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Abstract: Three-phase Power-Quality Indices (PQIs) 

can be used to quantify and hence evaluate the quality of 

the Electric Power Systems (EPS) waveforms. In this paper 

the three-phase power components definitions contained in 

the IEEE Standard 1459-2000 for-balanced and 

unbalanced three-phase systems with non-sinusoidal 

situations are reformulated using the Empirical Wavelet 

Transform (EWT). EWT technique is applied on a balanced 

and unbalanced three-phase signals to estimate three-phase 

PQIs. This technique first estimates the frequency 

components and then adaptively tunes the wavelet and 

scaling function based on the boundaries to decompose the 

signal accurately and there by using EWT-based 

reformulated indices, three phase PQIs can be accurately 

estimated. It can be observed from the results that EWT-

based PQIs for balanced and unbalanced three-phase 

supply are very close to the true values. 
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1. Introduction  

   Power Quality (PQ) is defined as a 

combination of voltage quality and current quality 

[1].Voltage quality can be defined based on how much 

deviations exist between the actual voltage (or current) 

and the ideal voltage (or current) waveforms .The ideal 

voltage (or current) should have sinusoidal wave shape 

with fixed magnitude and fixed frequency as their 

nominal values. Voltage and/or current deviations are 

considered as power quality disturbances. The PQ 

disturbances can be categorized into stationary and non 

stationary signals. The stationary signal is the one in 

which mean and variance do not vary with time while 

in the case of a nonstationary signal, either of them or 

both may vary with time. Since most PQ disturbances 

are noisy and nonstationary in nature, and advanced 

signal processing technique is required to accurately 

decompose the nonstationary power signal and 

determine the location of frequency components in 

time as well. 

The traditional Power Quality Indices definitions can 
be found in the IEEE standard 1459-2000[2,3] based 
on the frequency domain approach using the Fourier 
Transform:(FT).Frequency domain approaches suffers 
from high computational burden and loss of time 
information 

     Reference [4] presents an interesting review of 

mostly used signal-processing techniques for the 

estimation of PQ indices and algorithms for classifying 

power disturbances. The Discrete Wavelet Transform 

(DWT) has been frequently used for evaluating the 

quality of nonstationary power signals [4] .  

 

   Discrete Wavelet Transform (DWT) has been 

successfully used for solving PQ problems in the 

electric power system network [4]-[6].Wavelet packet 

Transform (WPT) is a generalization of the wavelet 

transform that can provide a time-frequency 

representation of any nonstationary waveforms without 

loosing any time or frequency related information. 

WPT was proven to be very effective to analyze many 

power quality disturbances and accurately measure 

many electrical quantities. The main advantage of 

using WPT over other wavelet transforms is that it can 

provide uniform frequency bands therefore identifying 

more frequency components especially at high 

frequency in [7]. 

  The literature survey reveals that the analysis of a 

signal with the discrete wavelet transform (DWT) or 

the Wavelet Packet Transform (WPT) requires proper 

selection of mother wavelet, decomposition levels, and 

sampling frequency. The selection of these parameters 

along with a suitable choice of a mother wavelet differs 

for the signals containing different frequency 

components and this limits the application of DWT and 

WPT to analyze real-time nonstationary signals. 

 To overcome these drawbacks, various adaptive 

techniques have been proposed, such as the S-

transform and recursive Newton-type algorithm, to 

assess the PQ indices for stationary and nonstationary 

signals. In the literature, parametric high resolution 



 

 

methods, such as the prony, ESPRIT, and root-MUSIC 

methods [8] have been proposed to calculate the PQ 

indices. Recent contributions have extended the 

concepts to hybrid methods using DFT and parametric 

methods [9]-[12].  

Recently a new approach, empirical wavelet transform 
(EWT), has been proposed to build a family of 
adaptive wavelets capable of extracting different 
components of a signal. This method has an advantage 
of adaptability according to the analyzed signal and can 
isolate the different modes of the signal. An attempt 
has been made in this paper to utilize the self-
adaptiveness of the EWT in estimating the PQIs. The 
accurate frequency estimation and adaptive wavelets 
makes this technique well suited to analyze the 
stationary and highly distorted non-stationary signals. 

              The remainder of this paper is organized as 

follows: Section II presents a review of EWT technique 

required to analyze the signal. Then, the EWT-based 

PQ indices for three-phase system are listed in Section 

III. In order to investigate the effectiveness of this 

method, EWT-based three-phase PQ indices are 

calculated in section IV. Finally, the conclusion is 

given in Section V. 

