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Abstract: Monitoring of events in the power system provides a
great deal of insight into the behavior of the system. Power
quality of electric power sysem has become an increasing
concern for eectric utilities and their customers over the last
decade. The goal of monitoring non-stationary signal is to
quantify the dynamic nature of these signals and to extract the
important featuresthat support theintegrated monitoring system
that can be used in maintenance scheduling and system
operation. This paper documents an alternate method called
cepstrum defined as Inverse Fourier Transform of a logarithmic
spectrum has been used to analyze different power system events.
Its performance has been compared with other time-frequency
analysis methods like spectrogram, wavelet and scalogram.
Cepstrum can detect the change in amplitude, frequency and
phase accurately.

Keywords. complex cepstrum, spectrogram, wavelet transform,
scalogram, power system events

I. INTRODUCTION

Power quality (PQ) has been a research area
exponentially increasing interest particularly ihet past
decade. The proper diagnosis of PQ problems rexjaifeigh
level of engineering expertise. Adding to the diifty of PQ
diagnosis, is that the required expert knowledgeoisin any
one area but rather in many areas of electric powsy.,
electric drives, sensors, rotating machines, tansérs,
power electronics, power supplies, capacitor switgh
protection, power system faults, harmonics, sigaahlysis,
measuring instruments, and general power systemsatgn.
A PQ problem could be defined as being “any powebjem
manifested in voltage, current, or frequency déwiet that
result in failure or maloperation of customer equgnt”. PQ
involves research in several areas that are retatéide main
aspects of the quality of electric power. Theseaammay be
summarized as basic concepts and definitions, rmageind
analysis, measurement and instrumentation, feaxtraction
techniques, sources of PQ problems, effects of
deterioration, problem analysis and diagnosis,t&oia to and
mitigation of PQ problems, and educational issietated to
power quality. The artificial intelligence technigisuch as
fuzzy logic, expert system, neural network, genatgorithm
and advanced mathematical techniques like wavebtastlet,

DCT have been used for the analysis of power qufli —
[8].

A new method of analyzing power quality has beestulised
in this paper which has found its application innpather
fields discussed belawThe cepstrum can be viewed as
information about the rate of change in the différgpectrum
bands. It was originally invented for charactenigthe seismic
echoes resulting from earthquakes and bomb expissibhas
also been used to determine the fundamental freguef
human speech and to analyze radar signal returns.used
for voice identification, pitch detection, analystf filter
stability, etc [9]-[23]. The independent variablea cepstral
graph is called quefrency. The quefrency is a nreasiitime,
though not in the sense of a signal in the time alomThe
most employed type of cepstrum is the concept ofiptex
cepstrum (CC), which is capable of converting twovolved
signals in one space as added pairs in anotherGeyestrum
analysis is an effective method for fault detectadrgearbox
Md bearings in electrical machines. Section llla@rp about
cepstrum and its types, section Ill discusses @ttspgram,
section IV on wavelet transform and scalogram ictise V
and the results of analyzing the different powestesy events
using the above methods are presented in sectionl
conclusions are given in section VII.

Il. CEPSTRUM

A cepstrum is the result of taking the Fourier Transform of
the log spectrum. It was derived by reversing tingt four
letters of spectrum. The types of cepstrum aoenplex
cepstrum, real cepstrum or power cepstrum and phase
cepstrum. There are many ways to calculate the cepstrum.
Some of them need a phase-unwarpping algorithnothers
do not. Operations on cepstra are labeled quefranalysis,

PIgtering or cepstral analysis [18]-[20].

A. Complex Cepstrum
The complex cepstrum of a signal h(t), given(by and

O
shown schematically in Fig. 1 is writteh(t), and is defined



h(t)

as Inverse Fourier Transform of the (complex atbami of the
signal) natural algorithm of its Fourier Transform. h(t—»{ FT
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Fig.3 Steps to compute Phase Cepstrum
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The phase cepstrum is the odd part of complex kepss in
The complex cepstrum is a real function because the (6).
transform of a complex function
In(H (w)) = In|H (a))| + j@,. Since the log magnitude is an Co (t) =h, (t) ©)
even function of frequency and phase is an oddtimmaof
frequency, their inverse transforms are real fumcif time, Complex cepstrum has been used to analyze aostavt
the complex cepstrum can be divided into an evengral an  signal shown in Fig.4(a), its logarithmic absolufeurier
odd part as in (2). Transform has been shown in Fig.4(b) in which highest
R R " peak occur at 50Hz and 100Hz with side bandsliftsrence
h(t) =h, (t) +h (t) is 50Hz which is fundamental frequency, its invess@.02s in
(2) time base and its cepstrum is shown in Fig.4(c)e Th

