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Abstract: With the addition of variable energy sources 
into the electric power system, the way in which the 
system is planned and operated in the past needs 
significant change. The main effect is on balancing the 
supply and demand due to the increase in variability 
and/or uncertainty and hence operating reserves which are 
used to balance supply and demand need significant 
system wise analysis. Power system operators are 
evolving alternate approaches, changing the rules and 
practices to take care of new trends of complexities. In 
this paper a new methodology has been proposed to 
estimate the required operating reserves in the system 
with high penetrations of wind power through reliability 
analysis which would be useful to the system operators. 
This estimation of operating reserve directly helps for 
scheduling programs which are used to schedule 
conventional units. The methodology considers 
generation outages; system load forecast errors; low and 
high wind seasons; variability and uncertainty of variable 
energy sources. The proposed methodology is first 
applied to RBTS for validation and studies are performed 
on IEEE-RTS and practical power system, where high 
penetration of wind power exists. The results illustrate 
that the need of dynamic operating reserves for power 
systems where high penetration levels of wind generation 
exists. 
 
Key words: High wind penetration, IEEE-RTS, Monte-
Carlo simulation, normal distribution function, operating 
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1. Introduction 
 In power system, generation must be close to the 
demand to ensure the system frequency is 
maintained at or very close to specified levels. If 
variable generation and demand conditions could be 
predicted in advance, meeting these requirements 
would be relatively straightforward. However, many 
of the power system components, including 
generation unit forced outages, sudden load changes, 
and transmission equipment availability are variable 
and unpredictable. Therefore, additional generation 
facilities above the need (to meet actual demands) 
are made available either on-line/on-standby 
generally referred as operating reserve. Operating 
reserve allows system operators to compensate for 
unpredictable imbalances between generation and 
demand caused due to sudden outages of generating 

units, changes in generation from variable sources, 
uncertainty in load forecasting and unexpected 
deviations by generating units from their production 
schedules. 
Power system operators across the world are 
evolving alternate approaches to understand the 
operating reserve requirements with high penetration 
of variable generation resources. This is due to the 
fact of increasing the number of stochastic/random 
behaviors in the system with variable energy 
sources. 

The probabilistic methods in planning phase are 

well developed in the literature [1]-[3] and are used 

for practical applications [4], [5] as compared to 

operational phase. The applications of alternate 

approaches for operational issues have been 

addressed in recent times with wind energy sources 

[6]-[10], [13]-[17]. Majority of the probabilistic 

approaches are based on the PJM method [21] and 

have addressed the operating issues with wind 

integrated system systems with different approaches.  

Statistical method such as Auto Regressive 

Moving Average (ARMA) has been applied in [7] 

for the wind sites to simulate wind turbine power 

curve to assess the risk of short term wind power 

commitment. A sequential Monte-Carlo simulation 

technique was utilized in [8] to analyze the system 

risk by simulating hourly wind speeds using ARMA 

time series model. Instead of using a single wind 

turbine power curve, an entire wind farm power 

curve was used to represent the operational 

parameters of individual wind turbine generation 

units located in that wind farm [8]. 

The impact of integrating wind generation on the 

regulation and load following requirements of the 

California power system was discussed is [9]. The 

paper considers wind and load forecast errors in its 

mathematical model which in turn are used in 

scheduling, real-time dispatch, and regulation 

processes. An attempt of combining the traditional 

and probabilistic methods has been made in [10]. 

mailto:sekhar.atla@gmail.com


 

 

The probabilistic way of wind modeling was added 

to the traditional unit commitment and economic 

dispatch model. This paper addresses the advantages 

over classical methods [11] and [12] where wind 

power has been modeled as negative load. 

Different wind speed modeling techniques using 

hourly observed wind speed data, hourly mean wind 

speed data, ARMA time series [7], [8], moving 

average time series, normal distribution, and Markov 

chain models for probabilistic methods are explained 

in [13]. The probabilistic methods considering 

conventional unit outages, load forecast uncertainty 

and wind power forecast uncertainty has been used 

in [14], [15] to determine the amount of operating 

reserves in the system.   

