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Abstract: The paper presents a maximum power point 
tracking (MPPT) approach and a modeling technique for 
photovoltaic (PV) arrays feeding voltage-source inverter 
(VSI) induction motor driving a water pump load. The 
proposed methodology is based on adaptive neuro-fuzzy 
inference systems (ANFIS) employed to obtain the chopper 
duty ratio which guarantees maximum power operation, 
and to model the PV array. A pilot module of the array is 
periodically tested to estimate the solar irradiation and 
cell temperature to avoid the high cost and technical 
difficulties of direct measurement. Results show that 
maximum power operation was maintained under different 
loading and environmental conditions with acceptable 
performance of the induction motor drive. 
 
Keywords: Photovoltaic arrays, maximum power 
point tracking, neuro-fuzzy systems, induction motor 
drives.  
 
1. Introduction 

 
The past few decades are characterized by the 

growth in energy demand along with the anticipation 
of reduction or even extinction of conventional fuel 
sources. The concerns about environmental 
preservation have also increased. Accordingly, 
research and development endeavors on alternative 
energy sources – which are clean, renewable, and 
with little environmental impact – have been recently 
intensified. Solar energy, as a renewable energy 
source, is a good choice for electric power generation 
due to its availability and cleanliness. The solar 
energy is directly converted to electrical energy by 
solar photovoltaic (PV) cells, which could be 
arranged in modules or arrays. However, PV arrays 
still have relatively low conversion efficiency and 
relatively high initial cost. Moreover, PV arrays are 

attributed by nonlinear current-voltage (I-V) curves, 
and for each curve there is a single point at which the 
array gives maximum power. Since the I-V curves 
vary with the unpredictable change in solar 
irradiation and cell temperature, operation at 
maximum power point (MPP) of the solar array 
becomes a crucial task in PV systems [1].  

 
Several maximum power point tracking (MPPT) 

techniques are currently available in the literature. 
Such methods vary in complexity, cost, range of 
effectiveness, required sensors, convergence speed, 
hardware implementation, and various other aspects 
[2]. Some of these methods are perturb and observe 
[3], incremental conductance [4], fractional open-
circuit voltage [5], fractional short-circuit current [6], 
look-up table [7], array reconfiguration [8], IMPP 
and VMPP computation [9], best fixed voltage [10], 
variable inductor MPPT [11], and variable step-size 
incremental resistance [12]. Due to the nonlinearity 
of PV systems, artificial intelligence paradigms such 
as artificial neural networks [13], fuzzy logic control 
[14], and particle swarm optimization [15] could be 
effectively employed in order to enhance system 
performance. 

 
In 1993 [16], Jang coined the term ANFIS which 

stands for Adaptive Network-based Fuzzy Inference 
Systems, or semantically equivalently, Adaptive 
Neuro-Fuzzy Inference Systems. ANFIS is an 
intelligent regime comprising an adaptive network 
performing the function of a Sugeno-type fuzzy 
model [17] and [18]. Optimization algorithms 
employed through adaptive networks make the 
system performance similar, with minimal error, to a 



 
 

targeted training data set. ANFIS combines the 
optimization strength of adaptive networks with the 
ability of fuzzy systems to handle vague situations 
and process uncertain data. Such attribute enabled 
ANFIS to find many immediate engineering 
applications including, but not limited to, decision 
making, problem solving, pattern recognition, 
nonlinear mapping, system modeling, and adaptive 
control. 

 
In the area of solar energy research, ANFIS was 

successfully employed to extract the MPP of PV 
modules [19] – [21]. Most of the research is centered 
on the principle of adjusting the voltage of the solar 
PV module by changing the duty ratio of DC-DC 
chopper circuits. The duty ratio is controlled for a 
given solar irradiation and cell temperature condition 
by a closed-loop scheme. Therefore, measuring the 
continuously changing environmental conditions 
becomes inevitable as well as the usage of control 
system components, which increases the overall 
system cost. In addition to application to system 
modeling [22] – [24], ANFIS was also employed to 
estimate the chopper duty ratio directly from solar 
irradiation and module temperature [20]. Up to the 
best of the authors’ knowledge, there is no research 
work on hand that could utilize ANFIS in a MPPT 
application to eliminate the need to measure solar 
radiation and temperature.  