~ indications in the cepstrum appears at the muligf0.02s
h, (t) is the even part of the complex cepstrum represents the presence of sidebands at that tistence and
it comes from leftmost for signals with duty cydéss than or
equal to 0.5 and for signals with duty cycle gre#ttan 0.5 it

F'o (t) is the odd part of the complex cepstrum 3 s =y
appears at the rightmost has shown in Fig.(5).
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B. Power Cepstrum i W\VNNWMW
<
The power cepstrurf, (t) of signalh(t) is given by (3) R R R =
Frequency (Hz)
and schematically shown in Fig. 2 and is definednasrse 1 : : R
Fourier transform of the natural logarithm oits power . Lw_k VT S AU el ©
spectrum (magnitude of its Fourier transform).
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27T Fig.4 (a) Signal (b) log magnitude specturm (gsteum for a
- (3) sawtooth
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The power cepstrum is the even part of the compdgstrum,
asin (4)
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C. Phase Cepstrum . ©
The phase cepstruf@, (t) of signalh(t) is given by (5) %7 s o, " '

and is defined as the inverse Fourier transforhefphase of
its Fourier transform Fig.5 (a) Signal (b) log magnitude specturm (@steim of a sawtooth signal
with 0.75 duty cycle

13 u
_2_-[ e' dw lll. SPECTROGRAM
- (5)



The Time-Frequency analysis namely spectrograsnifeen each output has half the frequency band of thetispuhat the
used for the signal analysi$he spectrogram of the signalfrequency resolution has been doubled.
represents the signal’'s energy at time frame tfeagliency f. o N
The time localization can be obtained by suitable-p (¥ Approxmation coefficients

windowing the signal, as the Discrete Fourier Tfams

(spectrum) does not show the time localizationrefjfiency 3] __" Detail coefficients
components explicitly. The spectrogram is a tinestfrency
distribution based on the Fourier Transform ofgheduct of a
sliding window h(t)with the signal. It is given by the Computing a complete convolution* g with subsequent

downsampling would take more computation time. The
Lifting scheme is an optimization where these two

Fig.6 Block diagram of filter analysis

following expression for a signal(t) is

+o0 2 computations are interleaved.

= *( 1 —t\@ 1271 A. Cascading and Filter banks
%(t’ f) IX(T)h (T t)e dr 7 This decomposition is repeated to further iasee the
o frequency resolution and the approximation coedffits

. o _ decomposed with high and low pass filters and ttewn-
where t'=7. The length of the sliding window sampled. This is represented as a binary tree wittes

h (t)determines time and frequency resolution, i.e.padg epresenting a sub-space with a different timedesgy

. . , localization. The tree is known as a filter bank.
frequency resolution needs a long observation windmd

therefore leads to a bad localization in time arwmb wersa.
The window length has to be chosen based on thar pri
knowledge of the signal.

Level 3
coefficients

D= i
IV. DISCRETEWAVELET TRANSFORM Sl s Loat

The principle of wavelet transform lies in the liethical ~ Fig.7 A3 levelfilter bank _
decomposition of an input signal into a seriesufcessively At each level in the Fig. 7 the signal is decoswl into low
lower resolution signals, providing an effectiveywd looking and high frequencies. Due to the decomposition gg®dhe
at a signal at various scales and analyzing it wihious input signal must be a multiple of @heren is the number of
resolutions. Wavelet can be shown with a very désx levels and,is half the sampling frequency.
frequency and time characteristics, allowing theuslization
with the short window at high frequencies and lenigdow at For example a signal with 32 samples, frequeaoge 0 to
low frequencies. By this way, the characteristicé O and 3 levels of decomposition, 4 output scalepesduced:
nonstationary signal can be better monitored [2].

The DWT of a signak is calculated by passing it through a

! ) ; Level Frequencies Samples
series of filters. First the samples are passedutir a low

) " U . 0tof,/8 4
pass filter with impulse respongeresulting in a convolution 3
of the two: fn /8 tOfn 144
® 2 fn/4tof, /28
yinl = > x[K]g[n-K] ®) 1 f/2tof, 16
k=-00
The signal is also decomposed simultaneoushguaihigh- P oLevas Level 2 Level I
pass filterh. The output gives the detail coefficients (frore th X X X \
high-pass filter) and approximation coefficiento(h the low- >
pass) as shown in Fig. 6. It is important thattthe filters are T £12 &
related to each other and they are known as a gumdr _ _ _ frequency
mirror filter. Fig. 8 Frequency domain representation of the DWT
Yo | N| = x| klgl2n-k
o] kzz_w (ol ] V. SCALOGRAM
The formula for the continuous wavelet transform is
Yuan [N] = D x[k]h[2n-K] ©) 1° (t-b
_ ke _ _ C(ab)=—= [ w| — K(t)dt
This decomposition has halved the time resolutionesonly \/5 b a

half of each filter output characterizes the sigihédwever, (10)