2. Empirical Wavelet Transform 

   EWT is a recently proposed method to adaptively 

detect the different modes of the signal and 

consequently construct the empirical wavelets to 

represent the signal by different modes detected. 

Empirical wavelets means constructing a set of 

wavelets adapted to the processed signal, i.e. in Fourier 

domain means constructing a set of band-pass filters 

[13, 15]. Adaptation here lies in detecting filter 

supports according to the information located in the 

processed signal. Modes can be viewed as the principal 

components (referred to as amplitude modulated and 

frequency modulated (AM-FM) components) of the 

signal which represents the signal completely [13, 15] 

   The adaptableness in this transform is provided by 

the segmentation of Fourier axis is done in away so as 

to separate different portions of the spectrum which 

correspond to modes that are centered around a specific 

frequency and of compact support. To find such 

boundaries we find the local maxima’s in the Fourier 

spectrum [13].   

   Consider a real signal  x n , which is sampled at a 

frequency of fs .First apply the FFT to the discrete 

signal   x n  to find the frequency spectrum  X   and 

then obtain the set of maxima   1,2,.....,n n N
 


 in the 

Fourier spectrum by means of the magnitude and 

frequency distance thresholds and infer their 

corresponding frequency n .Here N is the number of 

frequency components assessed using FFT. Now with 

this set of frequencies 

  1,2,....,n n N
 


 corresponding to maxima, the 

Fourier spectrum 0, 2fs   is segmented into N 

segments, where each segment is defined as 

,
1n nn

  


 
 

.Assuming 0
0

   and 2fsN  , the 

boundaries n are obtained as given in(1),representing 

the center of two successive maxima 
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   Where n and 
1n




 are the frequencies, and n is 

their corresponding boundary. Then, the Fourier 

segments will be 0, , , , ......, , 21 1 2 1 fsN               

.After attaining the set of bounds   1,2,....., 1n n N
 

 
, 

we designate n to be the limits between each segment 

 00 and N    .Each segment is 

denoted ,1n nn      , then it is easy to see that 

 0,
1

N

n
n

 


.centered about each n , we define a 

transition phase n of width 2 n .A bank of N wavelet 

filters, consist of one low-pass filter and N-1 band-pass 

filters are defined based on the well-detected 

boundaries[13]-[15]. 

              The empirical wavelets are defined as 

bandpass filters on each n  and based on n a wavelet 

tight frame be able to defined, to do so, we use the 

notion used in the building of both Little wood-Paley 

and Meyer’s wavelets [13], a wavelet tight frame 

      1 1

1 1
,

N N
B t tn nn n

 
 


 

is defined.  And 0n  , 

their Fourier transforms, i.e. the empirical scaling 

function  n 


 and the empirical wavelets  n 


 by 

expressions of (2) and (3), respectively. 
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The function  x is an arbitrary function such that 
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Many functions satisfy these properties, the most used 

in the literature [11] is 

   4 2 3
35 84 70 20x x x x x                         (5) 

         Regarding the choice of n , several choices are 

possible. The simplest is to select n proportional 

to n : n n   where 0 1  .To meet the 

requirement of tight frame [13], the parameter  must 

fulfill the following equation:  

1
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1
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                       (6) 

   Therefore, 0,n  (2) and (3) simplify to (7) and 

(8) 
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 We can now define the Empirical Wavelet Transform 

(EWT),  ,W n t
f

 in the similar way as for the classic 

wavelet transform. By performing the inner product 

operation between the applied signal f , and with 

empirical wavelets we can obtain the detail coefficients 

as given in (9) and (10) respectively [13]- [15]. 

          , ,W n t f f t d IFFT Ff n n n                (9) 

By performing the inner product operation between the 

applied signal f , and with empirical scaling functions 

we can obtain the approximation coefficients as given 

          0, , 1 1 1W t f f t d IFFT Ff                  (10) 

Where  1  and  n  are defined by (7) and (8), 

respectively. The reconstruction is obtained by 

         0, ,1
1

N
f t W t t W n t tnf f

n
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
      (11) 

          0, ,1
1

N
f t IFFT W W nf f n

n
        


     (12) 

Resulting this formalism, the empirical mode fk  , as 

defined 

     0,0 1f t W t tf                       (13) 

     ,f t W k t tk f k                    (14) 

