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Abstract: In this paper a problem of energy 
optimization of a double stator induction motor 
(DSIM) is considered. Using the concept of a rotor 
field oriented control (RFOC); the DSIM Blondel-
Park model is used as dynamic constraints in an 
optimal control problem. A cost function consists of 
linear combination of magnetic energy, copper 
losses and mechanical power is minimized in order 
to find minimum-energy rotor flux trajectories. 
From calculus of variations a system of nonlinear 
differential equations are obtained, and analytical 
solutions are achieved in the case of accelerate and 
decelerate mode of the DSIM speed. These 
solutions gave during the two modes a time varying 
trajectories of a minimum-energy rotor flux. These 
trajectories are implemented in the optimal rotor 
flux oriented control (ORFOC) of the DSIM and 
compared to the conventional RFOC at different 
dynamic regime of the DSIM. Simulation results 
are given and improved the effectiveness of the 
proposed strategy. 
 
Keywords: double-star induction machine; field-
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1. Introduction 
 
The theme of current research in the control of 
(DSIM) operating at variable speed is the energy 
optimization control. The induction motor is less 
efficient in terms of energy than the synchronous 
motor. It is that this machine requires stator 
currents continuously even in null torque to 
maintain the rotor flux. This increases substantially 
losses in rotor and stator. In this context, the 
literature like [7], [10], [13] and [14] addresses this 
problem in two aspects:  

• maximization of the torque  

• maximization of the efficiency  
 
We are interested in this study to the second aspect 
because it is the most considered in embedded 
systems [8] and [11].  
Despite significant progress, we still seem to exist 
significant opportunities for improving the cost 
function, by intervening in their operating 
principles particularly at variable speed and their 
control laws. This is so, we are interested in 
extending a hand to the principle of minimizing 
energy consumption of the DSIM and secondly to 
use the rotor flux instead of the iron flux [15].  
In this paper a strategy of optimizing energy of the 
DSIM in transitory regime using calculus of 
variation theory is developed. An integral function 
is considered and decomposed into a weighted sum 
of power-energy of the DSIM for a given time 
interval. This function called the cost function 
[R.A] will be constrained to boundaries conditions 
and to rotor flux and motor speed dynamical 
equations which are developed from the DSIM 
transient model in a turning (d,q) reference frame 
[6]  
Using the Euler-Lagrange to resolve the proposed 
Optimal Control Problem (OCP), an optimal rotor 
flux is giving. This solution provides the lowest 
IM's energy consumption along the given motor 
speed range. To solve this problem, an important 
mathematical background is needed. 

 
2. Nomenclature 

 ��: Stator resistances, ��:Rotor resistances, ��: Stator inductance, 



���:Principal cyclic stator inductance, ��:Rotor inductance, ���: The mutuel inductance, 

p: the poles number 	�
, 	��:Respectively the voltage of stator 1 and 

stator2, I�
, I��:Respectively the current of stator 1 and 

stator2, 

φ�
,φ��:Respectively the flux of stator 1 and 

stator2, V�: The rotor voltage, I� : The rotor current, 

φ�:The rotor flux, C��:The electromagnetic torque, C�:The load torque, k�: The load torque constant, J�:The moment of inertia, 

g: The slip; 

ω�:The rotor speed, 

ω�:The stator frequency, 

ω�: The slip speed, 

Ω: mechanical speed 

 
 

3. Modeling of the  DSIM 
 

From the end of the 1920s, the machines with two 

three-phase windings in the stator were introduced 

to increase the power of synchronous generators. 

The DSIM requires a double three-phase supply 

and has many advantages. Not only does give 

reduced torque oscillations, but it also requires less 

powerful electronic components as the current 

flowing in a six-phase machine is less than that 

flowing in a three-phase machine. However, as the 

use of an inverter is necessary when feeding a 

double star induction machine, this may result in 

supplementary losses, since such an inverter is a 

harmonic generator. 