 
The present paper introduces an ANFIS-based 

maximum power point tracking (MPPT) scheme for 
a photovoltaic (PV) array feeding voltage source-
inverter (VSI) induction motor driving a water pump 
load. Since maximum power operation is dependent 
on the environmental conditions of the PV array, a 
MPPT ANFIS is primarily developed to obtain the 
chopper duty ratio for MPP from the solar irradiation 
and cell temperature. Nevertheless, due to the 
expensive sensors and technical difficulties of direct 
measurement, a pilot module of the PV array is used 
for periodical testing of the open-circuit voltage (Voc) 
and short-circuit current (Isc). The measured Voc and 
Isc are used to estimate the solar irradiation and cell 
temperature via two other independent ANFIS, 
which can model the highly nonlinear behavior of the 
module. Thus, the chopper duty ratio for MPP is 
estimated over two stages: first is to assess the solar 
irradiation and cell temperature from pilot module 
testing, and second is to deduce the duty ratio from 
the estimated environmental conditions. Finally, the 
functions developed so far are combined in one 
ANFIS, represented by the dashed box of Fig. 1, 

inferring the duty ratio directly from pilot module 
testing. Results show acceptable performance of all 
developed ANFIS as well as the induction motor 
drive representing the load of the system. The most 
distinct feature of the proposed method is the 
elimination of the need to measure irradiation and 
temperature. The arbitrarily set frequency of pilot 
module testing is also a plus, which enables the 
system to cope with the rapidly changing 
environmental conditions. 

 
Fig. 1: Proposed ANFIS structure 

 
2. Problem Formulation 
 
    The system, Fig. 2, consists of a PV array feeding 
a buck chopper, whose duty ratio is controlled to 
maintain maximum power operation of the PV. The 
constant DC output voltage of the chopper feeds a 
three-phase inverter switched in open loop by the 
standard sinusoidal pulse-width modulation (SPWM) 
algorithm. The battery at the DC link helps maintain 
the chopper output voltage constant such that 
controlling the duty ratio would force the PV voltage 
to the MPP value. The battery also helps regulate the 
power flow from the PV panel to the motor drive. It 
can store or compensate the difference between the 
PV output and load power. The fixed voltage and 
frequency output AC voltage of the inverter feeds 
three-phase induction motor driving a water pump 
load. The maximum power point of the PV is 
dependent on the environmental conditions 
represented by solar irradiation and cell temperature. 
Such conditions determine the chopper duty ratio 
required to run the PV at maximum power and obtain 
constant output DC voltage. 
 

The duty ratio of the chopper for MPP operation 
is directly related to solar irradiation and cell 
temperature. Therefore, a two-input one-output 
ANFIS is developed to mimic such relationship. 
However, the Pyranometer used to measure solar 
irradiation is known to be expensive and sensitive to 
changes of the operating conditions. Meanwhile, 
measurement of cell temperature is not technically 
straightforward as cell temperature is different from 



 

ambient temperature due to cell-loss accumulated 
heat. Empirical formulae could be used to estimate 
cell temperature from the easily measured ambient 
temperature; however, results are usually inaccurate. 
Due to such obstacles of direct measurement, an 
innovative technique is proposed to deduce the 
irradiation and temperature from a pilot module of 
the PV array. The pilot module is periodically tested 
to measure its open-circuit voltage and short-circuit 
current. Then, two ANFIS, both having two inputs 
and one output, are developed to obtain the solar 
irradiation and cell temperature from the pilot 
module measurements. Thus, the need for direct 
measurement of environmental conditions is 
eliminated. 
 

 
Fig. 2: System structure 

 
The next step is to combine the three functions 

performed by ANFIS – as indicated by the dashed 
box of Fig. 1 – into one ANFIS. Therefore, a two-
input one-output ANFIS is developed to estimate the 
chopper duty ratio for MPPT directly from Voc and Isc 
measured from the pilot module. A distinct feature of 
the proposed technique is that repetitive testing of the 
pilot module could be performed as frequent as 
needed, which guarantees that the system can cope 
with fast changing environmental conditions. 
 
