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    Abstract: Monitoring of events in the power system provides a 
great deal of insight into the behavior of the system. Power 
quality of electric power system has become an increasing 
concern for electric utilities and their customers over the last 
decade. The goal of monitoring non-stationary signal is to 
quantify the dynamic nature of these signals and to extract the 
important features that support the integrated monitoring system 
that can be used in maintenance scheduling and system 
operation. This paper documents an alternate method called 
cepstrum defined as Inverse Fourier Transform of a logarithmic 
spectrum has been used to analyze different power system events. 
Its performance has been compared with other time-frequency 
analysis methods like spectrogram, wavelet and scalogram. 
Cepstrum can detect the change in amplitude, frequency and 
phase accurately. 

   Keywords: complex cepstrum, spectrogram, wavelet transform, 
scalogram, power system events 

I.  INTRODUCTION 

   Power quality (PQ) has been a research area of 
exponentially increasing interest particularly in the past 
decade. The proper diagnosis of PQ problems requires a high 
level of engineering expertise. Adding to the difficulty of PQ 
diagnosis, is that the required expert knowledge is not in any 
one area but rather in many areas of electric power, e.g., 
electric drives, sensors, rotating machines, transformers, 
power electronics, power supplies, capacitor switching, 
protection, power system faults, harmonics, signal analysis, 
measuring instruments, and general power systems operation. 
A PQ problem could be defined as being “any power problem 
manifested in voltage, current, or frequency deviations that 
result in failure or maloperation of customer equipment”. PQ 
involves research in several areas that are related to the main 
aspects of the quality of electric power. These areas may be 
summarized as basic concepts and definitions, modeling and 
analysis, measurement and instrumentation, feature extraction 
techniques, sources of PQ problems, effects of PQ 
deterioration, problem analysis and diagnosis, solutions to and 
mitigation of PQ problems, and educational issues related to 
power quality. The artificial intelligence techniques such as 
fuzzy logic, expert system, neural network, genetic algorithm 
and advanced mathematical techniques like wavelets, Slantlet, 

DCT have been used for the analysis of power quality [1] – 
[8]. 
A new method of analyzing power quality has been discussed 
in this paper which has found its application in many other 
fields discussed below. The cepstrum can be viewed as 
information about the rate of change in the different spectrum 
bands. It was originally invented for characterizing the seismic 
echoes resulting from earthquakes and bomb explosions. It has 
also been used to determine the fundamental frequency of 
human speech and to analyze radar signal returns. It is used 
for voice identification, pitch detection, analysis of filter 
stability, etc [9]-[23]. The independent variable of a cepstral 
graph is called quefrency. The quefrency is a measure of time, 
though not in the sense of a signal in the time domain. The 
most employed type of cepstrum is the concept of complex 
cepstrum (CC), which is capable of converting two convolved 
signals in one space as added pairs in another one. Cepstrum 
analysis is an effective method for fault detection of gearbox 
and bearings in electrical machines. Section II explains about 
cepstrum and its types, section III discusses on spectrogram, 
section IV on wavelet transform and scalogram in section V 
and the results of analyzing the different power system events 
using the above methods are presented in section VI. The 
conclusions are given in section VII. 
 

II.  CEPSTRUM 

   A cepstrum is the result of taking the Fourier Transform of 
the log spectrum. It was derived by reversing the first four 
letters of spectrum. The types of cepstrum are complex 
cepstrum, real cepstrum or power cepstrum and phase 
cepstrum. There are many ways to calculate the cepstrum. 
Some of them need a phase-unwarpping algorithm but others 
do not. Operations on cepstra are labeled quefrency analysis, 
liftering or cepstral analysis [18]-[20]. 

 

A.  Complex Cepstrum 

    The complex cepstrum of a signal h(t), given by (1) and 

shown schematically in Fig. 1 is written ( )h t
∧

, and is defined 
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as Inverse Fourier Transform of the (complex algorithm of the 
signal) natural algorithm of its Fourier Transform. 
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    The complex cepstrum is a real function because it is the 
transform of a complex function 

ln( ( )) ln ( ) hH H jω ω φ= + . Since the log magnitude is an 

even function of frequency and phase is an odd function of 
frequency, their inverse transforms are real function of time, 
the complex cepstrum can be divided into an even part and an 
odd part as in (2). 

