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Abstract: This paper deals with modelling the induction 
machine with dynamic eccentricity fault. The machine 
inductances are calculated using the magneto motive force 
and the air gap permeance approach taking into 
consideration the space harmonics effect. First, the 
magnitude and the form of the obtained inductances in 
presence of dynamic eccentricity are discussed and 
compared to those of the healthy machine. Next, these 
inductances are introduced in the general induction 
machine model obtained using the magnetically coupled 
circuits approach. Simulation results illustrate the induction 
machine performances for the healthy and the faulty cases. 
The Fast Fourier Transform (FFT) of the steady state stator 
current obtained by simulation is performed to detect 
specific components that identify the fault appearance in the 
machine. The detection of these components is easier when 
the motor is supplied from a sinusoidal voltage than when 
supplied from a Pulse Width Modulation (PWM) inverter. 
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1.  Introduction 

Among electrical machines, induction motors are the 
most widely used in industry because of their rugged 
configuration, low cost, and versatility. With their great 
contributions, induction motors are considered the 
workhorse of industry. Because of natural aging 
processes and other factors in practical applications, 
induction motors are subject to various faults, such as 
rotor faults. These faults can be induced by electrical 
failures such as a bar defect or bar breakage or 
mechanical failures such as rotor eccentricity. The first 
fault occurs due to thermal stresses, hot spots, or 
fatigue stresses during transient operations such as 

start-up, especially in large motors. A broken bar 
changes the machine developed torque significantly 
and can seriously affect the safe and consistent 
operation of electric machines [1]. 
The second type of rotor faults is related to air gap 
eccentricity. This fault is a common effect related to a 
range of mechanical problems in induction motors such 
as load unbalance or shaft misalignment. Long-term 
load unbalance can damage the bearings and the 
bearing housing and influence air gap symmetry. The 
research in detecting the air gap eccentricity of 
induction motors began in the last century. Existing 
detection schemes are classified according to the type 
of monitoring parameters. Examples of monitoring 
parameters include torque, flux, vibration signal, and 
stator current. Depending on whether the minimum air 
gap is spatially fixed or not, air gap eccentricity is 
described as being either static or dynamic. For static 
eccentricity, the rotor shifts from its normal position at 
the center of the stator and rotates around its own 
center. For dynamic eccentricity, the rotor shifts from 
its normal position, but still rotates around the center of 
the stator [2- 4]. 
Induction motor modeling with dynamic eccentricity 
using the winding function approach has been widely 
investigated [5-8]. The frequency components 
generated by dynamic eccentricity are explained 
analytically in [5]. Using the rotating field approach, 
authors confirm the existence of specific frequency 
components around the fundamental, caused by the 
dynamic air gap eccentricity. The interactions between 
the dynamic eccentricity and the inherent static 
eccentricity are also illustrated using an adequate 
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mathematical model of the induction machine. In this 
model, the calculation of inductances is performed by 
the modified winding function approach. 
The Authors in [6] used the coupled magnetic circuit 
approaches to model the induction machine under 
dynamic eccentricity. The inductances are calculated 
directly from the geometry and layout of the machine 
using the turn and winding function approach. 
Simulation results are presented in this paper to show 
the behavior of the induction machine under this fault. 
In [7], authors use the extension of winding function 
approach to calculate and evaluate machine 
inductances for a nonuniform air gap. In this approach, 
the modified winding function is defined as the 
difference between the turn function for uniform air 
gap and its average in one period. Using this approach, 
it was confirmed that the mutual inductances calculated 
from stator and rotor are not the same. The Modified 
Winding Function Approach (MWFA) is also used in 
[8]. Compared to [7], the axial variable (z) was 
introduced in addition to the polar variable (ϕ, r) for 
inductances calculation.  
Although, in all the papers discussed above and also in 
other papers [9-11], the winding function approach has 
been used, the analytical expression of the self and 
mutual inductances of the induction machine has never 
presented. For that reason, this paper aims to introduce 
the analytical formulation of these inductances using 
the Magneto Motive Force (MMF) and the permeance 
function approach considering space harmonics.  First, 
the Fourier series decomposition of the stator and the 
rotor MMFs will be presented. These MMFs are 
multiplied by the permeance function and integrated 
cross a surface to produce the flux. Inductances are 
obtained by dividing the flux linkage by the current. 
The magnitude and the form of these inductances in 
presence of dynamic eccentricity are discussed and 
compared to those of the healthy machine. The 
calculated inductances are introduced in the general 
induction machine model obtained using the 
magnetically coupled circuits approach. Simulation 
results illustrating the induction machine performances 
for the healthy the faulty cases are presented. Also, the 
Fast Fourier Transform FFT of the steady state stator 
current is performed to detect any specific component 
which identifies the fault appearance in the machine.  
The paper is organized as follow: section 2 presents the 

dynamic model of the induction machine, while 
section 3 describes the methodology used for 
inductances calculation and illustrates analytical 
formulations of these inductances. Simulation 
results are discussed and analysed in section 4. 
 