Statistical methods considering the wind and load 

forecast uncertainty were reported in [16] and [17] 

to analyze the effect of wind integration on 

operating reserve. The wind power forecast error 

almost follows a Gaussian distribution or normal 

distribution as presented in [14], [25]. Standard 

deviation (σ) of uncertainty in load and wind power 

with confidence interval of ±2σ and ±3σ [17] have 

been reported as the preferred metric to calculate 

load following requirements for wind. The statistical 

indices are used in [18]-[20] to determine the system 

ramp up and ramp down requirements and same is 

suggested for operating reserve requirements and 

conventional unit scheduling. 

The modeling of wind power presented in above 

literature is poised with difficulty in the practical 

scenario when wind penetration level increases. 

Further, including wind speed forecast in the 

modeling of each individual wind turbine operating 

horizon would be difficult as there would be 

thousands of wind turbines in the practical domain 

(in the considered practical case there are more than 

10000 wind turbines). This paper addresses the 

application of probabilistic methods using Monte-

Carlo simulation technique for power system with 

generation mix of thermal, hydro and wind sources. 

Flexible energy sources in the system like hydro 

generators are modeled in Monte-Carlo simulation. 

The region wise modeling of wind generation has 

been incorporated as normal distribution function 

considering the wind power forecast values with 

forecast uncertainties observed in the past. The 

method has been applied to analyze IEEE-RTS 

system by adding wind power data from practical 

power system. Further the analysis is extended to 

one of highest wind penetration states (wind 

installed capacity is around 40% of total installed 

capacity) in INDIA to analyze the increase in 

requirement of operating reserve with high wind 

penetration levels.  
 
2. Methodology  
 
 In PJM probabilistic approach [21], the Unit 
Commitment Risk (UCR) index is defined as the 
probability of just carrying or failing to carry the 
expected load during a specified time into the future, 
designated as the lead time. An assumption is made 
that any assistance to increase the reserve margin 
can only be obtained after a specified lead time. This 
is the time required to start and synchronize with 
additional units. The lead time required to place a 
unit in service is dependent upon many factors, the 
most important being the type of unit. Thermal units 
can take several hours depending on their prior 
operating history while hydro and gas turbine units 
require much shorter times. This paper uses this 
index and extended the analysis by incorporating the 
wind generation. A new methodology for modeling 
wind generation is proposed to determine the 
increase in operational reserves due to the addition 
of renewables in the system which is very important 
for system operators to maintain the load-generation 
balance during power system operation. 

The adopted and proposed modeling of system 

modeling has been presented below. Flowchart has 

been presented at the end of the methodology to 

describe the developed program for validation and 

analysis of presented cases. 
 
A. Thermal Generating Unit Model 

 
The methodology presented in [21] considers the 

probability of generator outages on an hourly basis. 

The full outage probability (λ) of a unit is the 

probability that the unit will stop providing all of its 

current output in an hour period. Here it is assumed 

that the unit tripping causes the units output to be 

instantaneously unavailable.  

   
                 

    
            

   The most common model for a conventional 

generating unit is a two-state representation in which 

the unit is either in the up or down state. If the 

failure and repair times are exponentially 

distributed, the probability of finding a unit on 

outage at time t given that the unit is available at 

time t= 0 is given by 

        
 

   
 

 

   
              



 

where,  

λ and µ are the failure and repair rates 

respectively, 

t is lead time - during this time, the system 

operator cannot start non-spinning reserve units. 

He can only count on the existent spinning 

reserve in the generation units that are spinning. 

This lead time may range from few minutes to 

hours, depending on how the operating reserves 

are defined and also on unit type. Typically 

values vary from 1 to 6 hours. 
 

Repair of a failed unit is not generally possible in 

a short lead time, hence the above equation 

becomes, 

                          

If the lead time is very short i.e. 1 to 6 hours, then         

λt <<1 and then, 

                         

The probability of the unit failing during the lead 

time, t, is known as the Outage Replacement Rate 

(ORR) [21] and is applied in the basic PJM method. 

The ORR parameter is similar to the forced outage 

rate (FOR) used in planning studies. The only 

difference is that the ORR is not simply a fixed 

characteristic of a unit but is a time-dependent 

quantity affected by the value of lead time being 

considered. The risk associated with just carrying or 

failing to carry a specified load level can be obtained 

from the cumulative probabilities associated with the 

various capacity outage levels for the scheduled 

units. The generating units can be represented by 

two state or multi-state models for analysis using 

Monte-Carlo simulation [5], [22]. 