The double-star induction motor consists of a 

standard simple squirrel-cage rotor and two 

separate three-phase stator windings. The windings 

of the DSIM are shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 1:Representation of the winding of the 
MADE 

The mathematical model of the machine in the 
natural frame is written as a set of state equations, 
as follows: 

�V�
� � �R���I�
� � ���� ��!                                     (1) 

�V��� � �R���I��� � ����"��!                                     (2) 

�V�� � �R��#I�,$ � ���%��!                                          (3) 

With : �V�
� � �V�
&� �V�
'� �V�
(�! �V��� � �V��&� �V��'� �V��(�! �V�� � �V�&� �V�'� �V�(�! �I�
� � �I�
&� �I�
'� �I�
(�! �I��� � �I��&� �I��'� �I��(�! �I�� � �I�&� �I�'� �I�(�! �φ�
� � �φ�
&� �φ�
'� �φ�
(�! 
 �φ��� � �φ��&� �φ��'� �φ��(�! �φ�� � �φ�&� �φ�'� �φ�(�! 
 

�R�� � *R� 0 00 R� 00 0 R�, ; �R�� � *R� 0 00 R� 00 0 R�, 
 



The stator and rotor flux are expressed by equations 

as follows: �φ�
� � �L���I�
� � �M�
���I��� � �M�
���I��(4) �φ��� � �L���I��� � �M��
��I�
� � �M�����I��(5) �φ�� � �L���I�� � �M���0�I�
� � �I���1            (6) 

 

With: 

�L�� �
233
34L� � L�� 5L�� 27 5L�� 275L�� 27 L� � L�� 5L�� 275L�� 27 5L�� 27 L� � L��899

9:
 

�L�� �
233
34L� � L�� 5L�� 27 5L�� 275L�� 27 L� � L�� 5L�� 275L�� 27 5L�� 27 L� � L��899

9:
 

 �M�
��
� M�� 233

4 cos0θ
1 cos?θ
 � 2π 37 B cos?θ
 � 4π 37 Bcos?θ
 � 4π 37 B cos0θ
1 cos?θ
 � 2π 37 Bcos?θ
 � 2π 37 B cos?θ
 � 4π 37 B cos0θ
1 899
:
 

 
 �M��
� � �M�
��

� L�� 233
4 cos0α
1 cos?α
 � 2π 37 B cos?α
 � 4π 37 Bcos?α
 � 4π 37 B cos0α
1 cos?α
 � 2π 37 Bcos?α
 � 2π 37 B cos?α
 � 4π 37 B cos0α
1 899

:
 

 �M����
� M�� 233

4 cos0θ�1 cos?θ� � 2π 37 B cos?θ� � 4π 37 Bcos?θ� � 4π 37 B cos0θ�1 cos?θ� � 2π 37 Bcos?θ� � 2π 37 B cos?θ� � 4π 37 B cos0θ�1 899
:
 

 M�� : the maximum value of the coefficient of the 

mutual inductance between the stator and the rotor. L�� : the maximum value of the coefficients of the 

mutual inductance of the rotor. L�� : the maximum value of the coefficients of the 

mutual inductance of the stator. 

 

The mechanical equation is given by: EF �Ω�! � C�� 5 C�                                               (7) 

Where:  

C�is chosen proportional to the motor speed. 

3.1. Park model of the DSIM 

Park model is based on a transformation of three-

phase system of axes (a, b, c) to an equivalent two-

phase system of axes (d, q).  

 

Figure 2: Park transformation 

In this work, we use the reference frame linked to 

the rotating field, for the modeling and the control 

of the DSIM. In this case, the model of the DSIM 

becomes: 

V��
 � ��H�I
 �
I

IJ
K�I
 5 L�K�M
                       (8) 

V�N
 � ��H�M
 �
I

IJ
K�M
 � L�K�I
                       (9) 

V��� � ��H�I� �
I

IJ
K�I� 5 L�K�M�                     (10) 

V�N� � ��H�M� �
I

IJ
K�M� � L�K�I�                     (11) 

 

0 � ��H�I �
I

IJ
K�I 5 LOK�M                              (12) 