( ) ( ) ( )ˆ ˆ ˆ
e oh t h t h t= +
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( )êh t is the even part of the complex cepstrum 

( )ôh t is the odd part of the complex cepstrum 

     

                                    

Fig.1 Steps to compute Complex Cepstrum 

B.  Power Cepstrum 

    The power cepstrum ( )hC t  of signal h(t) is given by (3) 

and schematically shown in Fig. 2 and is defined as inverse 
Fourier transform of  the natural logarithm of  its power 
spectrum (magnitude of its Fourier transform).  
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Fig.2  Steps to compute Power Cepstrum 

The power cepstrum is the even part of the complex cepstrum,  
as in (4)   

( ) ( )ˆ
h eC t h t=

   (4)
 

C.  Phase Cepstrum 

    The phase cepstrum ( )hC tφ  of signal h(t) is given by (5) 

and is defined as the inverse Fourier transform of the phase of 
its Fourier transform 
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Fig.3 Steps to compute Phase Cepstrum 

 The phase cepstrum is the odd part of complex cepstrumas in 
(6).  

( ) ( )ˆ
h oC t h tφ =

   (6) 

   Complex cepstrum has been used to analyze a sawtooth 
signal shown in Fig.4(a), its logarithmic absolute Fourier 
Transform has been shown in Fig.4(b)  in which the highest 
peak occur at  50Hz and 100Hz with side bands, its difference 
is 50Hz which is fundamental frequency, its inverse is 0.02s in 
time base and its cepstrum is shown in Fig.4(c). The 
indications in the cepstrum appears at the multiples of 0.02s 
represents the presence of sidebands at that time instance and 
it comes from leftmost for signals with duty cycle less than or 
equal to 0.5 and for signals with duty cycle greater than 0.5 it 
appears at the rightmost has shown in Fig.(5). 
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Fig.4  (a) Signal (b) log magnitude specturm (c) cepstrum for a 
sawtooth 
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Fig.5  (a) Signal (b) log magnitude specturm (c) cepstrum of a sawtooth signal 
with 0.75 duty cycle 

III.   SPECTROGRAM 

FT IFT ln 
ˆ ( )h t  ( )h t  

FT abs ln IFT ( )hc t  h(t) 



   The Time-Frequency analysis namely spectrogram has been 
used for the signal analysis. The spectrogram of the signal 
represents the signal’s energy at time frame t and frequency f. 
The time localization can be obtained by suitably pre-
windowing the signal, as the Discrete Fourier Transform 
(spectrum) does not show the time localization of frequency 
components explicitly. The spectrogram is a time-frequency 
distribution based on the Fourier Transform of the product of a 
sliding window ( )h t with the signal. It is given by the 

following expression for a signal ( )x t is  
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where 't τ= . The length of the sliding window 

( )*h t determines time and frequency resolution, i.e., a good 

frequency resolution needs a long observation window and 
therefore leads to a bad localization in time and vice versa. 
The window length has to be chosen based on the prior 
knowledge of the signal. 

IV.   DISCRETE WAVELET TRANSFORM 

    The principle of wavelet transform lies in the hierarchical 
decomposition of an input signal into a series of successively 
lower resolution signals, providing an effective way of looking 
at a signal at various scales and analyzing it with various 
resolutions. Wavelet can be shown with a very desirable 
frequency and time characteristics, allowing the visualization 
with the short window at high frequencies and long window at 
low frequencies. By this way, the characteristics of 
nonstationary signal can be better monitored [2]. 

   The DWT of a signal x is calculated by passing it through a 
series of filters. First the samples are passed through a low 
pass filter with impulse response g resulting in a convolution 
of the two: 
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k
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∞

=−∞

= −∑
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   The signal is also decomposed simultaneously using a high-
pass filter h. The output gives the detail coefficients (from the 
high-pass filter) and approximation coefficients (from the low-
pass) as shown in Fig. 6. It is important that the two filters are 
related to each other and they are known as a quadrature 
mirror filter. 
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This decomposition has halved the time resolution since only 
half of each filter output characterizes the signal. However, 

each output has half the frequency band of the input so that the 
frequency resolution has been doubled. 