Where  represents the convolution   

3.EWT Based Three Phase Power Quality Indices 

  This section presents the brief review of PQ indices 

recommended in [1] and [2] for three-phase system and 

the EWT based reformulated indices. Consider the 

three-phase 3- wire system having non sinusoidal 

periodic phase voltages and line currents containing the 

fundamental and harmonic components as  

 
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1

sin(2 )

H

x xn xn xn

n

v t V f t 


                (15) 

and 

 
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sin(2 )
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x xn xn xn

n

i t I f t 


                (16) 

   Where x corresponds to R, S and T phases, t is the 

time and 
maxH is the maximum frequency component 

present in the signal , ,xn xn xnv f  are the amplitude, 

frequency and phase angle of the thn component of x -

phase voltage signal respectively, , ,xn xn xnI f  are the 

amplitude, frequency and phase angle of the  
thn component of x -phase current signal respectively. 

Now, for this set of three phase voltage and currents, 

EWT is applied and the corresponding mono 

component signal coefficients of line voltage and line 

currents are obtained. The approximate coefficients are 



 

 

obtained by inner product of the input Signal with the 

scaling function 
,1,x k  and the detail coefficients are 

obtained by inner product of the input signal with the 

empirical wavelets 
, ,x j k  as explained in detail in 

section 2 of this paper. 

   '
,1, ,1, ,1, ,1,, ; ,x k x x k x k x x kW v k W i k         (17) 

    

   '
, , , , , , , ,, , ,x j k x x j k x j k x x j kW v k W i k      (18) 

Where j is the harmonic level and x  corresponds to 

the phase. 

3.1. Effective RMS calculations 

The RMS value calculation of the non-sinusoidal 

voltage using EWT can be extended to three phase 

systems by considering any phase x  of the three 

phases(R, S or T) as defined below 

2 2 2 2
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The RMS value of the non-sinusoidal current is 

defined as 

2 2 2 2
, ,1 , ,1 ,

1

x rms x x H x x j

j

I I I I I
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Where  

2'
,1 ,1,

1
x x k

k

I W
N

   and 
2'

, , ,

1
x j x j k

k

I W
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        Here 
,1xV  and

,1xI  are the RMS values of the 

fundamental frequency component of the phase- x  

voltage and current, respectively.
,x jV and 

,x jI are the 

sets of RMS values of the phase- x voltage and current 

of each frequency components higher than one. Also 

,1,x kW  and '

,1,x kW  are the EWT coefficients of phase-

x voltage and current of first component at sample k 

while
, ,x j kW  and '

, ,x j kW  are the EWT coefficients of 

phase- x voltage and current of any frequency level j, 

higher than fundamental at sample k. N corresponds to 

the total number of samples of the signal. 

 The effective RMS values for three phase voltages 

and currents, recommended in [3], can be calculated 

as 

2 2
1e e eHV V V  ; 2 2

1e e eHI I I             (21) 

Where the fundamental effective RMS values for three 

phase voltage and current are 

2 2 2
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 
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 The Non-fundamental effective RMS values for 

three phase voltage and current are 

2 2 2

9

RSH STH TRH
eH

V V V
V

 
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2 2 2

3

RH SH TH
eH

I I I
I

 
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    Where , &RS ST TRV V V    are the line-to-line voltage for 

phases labeled , ,R S T  . The subscript “1” refers to the 

fundamental component (50Hz) while subscript 

H refers to the nonfundamental harmonic components. 

, &R S TI I I Are the line currents for phases , ,R S T  

3.2 Equivalent Total Harmonic Distortion (THD) 

    The EWT based equivalent total harmonic 

distortion of voltage and current are defined as 

      
1

eH
ethd

e

V
V

V
 and

1

eH
ethd

e

I
I

I
                   (22) 

3.3. Active Power     

 Fortescue [16] is credited with introducing the concept 

of symmetrical components which states that any 

unbalanced three-phase vectors can be decomposed 

into a set of balanced three-phase vectors. This set 

consists of positive-sequence components having the 

same phase sequences  , ,R S T , negative -sequence 

components having the same phase sequences  , ,R T S , 

and zero-sequence components having equal 

magnitudes with the same phase. 

    The concept of symmetrical components can be 

defined in the time-frequency domain by applying time 

shift instead of phase shift for the phase voltage and 

current. In order to get the sequence components in the 

wavelet domain, the time shift is applied to the voltage 

and currents of phases S  andT . First applying time 

advance  k m   to the coefficients, where m represent 

the time corresponding to the angle 0120  therefore we 

obtain the advanced versions of the current phases S  

and T  to be ' ',S Ti i  and shifted versions of the voltages 

of the same phases to be '

Sv  and  '

Tv  respectively. 