0 � ��H�M �
I

IJ
K�M � LOK�I                              (13) 

By applying the transformation of Park to the flux’s 

equations, we obtain: 

K�I
 � ��H�I
 �
3

2
�F�H�I
 �

3

2
�F�H�I� �

3

2
���H�I  0141 

K�M
 � ��H�M
 �
Q

�
�F�H�M
 �

Q

�
�F�H�M� �

Q

�
���H�M     (15) 



K�I� � ��H�I� � Q� �F�H�I� � Q� �F�H�I
 � Q� ���H�I    (16) 

K�M� � ��H�M� � Q� �F�H�M� � Q� �F�H�M
 � Q� ���H�M     (17) 

K�I � ��H�I � Q� ���H�I
 � Q� ���H�I�                        (18) 

K�M � ��H�M � Q� ���H�M
 � Q� ���H�M�                          (19) 

The electromagnetic torque is given by the 

following equation: 

 RSF � T?K�I
H�M
 � K�I�H�M� 5 K�M
H�I
 �K�M�H�M
1                                                          (20) 

It can be described also as: 

RSF � Q� ���T UK�I?H�M
 � H�M�B � K�M0H�I
 �
H�I�1V                                                             (21) 

4. The principle of field-oriented control (FOC) 

approach to the DSIM 

Field Oriented Control represents the method by 

which the rotor flux is considered as a basis for 

creating a reference frame for one of the other 

fluxes (stator or air gap) with the purpose of 

decoupling the torque and flux producing 

components of the stator current. The best way is to 

confuse the vector space with its direct component 

as follow:K� � K�IWXYK�M � 0. 
The model of the DSIM in the (d, q) reference 

becomes then: 

V��
 � ��H�I
 � IIJ K�I
 5 L�K�M
                     (22) 

V�N
 � ��H�M
 � IIJ K�M
 � L�K�I
                     (23) 
V��� � ��H�I� � IIJ K�I� 5 L�K�M�                     (24) 
V�N� � ��H�M� � IIJ K�M� � L�K�I�                     (25) 
0 � ��H�I � IIJ K�                                               (26) 
0 � ��H�M � LOK�I                                            (27) 

With the same way, we define the expressions of 

flux: 

K�I
 � ��H�I
 � Q� �F�H�I
 � Q� �F�H�I�                     (28) 

K�M
 � ��H�M
 � Q� �F�H�M
 � Q� �F�H�M� � Q� ���H�M    (29) 

K�I� � ��H�I� � Q� �F�H�I� � Q� �F�H�I
                     (30) 
K�M� � ��H�M� � Q� �F�H�M� � Q� �F�H�M
 � Q� ���H�M   (31) 
K�I � Q� �F�H�I
 � Q� ���H�I�                                    (32) 
0 � ��H�M � Q� �F�H�M
 � Q� ���H�M�                           (33) 
The electromagnetic torque can be written as 

follows: 

RSF � Q� ���T UK�I?H�M
 � H�M�BV                     (34) 

5. Full-order dynamic model of DSIM 

The full-order model of the DSIM viewed from the 

synchronous rotating reference frame is given by 

the following system [1]: 

 

[\]
\̂ _�̀0I,M1 � 50a_ � 0b̀ � TΩ1E1_�0I,M1                 0351K̀�0I,M1 � 50W_ � b̀E1K�0I,M1 � d_                   0361

`
Ὼ � 5 fgEF � hEF                                                      0371

j 

Where: 

I�0�,N1 � kI�
� � I���I�
N � I��Nl � kI��I�Nl 

σ� � 1 5 k M�
L�L�ml ;φ�0�,N1 � kφ��

φ�Nl 

σ
 � 1 5 U n"
o%o�V ;  W � pqrq ; b= aM 

 

γ � 1
σ
L� � σ�L�m kR� � M²L�� R�l 

I � s1 00 1t ;    J � s 0 151 0t ; 