 
Fig.6 Block diagram of filter analysis 

 
Computing a complete convolution x * g with subsequent 

downsampling would take more computation time. The 
Lifting scheme is an optimization where these two 
computations are interleaved. 
A.  Cascading and Filter banks 
    This decomposition is repeated to further increase the 
frequency resolution and the approximation coefficients 
decomposed with high and low pass filters and then down-
sampled. This is represented as a binary tree with nodes 
representing a sub-space with a different time-frequency 
localization. The tree is known as a filter bank. 

 
Fig.7 A 3 level filter bank 

   At each level in the Fig. 7 the signal is decomposed into low 
and high frequencies. Due to the decomposition process the 
input signal must be a multiple of 2n where n is the number of 
levels and fn is half the sampling frequency. 

   For example a signal with 32 samples, frequency range 0 to 
fn and 3 levels of decomposition, 4 output scales are produced: 

Level Frequencies Samples 
0 to fn / 8 4 

3 
fn / 8 to fn / 4 4 

2 fn / 4 to fn / 2 8 

1 fn / 2 to fn 16 

 
Fig. 8 Frequency domain representation of the DWT  

 

V.  SCALOGRAM 

The formula for the continuous wavelet transform is  

1
( , ) ( )

t b
C a b w x t dt
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   The function w(t) is called the mother wavelet or small 
wave,  a and b are scaling and shifting factors and x(t) is the 
input signal. The continuous wavelet transform (CWT) is the 
inner product or cross correlation of the signal x(t) with scaled 

and time shifted wavelet w((t-b))/ a . This cross correlation 
is a measure of the similarity between signal and the scaled 
and shifted wavelet. Magnitude of continuous wavelet 
transform is called the scalogram. Scalogram can be 
represented as the two dimensional representation of time in 
the horizontal axis, scale on the vertical axis and amplitude 
given by a gray-scale color. The conversion between scale a, 

to frequency can be made by using formula 5 / 2 aπ . 
 

VI. TEST RESULTS  
    The proposed cepstrum technique is applied to many issues 
such as: sag, swell, harmonics, interrupt, oscillatory transient 
and flicker. All the data are generated using the MATLAB 
code at a sampling frequency of 1kHz. To demonstrate the 
efficacy of the technique some test cases are presented below. 
For all simulation study a pure sinusoidal signal of 50Hz and 
1p.u amplitude is considered. To compare the performance of 
the new approach with spectrogram, wavelet and scalogram, 
the same signal for all the 3 cases has been considered. This 
clearly demonstrates the better detection capability of the new 
technique [6]. 

A.  Signal with Voltage swell 
    When the voltage signal increases by 10%-90% it is known 
as voltage swell. During a single-line-to-ground fault or when 
heavy motor loads are switched off, a brief increase of the 
rated system voltage may take place on the unfaulted phases 
of a three phase system. This scenario is often seen as voltage 
swell, whose magnitude is related to the system grounding. 
Swell may stress the delicate equipment components to 
premature failure. 
    A 20% voltage swell begins at t=0.1s and ends at 0.2s. the 
test waveform sampled at the rate of 1kHz with frequency 
50Hz and amplitude 1p.u, is shown in  Fig.9 (a), its cepstrum 
in Fig.9 (b), approximation and detailed coefficients of one 
level decomposition using haar wavelets is shown in Fig.9 (c) 
and Fig.9 (d) and its scalogram is shown in Fig 9 (e). cepstrum 
with disturbance, wavelets and scalogram detects accurately 
the swell in the signal from 0.1s to 0.2s.  
 