 
B. Peak or Hydro Generating Unit Model 

 

Hydro units which are used for peaking units 

operate for relatively short times and are frequently 

started and stopped. The model of a base load unit is 

inadequate for modeling peaking units. The main 

reason is when the unit is forced out of service, it 

may not be needed by the system, and when it is in 

the operating state, periods of service may be 

interrupted by reserve shutdown. The „IEEE Task 

Group on Models for peaking Service Units‟ 

proposed the four-state model [23] to model the 

peak load units or hydro units. However, the 

modeling of hydro units in most of the practical 

conditions is limited by energy constraints and 

unavailability of data [24]. Hence the status of the 

hydro units are simulated by considering their forced 

outage rate, system load level, the power output 

from conventional units and wind  farms, and the 

energy limitation imposed by water availability. The 

energy availability has been considered from past 

history of water availability [21]. 

 
C. Wind Generation Model 

 
The accuracy of the load and wind power 

forecasts will have a significant effect on calculation 

of system reserve levels as they introduce greater 

uncertainty on the system [25]. The wind power 

forecast error almost follows a Gaussian distribution 

or normal distribution [14], [25]. Hence the 

stochastic nature of the wind power forecast error 

has been modeled as normal distribution function 

with mean and standard deviation (σ) for each hour 

from the historical wind power data as presented in 

Fig. 1. The probabilistic methods like Monte-Carlo 

simulation method can simultaneously consider the 

stochastic nature of this variation in wind power 

along with demand variation. In simulation, the 

normal distribution function is constructed as shown 

in Fig. 1 up to ±3σ using modified Box–Muller 

transform technique [26] from wind power forecast 

data with Wind Forecast Uncertainty (WFU) 

observed from historical data.  
   

 
Fig. 1. Seven step approximation of the normal 

distribution 
 

The developed algorithm for modeling of wind 

generation is presented below. 

 

Step1: Generate uniform random numbers       in 

the range of       
 

Step 2: Generate random numbers       such that,  

                         
 

Step 3: Calculate     
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Step 4: If      then go to step 1; 

 Otherwise Calculate,  

     [
     

 
]

 
 
       [

     

 
]

 
 
 

 

Step 5: Use generated random number   or   for 

hourly simulation of wind power in Monte-Carlo 

simulation. 

 
D. Load Forecast Uncertainty 
 

In practice as the forecast is normally predicted 

on past experience, some uncertainty can exist. The 

load forecast uncertainty (LFU) can be included in 

the risk computations by dividing the load forecast 

probability distribution into class intervals, the 

number of which depends upon the accuracy desired 

[1]. Load forecast uncertainty has been modeled like 

a normal distribution probability distribution 

function [1].   

 
E. Flowchart 

  
The flowchart of the modeling procedure is 

presented in Fig. 2. The flowchart is presented per 

iteration and the same procedure is repeated till all 

iterations are complete. The above procedure can be 

later extended to required number of hours 

considering the coupling constraints between hours 

like energy constraints of hydro units. 

 
3.  System Data & Analysis 

 

The Monte-Carlo simulation program has been 

developed based on the procedure presented in 

previous sections and has been validated with Roy 

Billinton Test System RBTS [27] and the validation 

results are presented in Table I. The results are in 

line with published results and fourth decimal errors 

are due to the stopping criteria adopted in Monte-

Carlo Simulation [1]. 

 
Table I: Validation with RBTS 

Case 

ID 

Base Load Unit 

Ins. Cap. in 

MW 

Load  

in MW 

UCR index 

(published) [27] 

UCR index 

(Developed program) 

1 190 180 0.01307835 0.0131240 

2 190 170 0.01127246 0.0112830 

3 190 160 0.00684857 0.0068949 

 

The computational algorithm presented in 

section-2 is applied to two test systems. The first test 

system is IEEE Reliability Test System (RTS) with 

additional wind details considered from practical 

system data. The second system is a practical power 

system in southern India where wind installed 

capacity is around 40% of total system installed 

capacity. 

 
A. IEEE RTS 

The IEEE RTS [28] contains 32 generating units 

with an installed capacity of 3405 MW with annual 

peak load of 2850 MW. The individual unit 

generation capacities, failure rates and Outage 

Replacement Rate (ORR) with corresponding lead 

times are given in Table II and all other data is 

considered from [28]. 