V�0�,N1 � kV�
� � V���V�
N � V��Nl � kV��V�Nl. 
5.1. Reduced model of the DSIM 

The stator current is taking as an input control of 

the system .A high gain control current loop is 

chosen in order to simplify the optimization 

algorithm efficiency [1]. Such choice permits to 

apply a reduced order current fed DSIM model; the 

current loop is given as: [6] 

V�0�,N1 � σ o�uσ"o�v
ε

?U 5 I�0�,N1B                         (38) 

with: 
U � Uu
u�V � }I�
� � I���I�
N � I��N~ 

Which 0 � ε � 1 and Uis a new command of the 

system. By allowing for this control, the reduced 

model can be obtained via the ‘’singular 

perturbation theorem” [15]. This involves from 

(35), (36), (37) and from (2.1), a reduced model of 

the DSIM is built as follows: 

�φ̀�0�,N1 � 50aI � ρ̀J1φ�0�,N1 � bU                0391`
Ὼ � 5 K�J� � cU!Jφ�0�,N1J�                                  0401j 

6. Energy model of DSIM 

The instantaneous active power in the (d-q) rotating 

frame is given by: 

P& � 3 27 ?V�0�,N1B!I�0�,N1                                     (41) 

From equation (35), (36) and (37) the input power 
is given by: 

P& � 3 27 ?σ
L� � σ�L�mB. }?Ì�0�,N1B!?I�0�,N1B~ �
γ. }?Ì�0�,N1B!?I�0�,N1B~ 5
2ηα }?φ�0�,N1B!?I�0�,N1B~       � ηpΩ?φ�0�,N1B!JI�0�,N1               

The relation between the stator and rotor current 
can be given as follows: 

I�0�,N1�  �%?φ�0�,N1�L�I�0�,N1B                            (43) 

The instantaneous active power becomes then: 

P& � 3 27 ?σ
L� � σ�L�mB. }?Ì�0�,N1B!?I�0�,N1B~ �

o% . }?φ̀�0�,N1B!?φ�0�,N1B~                    53 27 s}R�?Ì�0�,N1B!?I�0�,N1B~  �
 }R�?Ì�0�,N1B!?I�0�,N1B~t � ΩY                      (44) 

Finally, the instantaneous active power is given as: 

P& � ��! W � P� � P�                                     (45) 

By means of a field-oriented control drive, we 

define from equation (44): 

• the derivate of stored magnetic given as 

follows: 

��! W � 3 27 kU� o�u�"o�v� V . 0u
� � u��1 � 
�o% φ��l                              

                                                                     (46) 

• the Joule losses: 

P� �3 27 s}R�?Ì�0�,N1B!?I�0�,N1B~ }R�?Ì�0�,N1B!?I�0�,N1B~t                                 
                                                                      (47) 

By using equation (35) and (43), those losses can be 

expressed with respect to U and φ�as follows: 

 

   

                               

                                                                        (42) 

 

 

 



�� � 

3 27 k}R� � R� Uno%V�~ . 0u
� � u��1 5 Q� �%o%" φ�� 5
Q�o% ��%"�! l                                                      (48) 

• The mechanical power of the DSIM: 

P� � ΩY                                                     (49) 

In term of rotor variables and torque current (I�N), 

we get: 

P� � 3 27 no% φ�I�NΩ                                    (50) 

7. The optimal problem control 

An optimal control consists on minimization of 

function. In this case, the cost function can be 

defined as the integral of an 

index f?Isd; Isq; φr; ΩBgiven as follows: 

J � � f0I��; I�N; φ�; Ω1dt��                            (51) 

The index corresponds to the weighted sum: 

f?I��; I�N; φ�; ΩB � φ
Wo � φ�P� � φQP�(52) 

The weighting factors (φ
; φ�; φQ) are used to scale 

power-energy combined convex criteria terms 

defined above.  Minimize the cost function provides 

two important advantages: first, minimizing the 

corresponding magnetic energy stored, allowing 

thus maximizing the power factor, the second being 

the minimization of losses in the winding thus 

increasing the machine efficiency. 

