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Abstract: This paper proposes design methodologies for 
the optimal PID controller for stability robustness and 
disturbance rejection, posing the controller design 
problem as optimization problem and, then, solving it 
using improved multi-start clustering global optimization 
algorithm. The performance index to be minimized is the 

2H  -norm of the tracking error and constraints are the 
frequency domain performances of stability robustness or 
disturbance rejection. The problem boils down to the 
minimization of 

2H  performance index under the 
inequality constraint of H∞

norm of closed loop transfer 
function. The multi-start clustering global algorithm is 
used to solve the constrained optimization problem. Two 
design examples have been worked out and the 
performances are compared with the reported results. 
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1. Introduction 

PID controllers have found extensive industrial 
applications for several decades [1-3]. In the design, 
three PID control parameters are tuned to achieve 
the desired performances. The model of the plant, in 
general, is not accurate. This error in the model 
gives rise to model uncertainties. Also, unwanted 
disturbance signals may act on the plant. Therefore, 
there is need to take in to account the presence of 
model uncertainties and disturbance signals. The 
robust design techniques base on the H∞

 -theory 
have been found to take care of the model 
uncertainties [4-6]. These techniques can also be 
applied to achieve disturbance rejection. Apart from 
stability robustness and disturbance rejection, the 
controller design also aims at achieving the time 
domain performances like tracking, which can be 
expressed using 

2H  -norm. 

In last two decades, much attention has been 
provided to mixed 2 /H H∞

 problems , [4-7], from 
theoretical view point. The conventional designs 
based on mixed 2 /H H∞

optimal control are very 
complicated and not easily implemented for practical 
industrial applications. In this paper, a design 
methodology for mixed 2 /H H∞

 PID control is 
developed solving optimization problem using multi-
start clustering algorithm for global optimization. The 
proposed mixed 2 /H H∞

control design aims at finding 
an internally stabilizing PID controller that minimizes 
an 

2H  performance index subject to an inequality 
constraint on the H∞

norm of the closed loop transfer 
function. The constraint on H∞

norm of the closed 
loop transfer function provides constraint on stability 
robustness or external disturbance attenuation. The 
control problem so posed can be interpreted as a 
problem of optimal tracking performance subject to a 
robust stability constraint or external disturbance 
attenuation constraint.  

If the conventional design based on mixed 
2 /H H∞

 for dynamic output feedback (observer 
based) is employed, the problem becomes that of 
solving four Riccati like equations [8]. Rather, this 
will be a complicated problem and, also, the order of 
controller will not be lower than the order of the 
plant. This design does not attract practical control 
engineers. 

In the proposed design based on mixed 2 /H H∞
 

the three unknown controller parameters are found 
solving constrained optimization problem.  The 
optimization problems in such controller design are 
frequently nonlinear, non-convex (i.e. multimodal) 
and non-differentiable in nature. The methods based 
on the calculus would fail. The search methods can 



provide the solution. The search methods like 
Nelder-Mead simplex search would only provide 
local optimal solution. The global optimization 
methods are guaranteed to provide global optimal or 
near global optimal solution. 

Roughly speaking, global optimization methods 
can be classified as deterministic, stochastic and 
hybrid strategies. Deterministic methods [9,10] can 
guarantee under some conditions the location of the 
global optimal solution. The drawback is 
computational effort increases with problem size and 
also require certain properties ( like, smoothness and 
differentiability) of the system. Stochastic methods 
[11,12] are based on probabilistic algorithms and 
many studies have shown that these methods can 
locate the vicinity of the global solutions in 
relatively modest computational times. The hybrid 
strategies [12,13] try to get the best of both the 
worlds i.e. to combine global and local optimization 
methods in order to reduce their weaknesses while 
enhancing their strengths. The efficiency of the 
stochastic global methods can be increased by 
combining them with fast and robust local search 
methods. 

In this paper, an improved multi-start clustering 
algorithm [13] has been used for solving constrained 
optimization problem to get controller parameters. A 
multi-start method completes many local searches 
starting from different initial points and reaches in 
the vicinity of global solution where robust and fast 
local search method takes over and reaches the 
global optimal solution. 

The paper is organized as follows. In Section 2, 
the problem formulation of the design is described. 
Section 3 discusses the optimal control design, 
including formulation of the optimal robust 
controller and optimal disturbance rejection 
controller as constrained nonlinear optimization 
problems. Section 4 describes nonlinear 
optimization problem and multi-start clustering 
global optimization approach. Two design examples 
are worked out in Section 5 and Section 6 concludes 
the paper. 
 
2. Problem Formulation 

Consider the control system shown in the Fig. 1, 
where 

0 ( )G s  is the nominal plant and C(s,k) is the 
PID controller with the following form: 

1 2 3( , ) /C s k k k s k s= + +    (1) 
 
Here, k is the vector of controller parameters: 

1 2 3[ , , ] .Tk k k k=     (2) 

 
Fig. 1. PID control system with plant perturbation 
 

The plant model, using multiplicative 
uncertainty, is given by 
 

0( ) ( )[1 ( )]G s G s G s= + Δ    (3) 
 
where, 

0 ( )G s is nominal transfer function of the plant, 
the plant perturbation ( )G sΔ  is assumed to be stable 
but uncertain. Suppose the ( )G sΔ  is bounded 
according to 
 

( ) ( )mG j W jω ωΔ < , [0, ),ω∀ ∈ ∞   (4) 
 
where the weighting function ( )mW s  is stable and 
known. 
 