2.1 Mathematical Model of the PV Array 

A solar cell can be modeled with a current source 
in parallel to a diode, a shunt resistor to represent 
ground leakage, and a series resistor to account for 
power loss associated with cell current, Fig. 3(a). The 
cell current is expressed as. 
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Where: 
Ic = Cell current, A, 
Iph = Light-generated current, or photocurrent, A, 
Ios = Reverse saturation current of the diode, A, 
q = Electron charge, C, 
A = Ideality factor of the diode, 

K = Boltzmann constant, J/oK, 
T = Cell Temperature, oK, 
Vc = Cell voltage, V, 
Rs = Series resistance, Ohm, and 
Rsh = Shunt resistance, Ohm. 
 

The photocurrent is dependent on the solar 
irradiation and cell temperature, and is given as. 
  ( )[ ]riscph TTkII −+= λ   (2) 

Where: 

λ = Solar irradiation (as a ratio of 1000 W/m2), suns, 
Isc = Cell S.C. current at a 25°C and 1000 W/m2, A, 
ki = S.C. current temperature coefficient, A/oK, 
T and Tr = Actual and reference temperature, oK. 
 
On the other hand, the reverse saturation current 
varies with temperature, and could be expressed as. 
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Where: 
Ior = Reverse saturation current at reference 
temperature and irradiation, A, 
T and Tr = Actual and reference temperature, oK, 
Eg = Band-gap energy of the semiconductor used in 
the cell, J/C.  
 

The shunt resistance, Rsh, is inversely related with 
shunt leakage current to the ground. In general, the 
PV efficiency is insensitive to variation in such 
resistance, which can be assumed to approach 
infinity with no leakage current to ground. On the 
other hand, a small variation in Rs will significantly 
affect the PV output power. Therefore, the shunt 
resistance is usually neglected in the cell equivalent 
circuit. 

 
Since a typical PV cell produces less than 2W at 

0.5V approximately, the cells must be connected in 
series-parallel configuration on a module to produce 
enough high power. A PV array is a group of several 
modules which are electrically connected in series 
and parallel to generate the required current and 
voltage. The equivalent circuit of a solar array with 
Ns and Np series and parallel cells is shown in Fig. 
3(b). The terminal equation of the array current 
becomes as follows. 
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In fact, the PV efficiency is sensitive to small 
change in the series resistance, but insensitive to 
variation in the shunt resistance. In most commercial 
products, PV cells are generally connected in series 
to form a PV module in order to obtain adequate 
operating voltage. Modules are then arranged in 
series-parallel structure to form an array and achieve 
the desired output power. 

 
(a) 

 
(b) 

Fig. 3: Equivalent circuits: (a) PV cell,  (b) PV array. 
 

The above equations are directly employed to 
obtain the current-voltage characteristics of the PV 
array. The maximum power point is signified by 
certain array voltage and current, and is determined 
by the solar irradiation and cell temperature. Forcing 
the array voltage to the value required for maximum 
power, as the environmental conditions change, 
guarantees MPPT. If the load-side voltage of the 
chopper is to be maintained constant, the duty ratio 
should be continuously varied in order to assure 
maximum power operation. Such task is performed 
via ANFIS in the present work. 
 
3. Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) 

 
ANFIS refers, in general, to an adaptive network 

which performs the function of a fuzzy inference 
system [16] – [18]. The most commonly used fuzzy 
system in ANFIS architectures is the Sugeno model 
since it is less computationally exhaustive and more 
transparent than other models, especially when 
processed by machines. In the premise part, the 

Sugeno model is not different from other fuzzy 
systems, of which the most famous is the Mamdani 
model. A consequent membership function (MF) of 
the Sugeno model could be any arbitrary 
parameterized function of the crisp inputs, most 
likely a polynomial. Zero and first order polynomials 
are used as consequent MF in constant and linear 
Sugeno models, respectively. In addition, the 
defuzzification process in Sugeno fuzzy models is a 
simple weighted average calculation. The fuzzy 
space is divided via grid partitioning according to the 
number of antecedent MF, and each fuzzy region is 
covered with a fuzzy rule. On the other hand, each 
fixed and adaptive node of the network performs one 
function or sub-function of the Sugeno model, as 
shown in Fig. 4, such that the overall performance of 
the network is functionally the same as that of the 
fuzzy model. 