 

 
Fig.9 (a)Signal (b)Cepstrum (c)Approximaion (d) Detail (e) Scalogram of a 

signal with swell 

B.  Signal with voltage sag 
     Voltage sags are 10% to 90% reductions in the rated 
voltage, mainly caused by the short circuits and starting of 
large motors. Switching operation associated with temporary 
disconnection of supply, flow of heavy current associated with 
the starting of large motor load or the flow of fault currents. 
The effect of voltage sag  on equipment depends on both the 
magnitude and its duration. Adjustable-speed drives, process-
control equipment, and computers are considered to the most 
affected due to sag, because of their sensitivity. The voltage 
sag lasts for 0.5 cycles to 1min. when the voltage drops 30% 
or more, the system status is considered to be severe. Voltage 
sag is not as damaging as interrupt, until it exist for a longer 
duration in industry. 
    A 20% voltage sag begins at t=0.1s and ends at 0.2s. the test 
waveform sampled at the rate of 1kHz with frequency 50Hz 
and amplitude 1p.u, is shown in Fig 10 (a), its cepstrum in 
Fig.10 (b), approximation and detailed coefficients of one 
level decomposition using haar wavelets is shown in Fig.10 
(c) and Fig.10 (d) and its scalogram is shown in Fig.10 (e).  
cepstrum, wavelets, scalogram detects accurately the sag in 
the signal from 0.1s to 0.2s.  



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

0

1
Signal

Time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

0

1
Cepstrum

Time (sec)

A
m

p
lit

u
d

e

0 20 40 60 80 100 120 140 160 180
-2

0

2
Approximation

0 20 40 60 80 100 120 140 160 180
-0.5

0

0.5
Detail

Samples

(b)

(a)

(c)

(d)

 

 

Fig.10 (a)Signal (b)Cepstrum (c) approximation (d)Detail (e)Scalogram of a 
signal with sag 

C.  Signal with voltage Interrupt 
     Interruption is loss of power. A momentary interruption is 
defined as the drop of 90% to 100% of the rated system 
voltage lasting for 0.5 cycles to 5min. Their measurement is 
associated with the operation of reclosing or automatic throw 
over devices. Supply interruption for few cycles will greatly 
influence the performance of glass and computer industries. 
An interruption in voltage begins at t=1s and ends at 2s. the 
test waveform sampled at the rate of 1000Hz with frequency 
50Hz and amplitude 1p.u, is shown in Fig.11 (a), its cepstrum 
in Fig.11 (b), approximation and detailed coefficients of one 
level decomposition using haar wavelets is shown in Fig.11 
(c) and Fig.11 (d) and its scalogram is shown in Fig.11 (e). 
cepstrum also detects the interruption, but with some 
disturbance. Wavelets, scalogram detects accurately the 
interruption in the signal from 0.1s to 0.2s.  

 

 

Fig.11 (a) Signal (b) Spectrogram (c)Cepstrum (d) approximation (e)detail 
(f)Scalogram of a signal with interruption. 

D. Signal with voltage flicker 

Large nonlinear loads, e.g., arc furnaces and welders result in 
voltage modulation, where the fundamental power frequency 
(50 Hz) represents the carrier signal. These low-frequency 
(0.5-30Hz) modulations are referred as voltage flicker. 
Voltage flicker can cause objectionable light fluctuations and 
disruption of sensitive electronic equipments. Cyclic and 
acylic loads with temporal variation or sudden starting of large 
induction motors can cause voltage flicker. Measurement, 
monitoring, prediction and compensation of voltage flicker is 
of concern for power quality enhancement. 

A voltage signal (110V, 50Hz) is modulated by low frequency 
components with voltages (0.5V, 1Hz), (1V, 5Hz), (2V, 
10Hz), (1.5V, 15Hz) and (1V, 20Hz). A signal with flicker is 
shown in Fig. 12 (a), its cepstrum in Fig. 12 (b), 
approximation and detailed coefficients of one level 
decomposition using haar wavelets is shown in Fig. 12 (c) and 
Fig. 12 (d) and its scalogram in Fig. 12 (e).  As the flicker 
modulates the line voltage, the cepstrum detects the flicker as 
shown in Fig. 12 (b). Wavelet’s detailed coefficients track 
flicker, but not prominent as in cepstrum. Scalogram does not 
detect the flicker. 
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Fig.12 (a)Signal (b) Cepstrum (c)Approximation (d)Detail (e)Scalogram of a 
flicker. 

