3 as the origin of a fixed reference mark 

R0 is the second pointer R1 placed at the gravity of 

the effector. 

          Fig. 3: General Diagram of the system 

As shown in Fig.3, the lengths li of the cables are: 

i Ai Bil r r              ,     1,..., 4i         (1) 



 

With : 

• rAi the vector of position of Ai (i = 1, 2,…,4) 

compared to R0. 

• rBi the vector of position of Bi (attachment of the 

cable on the effector, i = 1, 2,…,4) compared to R0. 

The vectors rAi are obtained by a simple projection on 

the reference mark R0. 

                                 (2) 

In the same way, the vectors rBi are given after a 

transformation of the reference mark R1towards the 

reference mark R0: 

                      
1 1.Bi O Bir r R r 

             (3) 

 rO1 : The vector of position in the beginning O1 of 

the reference mark R1 compared to R0. 

R : the orientation matrix of  the effector compared to 

the reference mark R0 with: α the swing angle 

compared to axis Z, β the swing angle compared to 

the axis Y and γ the swing angle compared to axis X. 
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 rBi1 : the vector of position of Bi compared to R1. 

Using the projection on the reference mark R1 ( 

Fig.4), the vectors rBi1 : 

 

Fig. 4.  Connections between the cables and the effector. 

(5) 

3.2 Kinematic and dynamic model 

The kinematic analysis consists in determining the 

principal relations between the Cartesian variables and 

the articular ones of the movement of the robot.  This 

model is obtained by deriving the geometric model 

described above in which the Jacobian matrix is 

defined as the ratio between the speed of the actuator 

and the speed of the driven cable. The kinematic 

problem consists in determining the variations in the 

lengths of cables: 

 

(6) 

 

The speed of the effector can be described by: 

 1

T

Or v w x y z    
 
 
   (7) 

 

With v=[x  y  z]
T
 (m.s

-1
) is the speed of the gravity 

centre of the effector and  

 w=[α  β  γ]
T
 (rad.s

-1
) its angular velocity. Then the 

kinematic model is [17-21]: 

                         1. Ol J r
   (8) 

Where the Jacobian matrix J is given by: 

 

(9) 

The general dynamic equations of the movement can 

be obtained starting from the formulation of Lagrange 

whose equation can be written, by taking account of 

the generalized forces or the couples, in the following 

form [21-22]: 

 

 
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V qd
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-  The variables q  and q  are respectively the position 

and velocity vectors.  

 - V being potential energy and T kinetic energy of 

the system, where:

  

 

(11) 

 

IO1 is the tensor of inertia at the origin of the R1 

reference mark: 

1
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In this study, each cable is supposed to be an element 

of force. Consequently, the potential energy of the 

system is due only to the forces of gravitation. This 

energy is expressed by [18] : 

. .V mg z         (13) 
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(‘m’ is the mass of effector and’ g’ the gravity 

acceleration). 

The relations between the outside of the effector and 

the tensions of the cables which are necessary to 

maintain the system in balance are given by the 

following relation: 
T

x y zF F F M M M J u         (14) 

With: 

  Fx,Fy,Fz : external forces on the effector  in 

a reference point. 

  Mα,Mβ,Mγ : External moments on the 

effector. 

  u: control vector. 

Following a series of transformations and substitutions 

and after the simplification of expression (14), the 

equation of the movement is expressed by the 

following general form [20-21]: 
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d  : Vector of the terms of the external disturbances. 

3.3 State Space Model 

Using the dynamic model found, let’s consider: 
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Using eq (14) and 1 2
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Eqs (16) and (17) can be rewritten easily in this basic 

discrete-time form using Euler discretization with a 

step size Te: 
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Where A=I12. 

4. Extension to State Estimation and Feedback 

control 

In this section an extension to state estimation and 

control will be presented. The strategy is like a 

feedback control based on observer [26-27] but in an 

iterative way (online and not after an observer gain 

calculated offline). 

The main problem in dynamic state estimation of cables 

robot is that few methods are applicable. Effectively, 

the numerous and strong nonlinearities in presence lead 

generally to the use of EKF to resolve the state 

estimation problem. The advantages of the EKF are its 

simplicity. The fact is that it is a recursive algorithm 

and its computational load is modest too. The EKF is 

suitable for real-time industrial-scale applications with 

the development of the DSP devices.  

A simple version of EKF used as an estimator (EKE) is 

given by [14]: 
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Rk and Qk are respectively the covariance matrix of the 

system noises ( k ) and measurements ( k ).  A proof 

of convergence of this Filter is given with details in 

[14] where the matrices Qk and Rk are chosen as 

follows: 
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where   and  have to be chosen large and positive and 

and  a positive scalar fixed by the user.  

For the synthesis of the control law, the simplest 

classical expression commonly used is as follows: 
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Remark: 

However in some cases the J matrix is not invertible 

(The term  
1

TJ


 does not exist). The solution is the 

use the pseudo-inverse of this matrix (  
1

TJ JJ


). 

Similarly for the term 1( )M x . 

 

Now, for the sequence of control taking into account a 

desired vector (
T

d d d d d d dq x y z  ) 

, with the use of equation (21) and the estimated state 

vector ( x̂  ) , it’s simple to find an expression of ‘u*’ 

ensuring a desired vector qd: 
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The expression (22) can be easily generalized for 

discrete time systems. 
 