 
Fig. 4: (a) Two-input, one-output, two-rule Sugeno 

model, (b) equivalent ANFIS structure. 
 

The adaptive network employs an optimization 
algorithm in order to modify the parameters of the 
fuzzy inference system. The adaptation process aims 
at obtaining a set of parameters at which an error 
measure between the actual performance of the fuzzy 
inference system and a targeted set of training data is 
minimized. Parameters of the consequent MF are 
linear as long as zero or first order polynomials are 
used; meanwhile, parameters of the antecedent MF 
are nonlinear.  

 

Thus, classical optimization techniques, such as 
back propagation, could be used as well as hybrid 
algorithms. The total number of ANFIS modifiable 
parameters is a crucial factor of the computational 
effort required before the adaptation process is 
completed. Therefore, antecedent Gaussian MF, 
which is defined through two parameters only, is 
more preferable than other forms of MF, which 



 

require three or more parameters. ANFIS combines 
the advantages of fuzzy systems and adaptive 
networks in one hybrid intelligent paradigm. The 
flexibility and subjectivity of fuzzy inference 
systems, when added to the adaptation potential of 
adaptive networks, give ANFIS its remarkable power 
of modeling, learning, nonlinear mapping, and 
pattern recognition. 
 
4. Results  

 

The task of MPPT in the system of Fig. 2 is 
accomplished through ANFIS. Ultimately, the 
chopper duty ratio is deduced from the measurements 
of open-circuit voltage and short-circuit current of 
the pilot module. Then, the system is modeled under 
maximum power operation to check for acceptable 
performance of the induction motor drive and its 
load. 

 
4.1 ANFIS development 

 Operation of the PV array varies with changes of 
the solar irradiation and cell temperature; 
accordingly, MPP is reliant on such independent 
variables of the system. As a first thought, the 
chopper duty ratio is estimated from solar irradiation 
and cell temperature via ANFIS. The training data 
are obtained by solving the mathematical model of 
the PV array – Equations (1) through (4) – at 
different environmental conditions. The solar 
irradiation is changed from 300 to 1000 by a step of 
10 W/m2, and the cell temperature is varied from 290 
to 325 by a step of 5 oK, resulting in a training data 
set of 568 points. The chopper duty ratio for 
maximum power is computed at each point to 
represent the corresponding ANFIS output. A two-
input one-output ANFIS is designed with Gaussian 
antecedent membership function (MF), and first-
order polynomial consequent MF. With three MF per 
input, the mean square error (MSE) of the training 
data did not stagnate even after 1500 training epochs. 
However, with four, five, and seven MF per input, 
MSE stagnated at 0.0001296, 0.0001031, and 
8.44×10–5 after 64, 4, and 4 training epochs, 
respectively. It should be mentioned that all ANFIS 
of the present work are developed using the Fuzzy 
Logic Toolbox of Matlab 7.8, where the hybrid 
training algorithm is always used for training. 
 

A fifty-point testing data set is similarly derived 
from the mathematical model at randomly selected 
conditions. It should be highlighted that testing data 

are not subset of the training data; moreover, some 
points are outside the range of training data. The 
MSE of the testing data is 0.0028, 0.009, and 0.0083 
for the four, five, and seven MF per input cases, 
respectively. In compromise between system size and 
accuracy, the four MF per input ANFIS is chosen. 
Table 1 shows sample results of ANFIS testing. 
 