Using equations (44), (46), (48) and (50), the cost 

function is given as follows: 

J � 3 27 � �φ
 k?σ
L� � σ�L�mB. 0u
� � u��1 ���

�o% . φ��~ � φ� k}R� � R� Uno%V�~ 0u
� � u��1 5

�%o%" φ��l 5 �"o% ��! φ�� � φQ Up no% φ�u�ΩV�                   (53) 

The integral 

� k5 
o% ��! 0φ��1l dt�� � 
o% 0φ�001 5 φ�0T11    (54) 

, has no effect in the optimizing problem and can be 

omitted it from the integral. Considering the new 

control vector  U � su
u�t, the system described by 

(39) and (40) can be defined as follows: 

�φ̀� � aφ� � bu
                                                   0551 
Ω � 5 K�J�

`
Ω � cu�φ�J�                                           0561j 

Using the new constraint given by (55) and (56) the 

cost function givenby (53), an optimal control 

problem can be presented as follows:  

� Find the optimal control variables (u
¡) and 

(u�¡ ) that minimize the follows cost 

function: 

J� � ¢ 0r
u
� � r�u�� � q
φ�� � q�φ�u�Ω1�
� dt  

                                                                           (57) 

While respecting the dynamic constraints given in 
the system (55) and (56). 

With:  

r
 � 3 47 ?σ
L� � σ�L�mBφ
 � 3 27 kR� � R� }ML�~�l φ� 

r� � r
 � r�αQ;q
 � 3 47 £ o% 5 3 27 �%o%" α� � αQq� 
q� � 32 ML� α¤ 

where the weighting factors r1 , r2 , q1 and q2 must 

be positives. 

Otherwise, the task is to find an admissible control 

trajectory U¡ � ¥u
¡u�¡ ¦  generating the corresponding 

state trajectory φ�¡ defined as the optimal rotor flux 

to provide minimum of the cost function presented 

in equation (57). 



The optimal control problem amounts to 

determining the optimized values of u
¡  and  u�¡  

witch are defined as follows: 

� u
¡ � 
' 0φ̀�¡ 5 aφ�¡1u�¡ � 5 §¨(�%` Ω¡` � ©ª�¨ Ω¡ j                                     (58) 

By injecting the expressions of u
¡and   u�¡  from the 

system (58) in the cost function in (57) we get: 

J� � � kγ
 }
' 0φ̀�¡ 5 aφ�¡1~l� � γ� k §¨(�%` UΩ¡` ���
©ª�¨ Ω¡V~� � q
φ�� � q�φ� k �¨(�% UῺ      � ©ª�¨ ΩVl Ωdt                                   
                                                                          (59) 

This yield: 

� J� � λ
φ̀�� � λ� ¬"̀�%" � λQφ�` φ� � U ­®�%" ���λ¯V ΩῺ � λ°φ�� � U ­±�%" � λ²V Ω� dt               (60) 

with 

λ
 � � &"n" ;  λ� � �"�¨"("   ;λQ � ��"&n"  ; λ¤ � ��"�¨(" k  ; λ¯ � N"( J�;   λ° � � n" � q
; λ³ � �"(" k�� ; λ² � N"( k� 
λ´�
� !µ ²must be positives constants defined 

accordingly to the condition on the 

constants  r
; r�;  q
and q�. 
7.1. Euler-Lagrange Equation 

This integral given by (60) can be expressed as 

follows: 

J� � � L?φ�` ; φ�; Ὼ; ΩB�� dt                                  (61) 

and can be solved using Euler-Lagrange equation 

with respect the follows condition: 

� This integral has an absolute minimum 

value  φ� ¡ and   Ω¡if their trajectory satisfies 

the following conditions: 

���% UL?φ�` ; φ�; Ὼ; ΩBV 5 ��! ���%` UL?φ�` ; φ�; Ὼ; ΩBV �0                                                                      (62) 

and 

��¬ UL?φ�` ; φ�; Ὼ; ΩBV 5 ��! } ��¬̀ UL?φ�` ; φ�; Ὼ; ΩBV~ �0                                                                    (63) 