2. Dynamic Model of the Induction Machine 
The induction machine is modelled as a set of coupled 
circuits consisting of the individual coils of the stator 
windings and the loops of the rotor formed by rotor 
bars and end-ring segments. The effect of space 

harmonics of the MMF and the air-gap permeance is 
incorporated in the model. The model parameters are 
evaluated from the geometry and the winding layout of 
the machine. With many assumptions to neglect 
saturation and slot effects, this model reduces the 
complexity of coding and computations dramatically. 
According to coupled magnetic circuits approach, it is 
possible to establish the voltage equations of stator and 
rotor loops as [12]: 
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where Vs is the stator voltage, Is and Ir are the stator and 
the rotor currents, φs and φr are the stator and the rotor 
flux linkage, Rs and Ls are a 3 by 3 stator resistance and 
inductance matrix, Rr and Lr are a (Nr+1)x(Nr+1) rotor 
resistance and inductance matrix. Msr is a 3 by Nr+1 
matrix consisting of mutual inductances between stator 
coils and the rotor loops plus the end ring, where Mrs is 
a Nr+1 by 3 matrix consisting of mutual inductances 
between rotor loops and the stator coils. The 
mechanical equation of motion depends upon the 
characteristics of the load. It is assumed here that the 
torque which opposes that produced by the machine 
consists of the inertial torque, the friction torque and 
the external load torque which are explicitly known. In 
this case the mechanical equation of motion can be 
simply given as: 
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where CL is the load torque and Kf is the friction 
constant. The electromagnetic torque produced by the 
machine Cem can be obtained from the magnetic co-
energy equation as: [13]: 
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In a linear magnetic system, the co-energy is equal to 
the stored magnetic energy: 
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3. Inductances Calculation  
It is well known that a successful simulation of an 
induction motors requires a precise calculation of all 
motor inductances. As it was discussed in section 1, 
many papers use the MWFA for inductances 
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calculation. Inductances which change with rotor 
position such as stator-rotor mutual inductance (Msr) 
must be evaluated at every simulation step. In the 
discussed papers, discrete curves of mutual inductances 
and their derivatives versus rotor angular position are 
pre-computed and stored in luck-up table. Within the 
iteration loop, the inductances are obtained by linear 
interpolation. This additional operation increases 
simulation time. In this paper, analytical expression of 
induction machine with dynamic eccentricity fault will 
be presented using the MMF and the air-gap 
permeance approach. The resulting inductances 
expressions are less complicated and can be introduced 
in the simulation script for calculation at every step 
without the need for interpolation. Moreover, since 
mutual inductances derivative are also needed, their 
expression can be easily obtained and used for torque 
calculation. 
 

3.1. Self and mutual inductances of stator 
phases   

The self inductance Lsi of any stator phase i (i=1, 2, 3) 
can be given by the following equation:    
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where φsi is the flux linked to this phase generated only 
by the current isi following the same phase. Due to the 
high permeability of stator and rotor steel and the short 
length of the air gap relative to the inside stator 
diameter, the magnetic field essentially exist only in the 
air gap and tend to be radial in direction, even with an 
eccentric rotor [3,4].  
At first, let us consider the flux linkages of a single coil 
of stator winding which is located between ϕs1 and ϕs2 
in the stator reference frame. In this case, the flux is 
determined by performing a surface integral over the 
open surface of the single coil:  
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where r is the average air gap radius, L is the core 
length. Fsi(ϕs) is the stator phase FMM and λ(ϕs,θr) is 
the air-gap permeance function, they can be given 
respectively by: 
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where Kb(n.p) is the winding factor of the space 
harmonic of rank n given by : 
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where Nsp is the number of series coils per phase, ε0 is 
the mean air-gap length, µ0 is the air magnetic 
permeability and δd is the dynamic eccentricity degree. 
However, the flux linked to the stator phase can be 
obtained by adding the flux linked to all the coils 
which constitute this phase:     
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where: 
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Taking into account equation (12) and substituting 
Fsi(ϕs) and λ(ϕs, θr) by their expressions given 
respectively by (7) and (8), the stator self inductance 
can be obtained after calculation and simplification by 
the following relation: 
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where (Lsi)de1 and (Lsi)de2  are given by (14) and (15) 
respectively.  
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with:   
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Similarly, the expressions for mutual inductance Lsisj 
between two stator phases i and j can be derived using 
the same procedure and introducing only the phase 
angle (ϕsisj =(j-i).2π/3) between these phases. 
Therefore, the following expression can be obtained: 
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where (Lsisj)de1 and (Lsisj)de2  are given by (18) and (19) 
respectively  
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It can be noted from the above expressions that in 
presence of dynamic eccentricity, the self and mutual 
inductances of the stator phases are function of the 
rotor position. Therefore, this fact should be taken into 
account during the calculation of the electromagnetic 
torque. To illustrate this variation, Figure 1 shows the 
self and the mutual inductance between the first and 
the second stator phase for a healthy machine and a 
machine with δd=70% of dynamic eccentricity. It can 
be noted that the amplitude of these inductances 
increases with the degree of dynamic eccentricity. 
 