Second applying time delay  k m   to the coefficients, 



 

therefore we obtain the delayed versions of the current 

phases S  and T  to be '' '',S Ti i  and shifted versions of the 

voltages of the same phases to be ''

Sv  and  ''

Tv  

respectively. Using the unshifted phase  R    and 

shifted phases
 
S  and T the   sequence components in 

the wavelet domain can be obtained as follows: 
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The fundamental positive sequence active power 
1P   

defined using the symmetrical components is  

     
1

0

1
3

T

P v i dt
T

   
  

 
                               (23) 

  Where ,v i  are the instantaneous positive sequence 

voltage and current in the wavelet domain [8]  

 

The harmonic active power of a phase x  is defined 

as 

, ,
1

x H x j
j

P P

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Where '
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1
x j x j k x j k

k

P W W
N
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The total harmonic active power of three phases is 

, , ,H R H S H T HP P P P                         (24) 

The total active power of three phases is defined as 

 
1 HP P P                                        (25) 

3.4. Apparent Power 

The fundamental positive sequence apparent power 

based on the symmetrical components approach is 

defined as 

1 1 13S V I                                 (26) 

The fundamental effective apparent power is defined 

as 

1 1 13e e eS V I                                (27) 

The fundamental unbalanced power is 
2 2

1 1 1u eS S S                                                            (28) 

The current distortion power and voltage distortion 

power can be defined as 

13eI e eHD V I and 13ev eH eD V I            
(29) 

The harmonic apparent power is given by 

3eH eH eHS V I
                               

(30) 

The non-fundamental effective apparent power is 

defined as 

2 2 2

eN eI ev eHS D D S  
                      

(31) 

The total effective apparent power is 

2 2

1e e eNS S S 
                                

(32) 

The non-active power N is defined as 
2 2

e eN S P 
                                   

(33) 

3.5. Reactive Power 

The fundamental positive sequence reactive power is 

defined as                          
2 2

1 1 1Q S P                

                 (34) 

3.6. Power Factor 

The fundamental positive sequence power factor is 

defined as 

1

1

1

P
PF

S






                                         (35) 

The total three phase power factor is defined as 

e

P
PF

S
                                           (36) 

3.7. Harmonic Pollution 

The Harmonic pollution is defined as the ratio of the 

non fundamental effective apparent power to the 

fundamental effective apparent power 

1

eN

e

S
HP

S
                                       (37) 

3.8. Load unbalance 

 

The load unbalance is the ratio of fundamental 

apparent power to the fundamental positive sequence 

power that can measure the system unbalance. It is 

given as 

1

1

uS
LU

S 
                                        (38) 

4. NUMERICAL EXAMPLES 

   This section contains Four numerical examples that 

are solved using the definitions contained in the IEEE 

Standard and the definitions based on the EWT.First, 



 

 

the true values are computed as per the IEEE standard 

definitions and then the EWT is applied to decompose 

the signal into mono frequency components. By 

applying EWT-based reformulated indices, on to these 

mono components we can accurately estimate the three 

phase PQIs.The percentage difference has been 

calculated for all the indices using the mathematical 

expressions shown below by 

  % *100
Indices Indicestrue calculated

difference
Indicestrue


       (39) 

4.1. Balanced Three-Phase System 

   The first numerical example considers balanced 

three-phase load supplied from nonsinusoidal balanced 

three-phase source as shown in Fig.1.The time domain 

equations for the three-phase source are [10] 

   100 sin 20 sin( ) 5 sin( )1 3 5v t t t tR                                (40) 

   0 0 0
100 sin 120 20 sin( 120 ) 5 sin( 120 )1 3 5v t t t tS              (41) 

    0 0 0
100 sin 120 20 sin( 120 ) 5 sin( 120 )1 3 5v t t t tT             (42) 

  Here 1 3,  and 5   are the angular frequency at the 

fundamental  1 60f Hz , third harmonic  3 180f Hz  

and fifth harmonic  5 300f Hz , respectively. 

 

Fig.1.Balanced three-phase load supplied from nonsinusoidal   

       balanced three phase source. 

                             Balanced three-phase line voltages  

     , , ,R S Tv t v t v t  is applied to  balanced three-phase 

load as shown as in Fig.1.From which we can calculate 

line currents      , , ,R S Ti t i t i t and the calculated line 

currents are shown in equation (43) to (45). 