Aiming to solve the equations (62) and (63) and by 

using the expression of the cost function in (60) the 

previous condition becomes: 

φ�· � 5a� ¬"̀�%¸ 5 a
 ¬�%¸ Ὼ � a�φ� 5 aQ ¬"�%¸    (64)

 Ω· � ��% φ�` Ὼ � a¤ ¬�% φ�` � a¯Ω � a°φ��Ω      (65)

 

were 

a� � λ�λ
 ;  a
 � λ¤λ
 ;  a� � λ°λ
 ;  aQ � λ³λ
 ;  
a¤ � λ¤λ� ;  a¯ � λ³λ� ;  a° � λ²λ�

 

7.2. Linear Time-varying motor speed 

In order to obtain an accelerate mode (transient 

regime), we have proposed a linear low for the 

motor speedas follows: 

Ω¡ � c�t � c
                                              (66) 

with c� ¹ 0 

Hence the second equation (65) has no physical 

meaning and can be skipped. By substituting the 

expression of Ω by   Ω¡  into the equation (64) we 

get: 

φ�· φ�Q 5 a�φ�¤ � 50γ
t� � γ�t � γQ1                (67)
 

where: 

γ
 � aQc��;   γ� � a
c�� � 2aQc�c
 γQ � a�c�� � a
c�c
 � 2 � aQc
�
 



Despite the extreme difficulty to solve this equation 

(67), we tried to finding a solution using a 

mathematical calculation; so, we applied the 

method of integration by parts to this equation, 

during a time interval�0, º�. 
Finally the optimal solution of the rotor flux is 

given by the following expression: 

K�0º1 �
»Q�¼" ½ ¼"¾q¿0�1Q� 5 K�̀001K�Q001 � K�Q001º� 
̄ K�¯001 � UÀ J®
� � À"J¸° � À̧ J"� V 5 ÁºÂ¿

(68) 

Figures (1) illustrate the time-varying curve of the 

minimum-energy rotor flux for a speed ramp. 

 

 

 

 

 

 

Fig3: Minimum energy rotor flux versus time 

8. Deadbeat control of the rotor flux level 

These kinds of problems need wide range of the 

rotor flux magnitude variation. A deadbeat response 

has been chosen to regulate the rotor flux level [12]. 

In this part, the mutual inductance value of the 

machine under this consideration is not used. In a 

rotation reference frame, the rotor flux can be 

expressed using the proposed control approach as 

follows: 

K�0Ã1 � Ä
u�Åq _�I                                                (69) 

The reference value of current _�I¡ can be written as 

follows: 

 _�I ¡0XÆ�1 � 0 _�I ¡0X 5 11Æ�1
� 11 5 exp U5 ÅÉÅqV �K�¡0XÆ�1�0XÆ�1
5 K�Ê0XÆ�1�?0X 5 11Æ�B�
5 exp U5 ÅÉÅqV1 5 exp U5 ÅÉÅqV �K�¡?0X51Æ�1B�?0X 5 11Æ�B
5 K�Ê?0X 5 11Æ�B�?0X 5 21Æ�B� 

                                                                           (70) 

Where (Æ�) is the setting time, (Æ�) is the rotor time 

constant, K�Ê0HÆ�1 and �0HÆ�1are respectively the 

estimated r rotor flux and the mutual inductance at 

sampling (HÆ�). 

The ORFOC drive of the DSIM, given in figure (4), 

is initialized through applying a motor speed 

reference.  An optimal rotor flux current by means 

of the deadbeat controller is delivered to the 

remaining part of RFOC drive. On the other hand, a 

transient torque current reference will be delivered 

to the rest of the RFOC drive.  

The simulations results are carried out on a three-

phase DSIM, 380V, 20KW, 50Hz and 4 poles, 

squirrel cage induction motor. 
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9. Simulation results 

By applying a rotor speed reference as shown in 

figure (5), a rotor flux reference is deduced from 

equation (68). Both the rotor flux and the torque 

controllers deliver to the rest of the RFOC 

respectively the reference of the optimal direct 

stator current and the reference of the desired 

indirect stator current reference. 