The results of another more systematic method of 
ANFIS testing are shown in Fig. 5. Typical variations 
of solar irradiation and temperature of a summer day 
are shown from 6 am to 6 pm. Both curves are 
normal distributions with maximum points occurring 
at noon for irradiation, and at 2 pm for temperature. 
The bottom plot of the figure shows the chopper duty 
ratio where the solid curve indicates the required 
values and the dotted one signifies ANFIS output. 
The plot shows that ANFIS output is almost identical 
to the required duty ratio at MPP. However, there is a 
slight difference at both tails of the plot because the 
actual irradiation values are outside the training 
range of ANFIS. Nevertheless, such difference is still 
acceptable. 

 
Fig. 5: Results of ANFIS testing during a typical 

summer day. 
 

The above ANFIS requires solar irradiation and 
cell temperature to be continuously measured in 
order to estimate the chopper duty ratio. Measuring 
such quantities is known to be expensive and 
troublesome. The Pyranometer used to measure solar 
irradiation is a costly device. In addition, cell 
temperature normally differs from ambient 
temperature due to internal losses associated with 
load and leakage currents. Even when some 
empirical formulae are used to estimate cell 
temperature from ambient temperature, results are 



 
 

usually inaccurate. Hence, there is a solid motivation 
to deduce solar irradiation and cell temperature in 
order to avoid measuring them. A pilot module of the 
PV panel could be used solely for such purpose. The 
open-circuit voltage (Voc) and short-circuit current 
(Isc) of the pilot module are periodically measured to 
estimate solar irradiation and cell temperature using 
ANFIS agents which would model the nonlinear PV 
behavior. Two separate ANFIS are developed; both 
have Voc and Isc as inputs, while one outputs solar 
irradiation and the other outputs cell temperature. It 
should be emphasized that conceptually, a two-input 
two-output ANFIS could have performed the task 
equivalently well. However, it is a limitation of the 
Fuzzy Logic Toolbox of Matlab to have only one 
output per ANFIS. 
 

To estimate solar irradiation, a two-input one-
output ANFIS is developed with Gaussian antecedent 
MF and linear consequent MF. The previous 568 
operating points are re-oriented to compose the 
training data of the present ANFIS. When the 
antecedent MF are three, four and five, the training 
data error stabilized at 0.0095, 0.001, and 0.0117 
after 76, 25, and 13 training epochs, respectively. 
When ANFIS is tested at the same 50 randomly 
selected points, MSE of testing data becomes 0.0436, 
0.3025, and 15.6617 for three, four, and five MF per 
input, respectively. 
 

A similar ANFIS is designed to infer cell 
temperature from the pilot module measurements. 
With three, four, and five Gaussian MF per input, 
and 68, 31, and 14 training epochs, the MSE error of 
the training data reached a minimum of 0.0295, 
0.0297, and 0.0376, respectively. Results of testing at 
the same 50 operating conditions show a MSE of 
0.5549, 2.5412, and 48.1551 for three, four, and five 
MF per input, respectively. Obviously, the three 
antecedent MF systems gave the best performance in 
both cases. Sample testing results for irradiation and 
temperature estimation systems are shown in Table 2. 

 
The two modeling ANFIS are also tested using 

the typical daily variations of environmental 
conditions, Fig 6. The two top plots of Fig. 6 
represent the day-time variations of Voc and Isc of the 
pilot module due to the change in solar irradiation 
and cell temperature.  

 
The two bottom plots show ANFIS performance 

in detecting irradiation and temperature, where the 

solid curves indicate the actual values, while the 
dotted curves signify ANFIS output. The plots denote 
excellent matching between actual and predicted 
values except for the first and last two hours of the 
day on the temperature plot only. The reason again is 
that the actual values of irradiation during such 
periods are outside the training range of ANFIS. Yet, 
ANFIS output is still of acceptable accuracy as the 
percentage error is 8.715% and 8.797% at 6 am and 6 
pm, respectively. It should be emphasized that 
ANFIS performance could be improved if the 
training data range is extended to include small 
irradiation values, which are likely to be at the 
beginning and ending hours of the day. 

 

 
 

Fig. 6: Results of modeling ANFIS testing during a 
typical summer day. 