 

 

   0 0 0
33.85 sin 25.176 4.3256 sin( 54.6586 ) 0.7312 sin( 66.951 )1 3 5 i t t t tR                 (43) 

   0 0 0
33.85 sin 145.176 4.3256 sin( 174.658 ) 0.7312 sin( 186.951 )1 3 5i t t t tS                    (44) 

   0 0 0
33.85 sin 94.824 4.3256 sin( 65.342 ) 0.7312 sin( 53.049 )1 3 5i t t t tT                   (45) 

    For this set of three-phase line voltages and line 

currents after being sampled with a sampling 

frequency  7680sf Hz , EWT is applied and the 

corresponding mono-component signal coefficients of 

line voltage and line currents are obtained. It can be 

clearly observed from the filtered signals shown in 

Fig.2. to Fig.7.that EWT technique is able to accurately 

estimate the frequency components, which are present 

in the signal and provide its mono-components, It can 

also be noticed that no two frequency components are 

combined in a single mode. In all these Figures mode 2 

corresponds to fundamental component and mode3 and 

mode4 are corresponding to harmonics of the signals. 

By using EWT-based reformulated indices, on to these 

fundamental components and harmonics we can 

accurately estimate the three phase PQIs. Table1 

compares the PQIs obtained from the IEEE standard 

definitions with those obtained from the EWT.As the 

Results in Table 1 show, the percentage differences are 

too small in the case of effective RMS and equivalent 

total harmonic distortion. We also observe that, the 

percentage differences for active power, apparent 

power, distortion power, and reactive power are 

considerably small; however for power factor, pollution 

factor and load unbalance indicates zero percentage 

differences which proves the accuracy of the EWT-

based definitions. 

 

 

      Fig.2 Modes extracted by the EWT for  Rv t  

 

 



 

 
    Fig.3.Modes extracted by the EWT for  Ri t  

 

      Fig.4.Modes extracted by the EWT for  Sv t  

              

 

         Fig.5 Modes extracted by the EWT for  Si t  

 

         Fig.6.Modes extracted by the EWT  Tv t  

 

          Fig.7.Modes extracted by the EWT for  Ti t  

    Table 1 PQIs for Balanced Three-Phase Signals 
Indices IEEE standard 

Definitions 

EWT based 

Indices 

%diffe

rence 

                    

Effective 

Voltage RMS 

1 70.700eV   

1 70.6245eV   

0.106 

14.560eHV 
 

14.5726eHV 
 

0.086 

72.180ermsV 
 

72.1123ermsV 
 

0.093 

Effective 

Current RMS 
1 23.900eI   

1 23.900eI   

0.000 

3.100eHI 
 

3.111eHI 
 

0.354 

24.100ermsI 
 

24.108ermsI 
 

0.033 

 

THD 
0.206ethdV   0.206ethdV   

0.000 

0.130ethdI   0.130ethdI   

0.000 

Distortion 

Index 
0.201evDIN   0.202evDIN   

0.497 

0.1283eIDIN   0.129eIDIN   

0.545 

Active 

Power 1 4586P   

1 4591.35P   

0.116 

88.00HP 
 

85.507HP 
 

2.832 

4674P 
 

4674.85P 
 

0.018 

Apparent 

Power 

 

1 5069.19S   

1 5065.169S   

0.079 

1 5069.19eS 
 

1 5065.169eS 
 

0.079 

1 0.0000US 
 

1 0.0000US 
 

0.000 

Total 

Apparent 

Power 

5218.6eS   5215.48eS   

0.059 

Reactive 

Power 1 2159.6Q   

1 2159.86Q   

0.012 

Distortion 

Power 
657.51eID   659.145eID   

0.248 

1043.95eVD 
 

1045.145eVD 
 

0.114 

135.40eHS 
 

136.07eHS 
 

0.494 

1241.16eNS 
 

1243.101eNS 
 

0.156 

2321.1N 
 

2318.385N 
 

0.116 

Power Factor 
1 0.904PF   

1 0.904PF   

0.000 

0.896PF 
 

 

0.896PF 
 

0.000 

Harmonic 

Pollution 
0.245HP   0.245HP   

0.000 

Load 

Unbalance 
0.000LU   0.000LU   

0.000 

 

 



 

 

4.2. Unbalanced Three-Phase System 

The second numerical example [10] considers an 

unbalanced three-phase load supplied from the same 

nonsinusoidal balanced three-phase source used in the 

previous example shown in Fig.8. 