Base case simulation has been performed 

considering the data presented in Table II to find out 

the UCR index. The base case results of IEEE-RTS 

are presented in Table III. Deterministic criteria of 

maximum unit size as operating reserve has been 

considered to find the UCR index value, as RTS data 

presented in Table II has been modeled as base load 

units in simulation. 

 

Table II: Generation data of IEEE RTS  
Unit 

Size 

(MW) 

Type 

and (No 

of units) 

MTTF 

(hrs) 

Failure 

rate/year 

Failure 

rate/hour 

Lead 

time 

(hrs) 

ORR 

12 Oil (5) 2940 2.9796 3.401 * 10-4 4 1.361 * 

10-3 

20 Oil (4) 450 19.466 2.222 * 10-3 4 8.889 * 

10-3 

50 Hydro (6) 1980 4.4242 5.051 * 10-4 4 2.020 * 
10-3 

76 Coal (4) 1960 4.4694 5.102 * 10-4 4 2.041 * 

10-3 

100 Oil (3) 1200 7.3 8.333 * 10-4 4 3.333 * 
10-3 

155 Coal (4) 960 9.125 1.042 * 10-3 4 4.167 * 

10-3 

197 Oil (3) 950 9.2211 1.053 * 10-3 4 4.211 * 
10-3 

300 Coal (1) 1150 7.6174  8.696 * 10-4 4 3.478 * 

10-3 

400 Nuclear 
(2) 

1100 7.9636 9.091 * 10-4 4 3.636 * 
10-3 

where, MTTF = Mean time To Failure 

 

The technique represented in flow chart is applied 

for IEEE-RTS with different alternatives, like 

variation in wind penetrations during low and high 

wind seasons. Case studies for different wind 

penetration levels along with load and wind forecast 

uncertainties have been performed to find the effect 

of wind power on operating reserve requirements. 

The base case study results of RTS are presented in 

Table III. 

From Table III, it is observed that the value of 

UCR index for 400 MW reserve is around 0.00095. 



 

This index value has been considered as the 

reference index throughout RTS analysis for 

calculating the operating reserves for the systems 

with different wind power penetration levels. From 

Table III, it is also observed that operating reserve is 

increasing with load forecast uncertainty. This case 

study results have been further used to find the 

effect of wind penetration along with wind forecast 

uncertainty on operating reserves. 

 
Table III: Base case Results of IEEE-RTS 

Case 

ID 

 

Base Load 

Unit Ins. 

Cap. in 

MW 

LFU (% 

of Load) 

Load 

Met 

in MW 

UCR index 

(Developed 

program) 

Reserve 

(MW) 

% 

Reserve 

1 3405 0 3105 0.00095 400 11.75 

2 3405 2 2905 0.00095 485 14.24 

3 3405 5 2810 0.00095 595 17.47 

 

The analysis with 21% of wind penetration is 

performed for high and low wind seasons 

respectively. The analysis has been performed for 24 

hour duration with hourly intervals. The hydro 

generation units (6x50 = 300 MW) presented in 

Table II have been considered as peak load units 

with energy constrained to 55% for each unit. The 

hourly wind power data is considered from the 

practical power system [30] and is scaled to installed 

capacity of 900 MW (9 wind farms each having a 

capacity of 100 MW) to add IEEE-RTS. With this 

combination, wind: 900 MW, peak load units: 300 

MW, base load units: 3105 MW, wind penetration 

level works out to be around 21% (900*100/ 

[900+300+3105]). The wind forecast uncertainty has 

been represented in percentage of maximum wind 

capacity (in this case peak wind capacity is 555 MW 

and 182 MW during high and low wind seasons 

respectively). The wind power for low and high 

wind seasons along with demand profile (demand 

data is considered from [30]) are presented in Fig. 3. 
 

 
Fig. 3.  Wind and Load profile for one day (during high & 

low wind season) 

From Fig. 3, it can be noted that the availability 

of wind is more during the off-peak load and less 

during peak-load interval. This kind of high wind 

penetration profile along with demand profile poised 

to have more system complexities during the system 

integration and generation schedules. The peak wind 

power during high wind season for the installed 

capacity of 900 MW is 555 MW during 24 hours 

duration. This value has been considered along with 

thermal and hydro capacity for representation of 

operating reserve in percentage. 