 
The last, and concluding, step of ANFIS 

development is to design a system that deduces the 
chopper duty ratio directly from pilot module testing. 
Accordingly, a two-input one-output ANFIS is 
designed with Gaussian and linear antecedent and 
consequent MF, respectively. Inputs are Voc and Isc 
obtained from pilot module testing, while the output 
is straightforwardly the chopper duty ratio. The same 
568 operating points are used for training, and the 
same 50 random points are used for testing. The 
training MSE becomes fixed at 0.00012, 0.00013, 
and 0.00014 after 129, 4, and 2 epochs with 3, 4, and 
5 MF per input, respectively. However, MSE based 
on testing data of the 3, 4, and 5 antecedent MF 
systems is 0.0036, 0.0089, and 0.1227, respectively. 
Evidently, the 3 MF per input ANFIS outperforms 
the other two cases of 4 and 5 MF per input. Table 2 
shows sample testing points. 



 

Table 1: Results1 of ANFIS testing. 
 

Case 
Inputs Output (Duty Ratio) Error 

Irradiation, W/m2 Temperature, oK Actual Estimated Absolute Percentage 
1 229 283 0.6833 0.6808 – 0.0025 – 0.3687 
2 484 296 0.7046 0.7044 – 0.0002 – 0.0284 
3 994 309 0.7314 0.7313 – 0.0001 – 0.0137 
4 739 322 0.7856 0.7857    0.0001    0.0127 
5 229 335 0.8943 0.8841 – 0.0102 – 1.1406 

 

1Inputs are solar irradiation and cell temperature 
 

Table 2: Results2 of ANFIS testing. 
 

Case 
Inputs Output (Irradiation, W/m2) Error 

Voc, V Isc, A Actual Estimated Absolute Percentage 
1 335.1 1.0920 229 229.088 0.088 0.0384 
2 360.1 4.7399 994 993.934 – 0.066 – 0.0066 
3 308.3 1.5145 314 314.004 0.004 0.0013 
4 319.4 2.7443 569 568.998 – 0.002 – 0.0004 
5 284.5 2.3608 484 484.023 0.023 0.0048 

Case 
Inputs Output (Temperature, oK) Error 

Voc, V Isc, A Actual Estimated Absolute Percentage 
1 340.5 1.4973 283 283.181 0.181 0.064 
2 318.8 1.0982 296 296.486 0.486 0.1642 
3 322.0 3.1543 309 308.947 – 0.053 – 0.0172 
4 312.7 4.4090 322 322.014 0.014 0.0043 
5 287.8 2.7754 335 334.6 – 0.4 – 0.1194 

Case 
Inputs Output (Duty Ratio) Error 

Voc, V Isc, A Actual Estimated Absolute Percentage 
1 353 3.1186 0.6591 0.6580 – 0.0011 – 0.1669 
2 302.5 1.1045 0.7754 0.7752 – 0.0002 – 0.0258 
3 358.6 4.3346 0.654 0.6533 – 0.0007 – 0.107 
4 275.8 1.5316 0.8767 0.8722 – 0.0045 – 0.5133 
5 286 1.1107 0.8308 0.8310 0.0002 0.0241 

 

2 Inputs are Voc and Isc of the pilot module 
 

Testing results show that ANFIS could estimate 
the targeted output very precisely. One distinct 
contribution of the present work is the elimination of 
the need to measure solar irradiation and cell 
temperature in order to estimate the chopper duty 
ratio for MPPT. Rather, two inexpensive- and easily-
measured quantities, i.e. Voc and Isc of the pilot 
module, are employed. Another advantage of the 
proposed technique is that the pilot module could be 

arbitrarily frequently tested in order to cope with 
rapidly varying environmental conditions. 
 