 
 

   Fig.8.Unbalanced three-phase load supplied from 

nonsinusoidal balanced three-phase source. 

 

   100 sin 20 sin( ) 5 sin( )1 3 5v t t t tR                               (46) 

   0 0 0
100 sin 120 20 sin( 120 ) 5 sin( 120 )1 3 5v t t t tS             (47) 

   0 0 0
100 sin 120 20 sin( 120 ) 5 sin( 120 )1 3 5v t t t tT            (48) 

     Here, 1 3,  and 5   are the angular frequency at the 

fundamental  1 60f Hz ,third harmonic  3 180f Hz and 

fifth harmonic  5 300f Hz , respectively. Balanced 

three-phase line voltages      , , ,R S Tv t v t v t  is applied 

to unbalanced three-phase load as shown as in 

Fig.8.From which we can calculate line currents 

     , , ,R S Ti t i t i t and the calculated line currents are 

shown in equation (49) to (51). 

 

   0 0 0
19.26 sin 32.8 2.5674 sin( 6.9 ) 0.6991 in( 18.6 )1 3 5 i t t t tR                  (49) 

   0 0 0
31.57 sin 229 5.73 sin( 214 ) 1.2723 sin( 209.3 )1 3 5i t t t tS            (50) 

   0 0 0
34.57 sin 82.5 3.6575 sin( 53.6 ) 0.5981 sin( 42 )1 3 5i t t t tT            (51) 

For this set of three-phase line voltages and line 

currents after being sampled with a sampling 

frequency  7680sf Hz , EWT is applied and the 

corresponding monocomponent signal coefficients of 

line voltage and line currents are obtained. It can be 

clearly observed from the filtered signals shown in 

Fig.9.to Fig.16.that EWT technique is able to 

accurately estimate the frequency components, which 

are present in the signal and provide its 

monocomponents, it can also be noticed that no two 

frequency components are combined in a single mode. 

In all these Figures mode 2 corresponds to fundamental 

component and mode3 and mode4 are corresponding to 

harmonics of the signals. By using EWT-based 

reformulated indices, on to these fundamental 

components and harmonics we can accurately estimate 

the three phase PQIs.Table 2 compares the PQIs 

obtained from the IEEE standard definitions with those 

obtained from the EWT.As the Results in Table 2 

show, the percentage differences are too small in the 

case of effective RMS and equivalent total harmonic 

distortion. We also observe that from the results shown 

in Table 2, the percentage differences for active power, 

apparent power, distortion power, and reactive power 

are considerably small; the fundamental unbalanced 

power 1US  has a nonzero value, the percentage 

difference for power factor is zero. 
 

 

            Fig.9. Modes extracted by the EWT for  Rv t  

 

             Fig.10. Modes extracted by the EWT for  Ri t  

 



 

 

 

             Fig.11. Modes extracted by the EWT for  Sv t  

 

Fig.12. Modes extracted by the EWT for  Si t  

 

       Fig.13. Modes extracted by the EWT for  Tv t  

 

          Fig.14. Modes extracted by the EWT for  Ti t  

Table 2 PQIs for Unbalanced Three-Phase Signals 

Indices IEEE standard 

Definitions 

EWT based 

Indices 

%diffe 

rence 

Effective 

Voltage 

 RMS 

1 70.700eV   

1 70.624eV   0.106 

14.560eHV 
 

14.572eHV 
 

0.086 

72.180ermsV 
 

72.112ermsV 
 

0.093 

Effective 

Current  

RMS 

1 20.670eI   

1 20.652eI   0.087 

3.028eHI 
 

3.032eHI 
 

0.132 

20.890ermsI 
 

20.873ermsI 
 

0.081 

 

THD 

0.206ethdV   0.206ethdV   0.00 

0.146ethdI   0.146ethdI   0.00 

Distortion 

Index 

0.2035evDIN   0.202evDIN   0.737 

0.1457eIDIN   0.145eIDIN   0.480 

Active 

Power 
1 3713P   

1 3717.34P   

0.116 

113HP 
 

108.31HP 
 

4.15 

3826P 
 

3825.65P 
 

0.009 

Apparent 

Power 

 