The study analysis with 21% of wind penetration 

is presented in Table VI and Table V for high and 

low wind seasons respectively. The wind forecast 

uncertainty has been represented in percentage of 

maximum wind capacity (in this case, 555 MW and 

182 MW during high and low wind seasons 

respectively). 

 
Table IV: Results of IEEE-RTS with 21% wind 

penetration during High Wind Season  
Case 

ID 

Ins. Cap. Of Base 

+ Peak + Wind 

units  in MW 

WFU 

(%) 

LFU 

(%) 

Load 

Met 

in MW 

Reserve in 

MW (in 

%) 

Increase in 

reserve with 

wind addition  

in MW 

4 3105 +300+900 10 0 3415 545 

(13.7%) 

145  

5 3105+300 +900 10 2 3380 580 
(14.7%) 

92 

6 3105+300+900 10 5 3245 715 

(18%) 

117 

7 3105+300+900 5 0 3450 510 
(13%) 

110 

8 3105+300 +900 5 2 3390 570 

(14.4%) 

82 

9 3105+300+900 5 5 3245 715 
(18%) 

117 

 

Table V: Results of IEEE-RTS with 21% wind 

penetration during Low Wind Season 
Case 

ID 

Ins. Cap. Of 

Base + Peak + 

Wind units in 

MW 

WFU 

(%) 

LFU 

(%) 

Load 

Met 

In MW 

Reserve in 

MW (in 

%) 

Increase in 

reserve with 

wind addition  

in MW 

10 3105 +300 +900 10 0 3140 447 

(12.5%) 

47 

11 3105+300 +900 10 2 3072 515 

(14.4%) 

30 

12 3105+300+900 10 5 2955 632 

(17.6%) 

37 

13 3105+300+900 5 0 3154 433 
(12.1%) 

33 

14 3105+300 +900 5 2 3080 507 

(14.1%) 

22 

15 3105+300+900 5 5 2955 632 
(17.6%) 

37 

 

From Table IV and Table V, it is observed that 

the operating reserve has increased more during high 

wind season as compared to low wind season. This 

is due to the reduction in net demand (demand – 

wind) uncertainty during low wind season. By 
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referring to case-4 and case-10 with case 1, the raise 

in operating reserve comes to around 16% 

(145*100/900) and 5% (47*100/900) of wind 

installed capacity. Whereas wind capacity addition 

to the system is around 310 MW (3415-3105), i.e. 

34.5% (310*100/900) and around 35 MW (3140-

3105), i.e. 4% (35*100/900) during high and low 

wind seasons respectively. Hence the increase in 

operating reserve is minimal during low wind 

seasons (or low wind penetration) as compared to 

high wind penetration levels as capacity credit from 

wind energy is low. Table VI shows the study results 

for the system with very high wind penetration level 

of around 40%. 

 
TABLE VI: Results of IEEE-RTS with 40% Wind 

Penetration during High Wind Season 
Case 

ID 

Ins. Cap. of Base + 

Peak + Wind units 

in MW 

WFU 

(%) 

LFU 

(%) 

Load 

Met 

In MW 

Reserve 

in MW 

(in %) 

Increase in 

reserve with 

wind 

addition  in 

MW  

16 3105 +300 +2300 10 0 4080 744 

(15.4%) 

344 

17 3105+300 +2300 10 2 4040 784 

(16.2%) 

299 

18 3105+300+2300 10 5 3870 954 

(19.8%) 

359 

19 3105+300+2300 5 0 4190 674 

(14%) 

274 

20 3105+300+2300 5 2 4085 739 

(15.3%) 

254 

21 3105+300+2300 5 5 3920 904 

(18.7%) 

309 

 

From these case studies with IEEE-RTS, it is 

observed that operating reserve requirements depend 

on the wind penetration levels, wind seasonal effects 

and uncertainty levels of load and wind forecast. 

 

Practical System Study 

The studies have been performed for one of the 

high wind penetration states where the wind 

installed capacity is around 7300 MW. The total 

installed capacity of the state including wind is 

17540 MW. This works out to be around 42% 

(7300*100/17540) of the installed capacity. The 

hydro units installed capacity of the system is 

around 2220 MW and the rest of the generation 

comes from coal, gas, diesel base units [29] – [30].  