The functionw(t) is called the mother wavelet or small =

wave, a and b are scaling and shifting factors t)ds the
input signal. The continuous wavelet transform (QWiél'the
inner product or cross correlation of the sigk@l with scaled

and time shifted Wavele/t/((t-b))/\/g.. This cross correlation
is a measure of the similarity between signal drel dcaled
and shifted wavelet.
transform is called the scalogram. Scalogram can
represented as the two dimensional representafidime in
the horizontal axis, scale on the vertical axis antplitude
given by a gray-scale color. The conversion betwsmle a,

to frequency can be made by using formblA277a.

VI. TESTRESULTS

The proposed cepstrum technique is applieddoynissues
such as: sag, swell, harmonics, interrupt, osoitlatransient
and flicker. All the data are generated using thATMAB
code at a sampling frequency of 1kHz. To demoresttae
efficacy of the technique some test cases are mexbdelow.
For all simulation study a pure sinusoidal signab@Hz and
1p.u amplitude is considered. To compare the padioce of
the new approach with spectrogram, wavelet ancogcain,
the same signal for all the 3 cases has been @esidThis
clearly demonstrates the better detection capghifithe new
technique [6].

A. Sgnal with Voltage swell

When the voltage signal increases by 10%-90& khown
as voltage swell. During a single-line-to-groundlfar when
heavy motor loads are switched off, a brief inceea$ the
rated system voltage may take place on the unfhylteses
of a three phase system. This scenario is oftem agevoltage
swell, whose magnitude is related to the systenurgtimg.
Swell may stress the delicate equipment componémts
premature failure.

A 20% voltage swell begins at t=0.1s and end.2s. the
test waveform sampled at the rate of 1kHz with dexty
50Hz and amplitude 1p.u, is shown in Fig.9 (&),ciépstrum
in Fig.9 (b), approximation and detailed coeffictemf one
level decomposition using haar wavelets is showRi@9 (c)
and Fig.9 (d) and its scalogram is shown in Fig)9 ¢epstrum
with disturbance, wavelets and scalogram deteatsrrately
the swell in the signal from 0.1s to 0.2s.
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Fig.9 (a)Signal (b)Cepstrum (c)Approximaion (d) &lefe) Scalogram of a
signal with swell

B. Sgnal with voltage sag

Voltage sags are 10% to 90% reductions in rdted
voltage, mainly caused by the short circuits arattisig of
large motors. Switching operation associated wétimgorary
disconnection of supply, flow of heavy current asated with
the starting of large motor load or the flow of lfacurrents.
The effect of voltage sag on equipment dependbath the
magnitude and its duration. Adjustable-speed dripescess-
control equipment, and computers are considergtieanost
affected due to sag, because of their sensitiVihe voltage
sag lasts for 0.5 cycles to 1min. when the voltdiggps 30%
or more, the system status is considered to beeaeVeltage
sag is not as damaging as interrupt, until it efasta longer
duration in industry.

A 20% voltage sag begins at t=0.1s and enfi2at the test
waveform sampled at the rate of 1kHz with frequeB6yiz
and amplitude 1p.u, is shown in Fig 10 (a), itsstepn in
Fig.10 (b), approximation and detailed coefficiemts one
level decomposition using haar wavelets is showifrig10
(c) and Fig.10 (d) and its scalogram is shown ig.H (e).
cepstrum, wavelets, scalogram detects accuratelyséty in
the signal from 0.1s to 0.2s.
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C. Sgnal with voltage Interrupt

Interruption is loss of power. A momentaryeimtiption is
defined as the drop of 90% to 100% of the ratedesys
voltage lasting for 0.5 cycles to 5min. Their measuent is
associated with the operation of reclosing or awatterthrow
over devices. Supply interruption for few cycledl greatly
influence the performance of glass and computerstrs.