It is obvious to remark from figure (6) and figure 

(7) that the flux current given from the conventional 

ORFOC remains constant during the rotor speed 

increasing accompanied by an increasing torque 

current. We show that the flux current delivered by 

the ORFOC registers a significant decrease 

compared to the one delivered by the conventional 

RFOC. This means that the presented method saves 

energy. The figure (9) shows a variation of the 

magnetic energy. We can see very well the 

decreasing of energy by adopting the ORFOC  

 

 

strategy. Also, we note that this decrease is more 

considerable for smalls loads. This result given by 

the proposed ORFOC compared with those 

delivered from the conventional RFOC prove that 

the minimization of the cost function performed by 

the proposed method causes a stored magnetic 

energy saving and consequently a power factor 

maximization. 
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Figure 5: Reference rotor speed. 

 

 

 

 

 

 

 

Figure6:  direct current under conventional and 

optimal RFOC 

 

 

 

 

 

 

 

Figure 7: quadrature current under conventional and 

optimal RFOC 

 

 

 

 

 

 

 

 
 
Figure8: electromagnetic torque under 
conventional and optimal RFOC 
 
  

 

 

 

 

 

 

Figure 9: energy under optimal and conventional 

RFOC            

 

 

 

 

 

 

 

Figure 7: Zoomed Energy consumption curve. 
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10. Appendix  

We recall the theorem of integration by parts:  

¢ Ë̀	YºJ
� � Ë	 5 ¢ Ë	Yº `J

�  

¢ 0K�· K�Q 5 W�K�¤1YºÅ
� � ¢ 05a
º� � a�º � aQ1Å

Ì Yº  
 

This implies:
 

K̀0º1K�Q0º1 5 K�Q0º1 5 W�5 K�¯0º1 5 K̀001K�Q001
� K�Q001 � W�5 K�¯001
� 5 ka
ºQ3 � a�º�2 � aQºl   

This equation will be integrated again,  

¢ kK̀0º1K�Q0º1 5 K�Q0º1 5 W�5 K�¯0º1Å
� 5 K̀001K�Q001 � K�Q001

� W�5 K�¯001l Yº
� ¢ Í5 ka
ºQ3 � a�º�2Å

�
� aQº~Î Yº 

We obtain then: 

5 W�K�°0º130 5 W�K�°00130 5 K�̀001K�Q001 � K�Q001º
� 15 K�¯001
� 5 ka
º¤12 � a�ºQ6 � aQº�2 l � Áº  

Where k is an appropriate positive constant. 

This yield: 

φ�°0t1 � 30a� ka�φ�°00130 5 φ�` 001φ�Q001 � φ�Q001t
� 15 φ�¯001
� kγ
t¤12 � γ�tQ6 � γQt�2 l 5 ktl 

Then: 

K�0º1
�

ÏÐÐÐ
ÐÐÐÐÐÐ
Ñ30W� ÒÓ

Ô W�K�°00130 5 K�̀001K�Q001 � K�Q001º
� 15 K�¯001 � ka
º¤12 � a�ºQ6 � aQº�2 l 5 ÁÕÖ

×¿
 

 

11. Conclusion   

In this work, a minimum-energy consumption 
approach is developed with a DSIM under RFOC. 
Based on the optimal control theory, this approach 
provides a cost function given as a weighted sum of 
the DSIM energy-power model. In order to obtain a 
minimum energy rotor flux trajectory, the presented 
task is based on minimizing this cost function when 
it is constrained to the dynamic equations of the 
rotor flux and the motor speed. By applying the 
Euler-Lagrange resolution, analytic solution is 
given at transient regime and especially for an 
accelerated mode of the DSIM. A minimum-energy 
rotor flux trajectory is then developed and 
implemented in the RFOC strategy.  
A comparative study with the conventional RFOC 
is given and proves the validity of the proposed 
minimum-energy consumption approach. 
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