3.2. Self and mutual inductances of rotor loops    
The rotor can be considered as equivalent to a m-phase 
two layer winding. A turn (loop) is formed by the 
conductors in the top layer of one slot and the bottom 
layer of the adjacent slot. The current ir following in 
the turn is the current in the end ring between the two 
slots. The number of phases in such a winding would 
be m=Nr/p where Nr expresses the number of rotor 
bars. The phase shift between the currents in two 
adjacent turns is 2π /m = 2π.p/Nr since the rotor bars 
are spaced by the angle αr=2.π/Nr [9]. Using this 
approach, the FMM Frj of the j

th
 loop can be written as: 
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Fig. 1 Self and mutual inductances of the stator phase 

 
Hence, the self inductance for any rotor loop can be 
calculated as:  

( ) ∫
−

=
2

2

rrrrjderj

r

r

d).().(F.L.rL

α

α

ϕϕλϕ                     (21) 

 
Using the same method and after calculation and 
simplification, the formula providing the self 
inductance of the rotor loop can be given as: 
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Similarly, the mutual inductance Lrirj between any two 
rotor loops i and j can be deduced by introducing only 
the phase angle (ϕrirj= (j-i).αr):     
 

( ) ( ) ( )( ) ( )rirj2deri1deriderirj .ncos.LLL ϕ+=           (25) 

 
In presence of dynamic eccentricity, self and mutual 
inductances of rotor loops are independent of the rotor 
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position. Hence, these inductances should be calculated 
only once outside of the iterative process. 
 
3.3. Mutual inductances between stator phases and 
rotor loops  
For a machine with uniform air gap, the mutual 
inductances between stator phases and rotor loops Lsr 
are similar to the mutual inductances between rotor 
loops and stator phases Lrs. In this section, it will show 
that, in the case of dynamic eccentricity, the air gap is 
nonuniform and these mutual inductances will be 
different. This important result is also confirmed by [6, 
13]. The mutual inductance between any stator phase i 
and any rotor loop j is the ratio between the flux linked 
to the rotor loop which is generated by the stator phase 
and the current following this phase. Hence, the 
expression of this mutual inductance can be calculated 
by: 
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After calculation of this integral and simplification 
using trigonometric relations, the mutual inductance 
between stator and rotor can be expressed by: 
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ϕsisj is the phase angle between the stator phase and the 
rotor loop, it can be given by : 
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the second term of (27) is given by (31) 
Similarly, the mutual inductance between the rotor loop 
and the stator phase Lrs is the ratio between the flux 
linked to the stator phase which is generated by the 

rotor loop and the current following this loop. Hence, 
its expression can be given by: 
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where β1 and β2 are given by (12) and ϕrjsi=-ϕsisj. 
Hence, the mutual inductance Lrjsi can be given by: 
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The expressions show that stator phase–rotor loop 
mutual inductance and rotor loop-stator phase are 
dependent on the rotor position. A comparison is 
shown in figure 2 between the mutual inductance of the 
first stator phase and the first rotor loop for a healthy 
machine and for a machine with 50% of dynamic 
eccentricity. This figure shows also the mutual 
inductance between the first rotor loop and the first 
stator phase. It is obvious that the mutual inductances 
increase in presence of dynamic eccentricity and the 
mutual inductance between stator phases and rotor 
loops are different from the mutual inductances 
between the rotor loops and the stator phases Figure 3 
shows the curves of mutual inductances between stator 
phases and the rotor loops. It is obvious that the value 
of the mutual inductance declines with the rise of the 
air gap length. Mutual inductances between the rotor 
loops and the stator phases are illustrated in figure 4. 