1 4157S   

1 4162S   

0.120 

1 4384.1eS 
 

1 4385.69eS 
 

0.036 

1 1393US 
 

1 1387.74US 
 

0.377 

Total 

Apparent 

Power 

4523.5eS   4521.79eS   

0.037 

Reactive 

Power 
1 1869.3Q   

1 1873.95Q   

0.248 

Distortion 

Power 
642.238eID   642.548eID   

0.048 

902.865eVD 
 

902.879eVD 
 

0.001 

132.263eHS 
 

132.583eHS 
 

0.241 

1115.854eNS 
 

1116.08eNS 
 

0.020 

2413N 
 

2418N 
 

0.207 

Power 

Factor 
1 0.893PF   

1 0.893PF   

0.000 

0.846PF 
 

 

0.846PF 
 

0.000 

Harmonic 

Pollution 

0.254HP   0.255HP   0.393 

Load 

Unbalance 

0.335LU   0.333LU   1.782 

 

4.3. Balanced Distorted Signals: 

      This example considers balanced three-phase 

voltage and balanced current signals containing four 

frequency components as shown in Table 3 and 4, 

respectively.  

Table 3 Parameters of the Three-Phase Voltage signal 

Time(S) Pha

se 

Amplitude, Frequency and    Phase angle 

 

0-1 

R 100,50,

00  

30,150,

00  

8,250,

00  

5,350,

00  

Y 100,50,

0120  

30,150,

0120  

8,250,

0120  

5,350,

0120  

B 100,50,

0240  

30,150,

0240  

8,250,

0240  

5,350,

0240  



 

 

Table 4 Parameters of the Three-Phase Current signal 

Time 

(S) 

Pha 

se 

Amplitude, Frequency and  Phase angle 

 

 0-1 

R 28.62,50, 

017.44  

6.54,150 

043.3  

1.28,250 

057.5  

0.619,350 

065.62  

Y 28.62,50, 

0137.44  

6.54,150 

0163.3  

1.28,250 

0177.5  

0.619,350 

0185.6  

B 28.62,50, 

0102.56  

6.54,150 

076.69  

1.28,250 

062.48  

0.619,350 

054.38  

 

      Table 5 PQIs for Balanced Three-Phase Signals 
Indices IEEE standard 

Definitions 

EWT based 

Indices 

%differ 

ence 

Effective  

Voltage 

 RMS 

1 70.981eV   

1 70.607eV   

0.426 

22.378eHV 
 

22.16eHV 
 

0.974 

74.12ermsV 
 

74ermsV 
 

0.161 

Effective  

Current  

RMS 

1 20.302eI   

1 20.207eI   

0.467 

4.734eHI 
 

4.732eHI 
 

0.042 

20.87ermsI 
 

20.75ermsI 
 

0.574 

 

THD 
0.318ethdV   0.313ethdV   

1.572 

0.2345ethdI   0.234ethdI   

0.213 

Distortion  

Index 
0.30evDIN   0.299evDIN   

0.333 

0.229eIDIN   0.228eIDIN   

0.436 

Active 

 Power 1 4096.78P   

1 4097.34P   

0.013 

223.31HP 
 

221.82HP 
 

0.667 

4320.09P 
 

4319.17P 
 

0.021 

Apparent 

 Power 

 

1 4297.78S   

1 4299.14S   

0.031 

1 4296.99eS 
 

1 4298.41eS 
 

0.033 

1 0.000US 
 

1 0.000US 
 

0.000 

Total  

Apparent 

Power 

4609.43eS   4607.65eS   

0.038 

Reactive  

 Power 1 1301.3Q   

1 1301.70Q   

0.030 

Distortion 

 Power 
1002.46eID   1002.38eID   

0.007 

1345.43eVD 
 

1343.42eVD 
 

0.149 

314.92eHS 
 

314.60eHS 
 

0.101 

1707.8eNS 
 

1705.43eNS 
 

0.138 

1608.7N 
 

1604.75N 
 

0.245 

Power  

Factor 1 0.9538PF   

1 0.953PF   

0.083 

0.938PF 
 

 

0.937PF 
 

0.106 

Harmonic 

Pollution 
0.3987HP   0.398HP   

0.175 

Load 

Unbalance 
0.000LU   0.000LU   

0.000 

 

  The unbalanced three-phase currents are obtained by 

applying balanced three-phase voltages to unbalanced 

three-phase load. Table 5 shows the PQIs for a 

balanced three-phase system calculated from the IEEE 

standard definitions and that estimated using the EWT. 

It can be seen that the deviation in the EWT-based 

PQIs is small. 