An interruption in voltage begins at t=1s and eatfs. the
test waveform sampled at the rate of 1000Hz widlydiency
50Hz and amplitude 1p.u, is shown in Fig.11 (&) ciépstrum
in Fig.11 (b), approximation and detailed coeffitie of one
level decomposition using haar wavelets is showifrigill

(c) and Fig.11 (d) and its scalogram is shown ig.H (e).

cepstrum also detects the interruption, but withmeo
disturbance. Wavelets, scalogram detects accuratiety
interruption in the signal from 0.1s to 0.2s.
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D. Sgnal with voltage flicker

Large nonlinear loads, e.g., arc furnaces and weldssult in
voltage modulation, where the fundamental poweguesncy
(50 Hz) represents the carrier signal. These |l@gtfency
(0.5-30Hz) modulations are referred as voltage kdlic
Voltage flicker can cause objectionable light fuetions and
disruption of sensitive electronic equipments. @ychnd
acylic loads with temporal variation or suddentstgrof large
induction motors can cause voltage flicker. Measaet,
monitoring, prediction and compensation of voltdigeker is
of concern for power quality enhancement.

A voltage signal (110V, 50Hz) is modulated by lawduency
components with voltages (0.5V, 1Hz), (1V, 5Hz)V(2
10Hz), (1.5V, 15Hz) and (1V, 20Hz). A signal witlicker is

shown in Fig. 12 (a), its cepstrum in Fig. 12 (b),
approximation and detailed coefficients of one
decomposition using haar wavelets is shown in E2g(c) and
Fig. 12 (d) and its scalogram in Fig. 12 (e). As flicker

modulates the line voltage, the cepstrum deteedlitker as
shown in Fig. 12 (b). Wavelet's detailed coeffi¢erirack
flicker, but not prominent as in cepstrum. Scalog@does not
detect the flicker.
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Fig.12 (a)Signal (b) Cepstrum (c)Approximation (é)8l (e)Scalogram of a
flicker.

E. Sgnal with transients

If the disturbance duration is shorter tharssagd swells, they
can be categorized as transients. When transierksbie
impulsive characteristics, they are called impw@siransient
which are often caused by the lightning or the Isadtching.
When transients display oscillatory characteristicsy are called
oscillatory transient which often result from thepecitor
switching. Such cases may happen when utility dsgrabanks
are customarily switched into service early in therning in
anticipation of a higher power demand. In this  teste
concentrate on investigating the oscillatory transi however,
the method can be also applied to detect imputsaresients.

A sine signal with frequency 50Hz, amplitude ulpvith
oscillatory transients, sampled at 1kHz as showrign 13(a),

Fig.13 (a)Signal (b)cepstrum (c)Approximation (d)&k(e) Scalogram for a
signal with disturbance.

F. Matrix converter

Cycloconverters are used in high power apf}ioa such
as variable frequency speed control for ac machic@sstant
frequency power supplies, controllable reactive @osupply
for an AC system and induction heating systems.riklat
converter [24-26] is a forced commutated convetttat uses
an array of controlled bi-directional switches && tmain
power elements to create a variable output volsygeem with
unrestricted frequency. It does not have any D&-linit and
does not need any large energy storage elementsheln
conventional single phase matrix-converter the A@pot
voltage cannot increase the input voltage and boith
directional switches of any phase leg can neveauibyed on at
the same time. The single phase matrix convertat ¢an
convert the frequency from 50 to 50 Hz and 50 #3H@ with
resistive and inductive load as ID0and 20mH has been
implemented in hardware using PIC16F877A. The dutpu
from the matrix converter has been analyzed using
spectrogram, cepstrum, wavelets and scalogram @snsin
the Fig.14 and Fig.15. Spike occurs in the outmna due to
the inductive load. cepstrum, wavelets detectsspikes in
the outputs signal of the matrix converter acclyatbut
spectrogram with less time resolution. Table licdsses on

cepstrum in Fig. 13(b), approximation and detailedifferent power system events detection capatslitievarious

coefficients of one level decomposition using haavelets is
shown in Fig. 13(c) and Fig. 13(d) and its scalogia shown
in Fig. 13(e). cepstrum, wavelets detects accuyrabel change
in disturbance in signal at 0.05s, but in the spam the
disturbance is not detected.
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VIl. CONCLUSION
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i This paper documents an alternate method; $evEopurier
Transform of a logarithmic spectrum called cepsthas been
used to analyze different power quality events. Its

Fig.14 (a)lnput signal (b) output signal (c)Spegteon (d) Cepstrum (e) performance has b_een compared with other time-&necy
Approximation (f) Detail (g) Scalogram of 50 to/30Hz matrix converter ~ analysis methods like spectrogram, wavelet andogca.
output signal. The MATLAB simulation of different power quality ents
like sag, swell, transient, interrupt, flicker anchatrix
«- converter concludes that complex cepstrum can tetec

M e s e e s o change in amplitude, frequency and phase accurately
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