5. Simulation Results 

The considered robot in this work is composed of four 

cables (as shown in Figure 2) connecting a 

parallelepiped base of form of four engines to an 

effector of mobile cylindrical form to six degrees of 

freedom.  

The different parameters of this cables robot are: 

 * Mass m = 20kg; Gravity g=9.81 

 * Dimensions of the base are: h1 = 400 cm; h2 = 200 

cm; h3 = 200 cm. 

 * The ray r of the effector, the distance d between the 

gravity centre and a Bi point and the angle θ which 

separates two points from the cables with the effector 

compared to the reference mark  R1 are respectively: 

d=10; r=5;
3

 ; 

5.1 Model Validation 

The purpose of this part is to validate the model of the 

cable robot proposed in this paper (geometric & 

dynamic described in Section 3). The parameters 

defined above make it possible to determine the 

geometric model of the robot (defined in section 3.1). 

This model, therefore, allows the determination of the 

cable lengths given by equation (1).  

Let us assume that the effector is in the middle of the 

fixed base: 
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Now by deriving the geometric model and knowing the 

value of the Tensor of Inertia, we can easily solve the 

the dynamics equation (15) of the robot (dynamic 

model given in Section 3.2). Furthermore, the 

application of a control makes it possible to move the 

effector with a position defined by qd. For example, to 

move the effector towards the desired position and the 

orientation:  [100 150 100 30 60 30]
T
 , we apply the 

control law given by equation (21). The result of the 

simulation (the position of the effector) is given in 

Figure 5: 

 

Fig. 5. The Effector in the desired position 

Where the lengths of cables are: 

1

2

3

4

210.9583 101.4537 98.3259 ;

191.6631 105.6156 104.895 ;

189.796 96.7593 96.7787 ;

209.0912 100.9212 106.4422 ;

T

T

T

T

l

l

l

l

 

It is clear after this simulation that the proposed Under-

Actuated model achieves the desired position with only 

4 motors and cables.  

5.2 Feedback control 

This section focuses on the control based on observer 

(EKF used as an estimator based on equation (19)) 

with a desired position vector qd : [100 90 80 60 30 

30]
T
. This control strategy is articulated on State Space 

Model defined in equation (18). For discretization, the 



 

 

step size is equal to Te=0.01s. The initial estimated 

state vector was selected as follows: 

ˆ (0) 180 100 100 10 10 10 1 1 1 0 0 0
T

kx

In this phase of simulation, a noise was added to the 

system (τd=0.5*I12) and output: sinusoidal signal with 

variable frequencies (between 10 Hz and 140 Hz) and 

amplitude (±3% of the real value of y). We consider 

these proposed values of kQ  and kR  based on equation 

(20): 
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Figs. 6-7 present respectively the real state x1(k) and its 

estimated and the control u1(k) based on equations (19) 

and (22). 
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Fig. 6. Response of real x1(k) and its estimate. 
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Fig. 7.  Evolution of u1(k). 

Figures 6 and 7 show that the control sequence 

stabilizes the system. The estimated state converges to 

real one with a guaranteed desired vector (position 

vector) without error or biased result. Now, the added 

noise to the system (τd=0.5*I12) and output are a 

sinusoidal signals with variable frequencies (between 

10 Hz and 140 Hz) and amplitude (±10% of the real 

value of y). Figure 8 presents the evolution of error 

estimation ( 10 10ˆ( ) ( )x k x k ): 
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Fig. 8: Evolution of error estimation  

It’s clear from Fig 8 that the EKF used as an estimator 

with the proposed choice of Qk and Rk (eq (23)) ensure 

good performances with error estimation converges to 

0 in the presence of noise. 

5.3 Comparative Study 

In order to prove the contribution acquired on the 

convergence, let us consider the same proposed system. 

First, we have tested the proposed approach compared 

to [16] while considering the same noise in the first 

part of simulation. Figure 9 presents the response 

of 4̂( )x k . 
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Fig. 9.  Response of 4̂( )x k . 

Figure 9 shows that the method of [16] presents a high 

pick on transient regime with little noise compared to 

the proposed approach.  

Second, we increase the vector (τd=λ*I12) while 

considering the same noise in the first part of 

simulation. Then, these conditions lead to the following 

comparative Table 1 (where in C there is a solution 

ensuring convergence and in D there is divergence):  

 



 

Table 1. The result of Convergence with variables “λ”. 

 
λ 1 5 10 15 

Proposed 

Method 
C C C C 

Method of 

[16] 
C C Biased D 

 

From Table 1, it is clear that the proposed method 

ensures convergence with a large value of “λ” 

compared to the method of   [16]. 

 

6. Conclusion 

Efficient robust model for a cables robot is presented in 

this paper. The use of the under-actuated mode has 

ensured the stability and the same performances of full 

order model. A very simple strategy of control based on 

EKE with a desired position vector has confirmed the 

high quality of estimation and control offered with the 

presence of noises where the amplitudes and 

frequencies are variable. The remaining open question 

is: the application of the proposed method to a large 

scale of decentralized/distributed cables robots and the 

real time implementation? This issue will be 

investigated in the near future. 
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 Nomenclature 

EKF: Extended Kalman Filter. 

EKE: Extended Kalman Estimator. 

DSP: Digital Signal Processing. 

Dll: degrees of freedom. 

SODTSM: Second Order Discrete-Time Sliding Mode. 

C: cos(.) 

S: sin(.) 
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