 

 4.4. Un balanced Distorted Signals: 

   This example considers balanced three-phase voltage 

and unbalanced current signals containing four 

frequency components as shown in  Table 6 and  7, 

respectively[15].The unbalanced three-phase currents 

are obtained by applying balanced three-phase voltages 

to unbalanced three-phase load. Table 8shows the PQI 

s for an unbalanced three-phase system calculated from 

the IEEE standard definitions and that estimated using 

the EWT.It can be seen that the deviation in the EWT-

based PQIs is small. 

  Table 6 Parameters of the Three-Phase Voltage signal 
Time 

(S) 

Pha 

se 

Amplitude, Frequency and  Phase angle 

 

     0-1 

R 100,50, 

00  

30,150, 

00  

 8,250, 

00  

   5,350,
00  

Y 100,50, 

0120  

30,150, 

0120  

8,250, 

0120  

  5,350,
0120  

B 100,50, 

0240  

30,150, 

0240  

8,250, 

0240  

5,350,
0240  

 

    Table 7 Parameters of the Three-Phase Current signal 
Time 

(S) 

Ph 

ase 

Amplitude, Frequency  and Phase angle 

 

  0-1 

R 24.52,50 

024.3  

5.42,150 

044.6  

1.113,250 

055.2  

0.56,350 

062.2  

Y 21.85,50 

0161.6  

4.15,150 

0178.1  

0.865,250, 

0190.5  

0.43,350 

0199.9  

B 17.07,50 

0264.6  

3.95,150, 

0274.2  

0.785,250, 

0285.9  

0.38,350 

0293.1  

 

5. Conclusions 

   In this paper, the EWT is successfully applied to 

formulating the power components definitions 

contained in the IEEE standard 1459-2000 for 

balanced and unbalanced three-phase systems with non 

sinusoidal situations. This technique first estimates the 

frequency components and then adaptively tunes the 

wavelet and scaling function based on the boundaries 

to decompose the signal accurately. Four numerical 

examples considering balanced and unbalanced three-

phase systems with non sinusoidal situations are solved 

using the IEEE Standard definitions and the EWT-



 

based definitions. It can be observed from the results 

that the EWT-based PQ indices for the balanced and 

unbalanced three-phase supply are very close to the 

true values. Based on the results, the EWT proved to be 

adaptive and also accurate in estimation of PQIs,hence 

this technique is very useful for its application in real 

time power quality monitoring and can extract relevant 

characterstics, which can be used as inputs to classify 

the power Quality disturbances. 
 

   Table 8 PQIs for Unbalanced Three-Phase Signals 

 

    Indices 

IEEE 

standard 

Definitions 

EWT based 

Indices 

%diffe

rence 

Effective  

Voltage   

RMS 

1 70.7107eV   

1 70.605eV   0.149 

22.2374eHV 
 

22.208eHV 
 

0.132 

74.1249ermsV 
 

74.022ermsV 
 

0.138 

Effective  

Current  

RMS 

1 15.1107eI   

1 15.099eI   0.077 

3.3087eHI 
 

3.308eHI 
 

0.021 

15.4687ermsI 
 

15.458ermsI 
 

0.069 

 

THD 

0.3145ethdV   0.3144ethdV   0.031 

0.2190ethdI   0.218ethdI   0.456 

Distortion 

 Index 

0.300evDIN   0.30evDIN   0.00 

0.2139eIDIN   0.213eIDIN   0.420 

Active  

Power 

1 2713.15P   

1 2715.7P   

0.093 

146.584HP 
 

146.97HP 
 

0.263 

2859.734P 
 

2862.68P 
 

0.103 

Apparent  

Power 

 

1 3145.51S   

1 3147.9S   

0.075 

1 3205.464eS 
 

1 3205.98eS 
 

0.016 

1 617.113US 
 

1 608.8US 
 

1.347 

Total  

Apparent 

 Power 

3439.847eS   3439.91eS   0.001 

Reactive 

 Power 1 1591.55Q   

1 1591.93Q   0.023 

Distortion  

Power 

701.8815eID   701.52eID   0.051 

1008.068eVD 
 

1005.98eVD 
 

0.207 

220.7307eHS 
 

220.01eHS 
 

0.326 

1248.02eNS 
 

1247.80eNS 
 

0.017 

1911.667N 
 

1908.96N 
 

0.141 

Power  

Factor 

 

1 0.8657PF   

1 0.8625PF   

0.369 

0.8314PF 
 

 

0.834PF 
 

0.312 

Harmonic 

 Pollution 
0.3893HP   0.389HP   0.077 

Load  

Unbalanc

e 

0.1962LU   0.1947LU   0.764 
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