It can be noted that the shapes of these curves are 

similar to that of the stator-rotor mutual inductances in 

a symmetrical machine. Only the magnitude increases 

with the dynamic eccentricity. This is due to the fact 

that the rotor loop in a standard cage rotor induction 

machine has a quite small pitch, so the rotor loop in 

one position of the rotor does not experience a 

significant change in air gap length 
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4.Simulation results  
The developed model is used to simulate a squirrel 
cage induction machine in the case of healthy and 
faulty conditions. For this purpose, a computer script 
written in MATLAB/SIMULIK has been developed. 
First it is assumed that the machine is supplied by 
three-phase sinusoidal voltages. Figure 5 illustrates the 
rotor speed in case of a healthy and a faulty machine 
with δd=0.2, 0.4 and 0.6 with a load torque of 10 N.m. 
Under these conditions, the slip is 8.6% for the healthy 
machine and for the faulty one with δd=0.2 and δd=0.4. 
For the case of δd=0.6 the slip is 8.2%. It can be noted 
that the acceleration time under dynamic eccentricity is 
larger than under healthy case. This can be explained 
by  the  additional  reluctant  torque  component that  
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Fig. 5 Rotor speed  

compensates for the inherently smaller induction torque 
component due to the higher air gap length along the 
main part of machine circumference. Figure 6 presents 
the stator currents for both healthy and faulty cases. As 
shown in the theoretical analysis, in presence of 
dynamic eccentricity, the stator currents magnitude is 
modulated and this modulation increase with the fault 
severity. Figure 7 demonstrates the steady state stator 
current spectrum in the interval [0 100 Hz] for the 
healthy and the faulty cases under different dynamic 
eccentricity degrees. The spectrum is obtained by the 
estimation of Power Spectral Density PSD using Welch 
technique with Hanning window. As predicted by the 
theoretical analysis presented in [14-16], this figure 
shows clearly that components with frequencies fs±n.fr| 
are present around the fundamental component for 
machines with dynamic eccentricity. The amplitude of 
these components increases with the fault severity. For 
n=1, Lower Sideband Component LSB with frequency 
(fs-fr) increases from -17.36 dB for δd=0.2 to -12.14 dB 
and -8 dB for δd=0.4 and δd=0.6 respectively. However, 
for the Upper Sideband Component USB with 
frequency (fs+fr), there is a difference of 4.65 dB 
between the amplitude of this component for δd=0.2 
and δd=0.4. This difference is 3.38 dB when the degree 
of dynamic eccentricity increases from δd=0.4 to 
δd=0.6.   
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Fig. 6 Stator currents 
 
Figure 8 shows the steady state stator current spectrum 
in the interval [500 800Hz] for machine with 40% of 
dynamic eccentricity operating under 10 N.m load 
torque. The Principal Slots Harmonics PSH can be 
located in this spectrum. As indicated in the theoretical 
analysis, the frequency of these components 
corresponds exactly to this given by: 
 

( ) s
r f.g1

p

N.k
PSH 








±−= ν                  (36) 

The frequency of the first component is 588.5 Hz and 
for the second one is 688.5 Hz. However, other 
components exist around the slots harmonics due to the 
dynamic eccentricity. The frequency of these 
harmonics is given by (37) and can be indicated in 
figure 8. 
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In order to analyse the effect of time harmonic on the 
spectrum of the stator current, the proposed model is 
also used to simulate the induction machine with 
dynamic eccentricity when the supply is a sinusoidal 
PWM voltage source inverter 
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Fig. 7. Stator current spectra around the fundamental,  
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machine supplied by sinusoidal voltages with δd=0.4 
 

The output voltage of the inverter contains in addition 
to the fundamental, other components with frequency 
(m.k1±k2).fs where m is the modulation index, (k1, k2) 
are integer and (k1+k2) an odd integer [17]. 
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Figure 9 shows the stator current spectrum around the 
fundamental for δd=0.4. Compared to the spectrum of 
Figure 7-c, the spectrum showed by this figure contains 
in addition to the specific fault harmonics with 
frequency |fs±n.fr|, other components with small 
amplitude due to the PWM harmonics.  
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Fig. 9 Stator current spectra around the fundamental 
for machine supplied by PWM inverter with δd=0.4  

 
6. Conclusion  
In this paper, the analytical expressions of the self and 
mutual inductances of the induction machine in 
presence of dynamic eccentricity are presented. These 
inductances are obtained using the magnetomotive 
force and the airgap permeance approach including the 
space harmonics effect. The magnitude of these 
inductances increases with the dynamic eccentricity 
degree compared to a healthy machine. In addition of 
this, the self and mutual inductance of the stator 
become variable with the rotor position. Concerning 
the mutual inductances between the stator and the 
rotor, the results obtained with this approach confirm 
that the mutual inductances of the stator-rotor loops are 
different from the mutual inductances of the rotor-
stator phases. The developed inductances are 
introduced in a general model of an induction machine 
obtained using the magnetically coupled circuits 
approach. Simulations are performed for two different 
voltage supplies. The first one is a perfect sinusoidal 
supply whilst the second one is a PWM voltage 
inverter. The Power Spectral Density of the stator 
current is used to detect the specific components of the 
dynamic eccentricity fault. It has been shown that in 
case of PWM supply, the identification of these 
components is more difficult than for a sinusoidal 
supply.  
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