E.  Signal with transients 
    If the disturbance duration is shorter than sags and swells, they 
can be categorized as transients. When transients exhibit 
impulsive characteristics, they are called impulsive transient 
which are often caused by the lightning or the load switching. 
When transients display oscillatory characteristics, they are called 
oscillatory transient which often result from the capacitor 
switching. Such cases may happen when utility capacitor banks 
are customarily switched into service early in the morning in 
anticipation of a higher power demand. In this test, we 
concentrate on investigating the oscillatory transient, however, 
the method can be also applied to detect impulsive transients. 
   A sine signal with frequency 50Hz, amplitude 1p.u with 
oscillatory transients, sampled at 1kHz as shown in Fig. 13(a), 
cepstrum in Fig. 13(b), approximation and detailed 
coefficients of one level decomposition using haar wavelets is 
shown in Fig. 13(c) and Fig. 13(d) and its scalogram is shown 
in Fig. 13(e). cepstrum, wavelets detects accurately the change 
in disturbance in signal at 0.05s, but in the scalogram the 
disturbance is not detected. 

 

 

Fig.13 (a)Signal (b)cepstrum (c)Approximation (d)Detail (e) Scalogram for a 
signal with disturbance. 

 F.  Matrix converter 
     Cycloconverters are used in high power applications such 
as variable frequency speed control for ac machines, constant 
frequency power supplies, controllable reactive power supply 
for an AC system and induction heating systems. Matrix 
converter [24-26] is a forced commutated converter that uses 
an array of controlled bi-directional switches as the main 
power elements to create a variable output voltage system with 
unrestricted frequency. It does not have any DC-link unit and 
does not need any large energy storage elements. In the 
conventional single phase matrix-converter the AC output 
voltage cannot increase the input voltage and both bi-
directional switches of any phase leg can never be turned on at 
the same time. The single phase matrix converter that can 
convert the frequency from 50 to 50 Hz and 50 to 50/3Hz with 
resistive and inductive load as 100Ω and 20mH has been 
implemented in hardware using PIC16F877A. The output 
from the matrix converter has been analyzed using 
spectrogram, cepstrum, wavelets and scalogram as shown in 
the Fig.14 and Fig.15. Spike occurs in the output signal due to 
the inductive load.  cepstrum, wavelets detects the spikes in 
the outputs signal of the matrix converter accurately, but 
spectrogram with less time resolution. Table II discusses on 
different power system events detection capabilities of various 
methods. 

 



 

Fig.14 (a)Input signal (b) output signal (c)Spectrogram (d) Cepstrum (e) 
Approximation (f) Detail  (g) Scalogram of 50 to 50/3 Hz matrix converter 

output signal. 

 

 

Fig.15 (a)Input signal (b) output signal (c)Spectrogram (d) Cepstrum (e) 
Approximation (f) Detail of 50 to 50 Hz matrix converter output signal. 

TABLE II 
POWER QUALITY  EVENT DETECTION BY  SPECTROGRAM, 

CEPSTRUM, WAVELET, SCALOGRAM 

Sinusoidal Signal  
with 

Spectrogram Cepstrum Wavelet Scalogram 

Transient - Detects Detects 
Not 

detecting 
Swell - Detects Detects Detects 

Sag - Detects Detects Detects 
Interrupt Detects Detects Detects Detects 
Flicker - Detects Detects Detects 
Spikes in matrix 
converter 

Detects Detects Detects Detects 

Computation time in 
seconds 

2.124 0.158 0.579 2.881 

 
VII.   CONCLUSION 

 
    This paper documents an alternate method; Inverse Fourier 
Transform of a logarithmic spectrum called cepstrum has been 
used to analyze different power quality events. Its 
performance has been compared with other time-frequency 
analysis methods like spectrogram, wavelet and scalogram. 
The MATLAB simulation of different power quality events 
like sag, swell, transient, interrupt, flicker and matrix 
converter concludes that complex cepstrum can detect the 
change in amplitude, frequency and phase accurately 
compared to other methods with less computational time, but 
cannot specify quantitatively that the change is due to 
amplitude, frequency or phase.  The future contribution will be 
in the implementation of cepstrum in field programmable gate 
arrays. 
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