Hydro units are modeled as energy limited units 

where energy has been calculated from the past 

history. Base load and wind power units has been 

modeled based on the model presented in section-2. 

The study results along with the operating reserve 

requirements have been presented in Table VII and 

Table VIII for high and low wind seasons 

respectively. All case studies have been performed 

for 24 hour duration with corresponding energy 

constraint for energy limited units. The raise in 

operating reserves with the addition of wind power 

is presented while comparing with deterministic 

criteria of largest unit in the system as operating 

reserve as detailed the procedure in IEEE-RTS 

system analysis. The UCR index for the base case 

(considering only thermal units) is around 0.0085. 

This index has been considered as reference index 

value and used for calculation of operating reserves 

for the system with wind generation. 

 
TABLE VII: Results for Test System-2 during High 

Wind Season 
Case 

ID 

Ins. Cap. of Base 

+ Peak + Wind 

units in MW 

WFU 

(%) 

LFU 

(%) 

Load 

Met 

In 

MW 

Reserve 

in MW 

(in %) 

Increase in 

reserve with 

wind addition 

in MW  

1 11210+1880+0 --- 0 10654 556 

(5%) 

--- 

2 11210+1880+0 --- 2 10482 728 

(6.5%) 

--- 

3 11210+1880+0 --- 5 9916 1294 

(11.5%) 

--- 

4 11210+1880+7300 10 0 16400 1860 

(10.2%) 

1304 

5 11210+1880+7300 10 2 16107 2153 

(11.8%) 

1425 

6 11210+1880+7300 10 5 15298 2962 

(16.2%) 

1668 

7 11210+1880+7300 5 0 16673 1587 

(8.7%) 

1031 

8 11210+1880+7300 5 2 16368 1892 
(10.4%) 

1194 

9 11210+1880+7300 5 5 15474 2786 

(15.2%) 

1492 

 

TABLE VIII: Results for Test System-2 during Low 

Wind Season 
Case 

ID 

Ins. Cap. Of Base 

+ Peak + Wind 

units in MW 

WFU 

(%) 

LFU 

(%) 

Load 

Met 

In 

MW 

Reserve 

in MW 

(in %) 

Increase in 

reserve with 

wind addition 

in MW  

10 11210+1880+7300 10 0 13827 1013 
(6.8%) 

457 

11 11210+1880+7300 10 2 13656 1184 

(8%) 

456 

12 11210+1880+7300 10 5 12985 1855 

(12.5%) 

561 

13 11210+1880+7300 5 0 13856 984 

(6.6%) 

428 

14 11210+1880+7300 5 2 13699 1141 
(7.7%) 

413 

15 11210+1880+7300 5 5 13038 1802 

(12.1%) 

508 

 

The study results presented in Table VII and 

Table VIII show that the raise in operating reserve 

with the addition of wind power into the system 

strongly depends on the uncertainty in wind and load 

forecasts. It is also observed that the system 

operating reserve depends on the amount of wind 



 

power availability (seasonal effect) and its 

uncertainty levels.  

From the above study case with EFU of 10% and 

LFU of 5% (case 6), the maximum required reserve 

for the system is 16.2% as compared with 11.5% 

(case 3) where no wind power is considered. Also 

note that, even though the reserve increases due to 

addition of wind power into the system, wind power 

contributes to improve capacity credit of the system 

which in turn reduces the capacity shortage in the 

system. 

Hence the improvement in uncertainties during 

forecasting will improve the system operation aiding 

in better operating reserve management and 

generation scheduling. 

 
4.  Conclusion 

This paper proposed a new methodology for 

estimating the operating reserve and also evaluates 

the raise in operating reserve due to the addition of 

wind energy at high penetration levels. Operating 

reserve estimation by deterministic methods 

considers the largest unit or largest unit and second 

largest unit size. This does not hold good for the 

system having stochastic variables like renewable 

energy sources. Also the statistical methods used by 

most of the utilities for operating reserve like 

confidential risk of 2σ or 3σ [17] of wind forecast 

error suffers with disadvantages like not considering 

the net effect of wind uncertainty and load 

uncertainty simultaneously with generation mix 

contributions. The probabilistic method presented in 

this paper can be used for practical power systems to 

find the operating reserves which dynamically vary 

every day/hour. The model presented considers the 

contributions from generation mix and wind 

variation along with load including their 

corresponding uncertainties. 
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