4.2  Drive performance 

The DC output voltage of the buck chopper feeds 
a three-phase inverter switched in open loop 
operation by the standard SPWM technique. The 
fundamental frequency of the output waveform is 60 
Hz, while the frequency ratio and modulation index 



 
 

of the SPWM algorithm are 18 and 0.8, respectively. 
The fixed-voltage fixed-frequency output of the 
inverter feeds a three-phase induction motor whose 
parameters are given in Appendix I. Water pump is 
modeled as a linear speed-dependent torque [20] by 

(5) 
 

A Simulink model is used to investigate the drive 
performance under different operating conditions. 
The drive performance is always acceptable as 
indicated by the sample case of Fig. 7, which shows 
the motor line voltage, current, torque and speed at 
850 W/m2 irradiation and 295 oK temperature. At 
such condition, the required output voltage, current, 
and power of the PV panel for MPP are 270.5 V, 
3.801 A, and 1028 W, respectively. The proposed 
MPPT technique yields output voltage, current, and 
power of 278.4 V, 3.822 A, and 1064 W, 
respectively. The error of the PV output power in this 
case is +3.5%. The average developed torque is 
6.362 Nm, the peak-to-peak ripple torque is 1.64, 
while the shaft speed is 1477 RPM. 

 
Fig. 7: Motor performance characteristics at 850 

W/m2 and 295 oK. 
 

The frequency spectra of the motor line voltage 
and current are plotted in Fig. 8 up to the 49th 
harmonic. Beyond the fundamental component, only 
four voltage harmonics are of significant values. 
Such harmonics are the 16th, 20th, 35th, and 37th, of 
which the 35th has the maximum relative value of 
39.84% of the fundamental. On the current spectrum, 
all harmonics but the fundamental are almost 
negligible. However, the maximum current harmonic 
is the 16th, which represents 4.24% of the 
fundamental component. The performance of the 
motor drive is investigated at other operating 
conditions of the system, and is found always 
acceptable. 

 
Fig. 8: Frequency spectra of the motor line voltage 

and current at 850 W/m2 and 295 oK. 
 

5. Conclusions 
 

The paper presents an ANFIS-based methodology 
for MPPT in PV arrays. The system consists of a PV 
array comprising 576 solar cells connected in series. 
A buck chopper follows the PV array in order to 
convert its varying MPP voltage into a fixed voltage 
feeding a three-phase inverter. The inverter is 
controlled in open-loop by SPWM switching logic to 
feed a three-phase induction motor driving a water 
pump. A battery is connected across the DC link to 
fix the chopper output voltage and compensate for 
the energy difference between the PV panel and load. 
Firstly, ANFIS is used to estimate the chopper duty 
ratio for MPP operation from solar irradiation and 
cell temperature. Then, a pilot module of the PV 
array is used to periodically check its open circuit 
voltage and short circuit current. ANFIS is applied to 
model the PV behavior and infer the solar irradiation 
and cell temperature from the pilot module testing. 
Lastly, one ANFIS is developed to deduce the 
chopper duty ratio for MPPT directly from pilot 
module testing. Results show excellent ANFIS 
performance whether in PV array modeling or in 
MPPT; operation of the induction motor drive is also 
investigated and found acceptable under different 
environmental conditions. 
 

The contribution of the present work stems from 
the elimination of the need to measure irradiation and 
temperature which are costly and technically 
troublesome when directly measured. In addition, the 
pilot module could be arbitrarily frequently tested to 
cope with rapidly changing environmental 
conditions. 
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Appendix I: Simulation Parameters 
 
PV Panel 
Number of cells in series 36×16 
Number of cells in parallel 1 
Reference reverse saturation current 2.35×10–8 A 
Short-circuit current temperature 
coefficient 

0.0021 A/oK 

Diode ideality factor 1.21 
Series resistance per cell 0.01143 Ohm 
Induction Motor 
Output 3 hp 
Line Voltage 220 V 
Frequency 60 Hz 
Poles 4 
Stator Resistance 0.435 Ohm 
Stator Inductance 4 mH 
Rotor Resistance 0.816 Ohm 
Rotor Inductance 2 mH 
Mutual Inductance 69.31 mH 
Inertia 0.089 kg.m2 
Pulse Width Modulation 
Output Frequency 60 Hz 
Modulation Index 0.8 
Frequency Ratio 18 
IGBT 
Saturation VCE 0.3 V 
ON-State Resistance 0.01 Ohm 
TON 0 
TOFF 0.3 μsec 

 
 