2.1 Condition for Stability Robustness 

The condition for robust stability is given as 
follows [4]: If the nominal control system ( ( )sΔ =0) 
is stable with the controller C(s,k), then the 
controller C(s,k) guarantees robust stability of the 
control system, if and only if the following condition 
is satisfied: 

 
0

0

( , ) ( ) ( ) 1
1 ( , ) ( )

mC s k G s W s
C s k G s

∞

<
+

   (5) 

 
Here, it is assumed that no unstable poles of 

0 ( )G s
are cancelled in forming G(s). The H∞

norm is 
defined as 
 

sup
( ) ( )

[0, )
A s A jω

ω∞
=

∈ ∞
   (6) 

 
Applying the definition of H∞

norm , the robust 
stability condition results in the following: 
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0.5max
( ( , ))

[0, )
kα ω

ω
=

∈ ∞
    (7) 

 
Then, the condition of robust stability in the 
frequency domain is expressed as 
 

0.5max
( ( , )) 1

[0, )
kα ω

ω
<

∈ ∞
   (8) 

 
The function ( , )kα ω in equation (4) can also be 
expressed in the following form: 
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2.2 Condition for Disturbance Rejection 

Fig. 2 shows the closed loop system with 
uncertain disturbance. In the disturbance attenuation 
problem with desired disturbance attenuation level 
γ , the following inequality holds [4]: 

 
2

2 2

( )sup 1
( ) ( ) 1 ( ) ( , )

dy t
d t L d t G s C s k

γ
∞

= ≤
∈ +

,         (10) 

 
where, ( )dy t  denotes the output response due to 
external disturbance d(t) only and 

2
2 0

( ) ( )d dy t y t dt
∞

= ∫ . The desired attenuation level 

γ  is a prescribed scalar value less than 1, i.e. the 2L  
gain from d(t) to ( )dy t  must be less than or equal to 
γ . 
The condition for disturbance rejection , due to [5], 
is given by the following inequality: 
 

0

( )
1 ( , ) ( )

dW s
C s k G s

γ
∞

<
+

             (11) 

 
Here, ( )dW s  is the weighting matrix , having low 

pass filter characteristics. This condition represents 
only a sufficient condition. 
 

 
Fig. 2.  PID control system with uncertain  
 disturbance 
 

Applying the definition of H∞
norm, the 

condition of disturbance rejection results in the 
following: 

0
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0.5max
( ( , ))
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kβ ω

ω
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where, 
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Hence, the condition for disturbance rejection in 

the frequency domain becomes 
 

0.5max
( ( , ))

[0, )
kβ ω γ

ω
<

∈ ∞              (14) 
 
The function ( , )kβ ω  in equation (10) can also 

be expressed as 
2
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3. Optimal Control Design 
In Fig. 1, for the nominal case, the tracking error 

signal e(s) is given by 
 

0

( )( )
1 ( ) ( , )

r se s
G s C s k

=
+

   (16) 

 
The performance index, J, is given by 
 

2

0

min
( )J e t dt

C

∞

= ∫ .    (17) 



 
Then, applying Parseval theorem [14], J is given by  
 

min 1 ( ) ( )
2

j

j
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where, B(s) and A(s) are Hurwitz polynomials with 
appropriate degree. 
Let 
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The values of ( )mJ k  can be found from tables given in 
[15]: 
 

2
0

1
0 1

2 2
1 0 0 2
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0 1 2
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3.1 Optimal Robust Controller Design 

In design of optimal robust controller, both the 
tracking performance and robust stability are considered. 
The controller design is formulated as constrained 
optimization problem as follows: 

 
min

( )mJ k
k

 subject to 0.5max
( ( , )) 1

[0, )
kα ω

ω
<

∈ ∞  
 

The objective of the minimization is to find out the vector 
of controller parameters k so that the value of the 
performance index ( )mJ k  is minimum and the condition 

of robust stability 0.5max
( ( , )) 1

[0, )
kα ω

ω
<

∈ ∞
 is satisfied. 

 
3.2 Optimal Disturbance Rejection Controller 

In the design of optimal disturbance rejection 
controller, both the tracking performance and  the 
disturbance rejection are considered. The controller 
design is formulated as the constrained optimization 
problem as follows: 

 

min
( )mJ k

k
 subject to 0.5max

( ( , )) 1
[0, )

kα ω
ω

<
∈ ∞

  

 
The objective of the minimization is to determine the 

vector of controller parameters, k, so that the value of the 
performance index ( )mJ k  is minimum and the condition 

of disturbance rejection 0.5max
( ( , )) 1

[0, )
kα ω

ω
<

∈ ∞
 is 

satisfied. 
The design problems by optimal robust controller as 

well as by optimal disturbance rejection controller consist 
of the solution of a nonlinear optimization problem with a 
constraint, the solution of which is described in the next 
section. 

 
4. Multi-Start Clustering  Global Optimization 

Approach 
 
4.1 Constrained Nonlinear Optimization Problem 
 

The general nonlinear constrained optimization 
problem is formulated as 
 
min

( )f X
X

     (21) 

Subject to  
( ) 0,ih X =  i=1,2, …….., nec 

( ) 0,jg X ≤  j=1,2,………,nic 
L UX X X≤ ≤ . 

 
A multi-start method completes many local searches 

starting from different initial points usually generated at 
random within the bounds. Clustering method starts with 
the generation of a uniform sample in the search space S 
(the region containing the global minimum, defined by 
the lower and upper bounds). After transforming the 
sample ( e.g. by selecting a user set percentage of the 
sample points with the lowest function values), the 
clustering procedure is applied. Then the local search is 
started from those points which have not been assigned to 
a cluster. 
 
4.2  Multi-start Clustering Global Optimization 

The multi-start clustering global optimization method 
(GLOBAL) was introduced in 80s, the improved version 
of which has recently been reported in [13]. The 
GLOBAL method has two phases: a global one and, the 
other, local one. The global phase consists of sampling 
and clustering, while the local minimum points are found 
by means of a local search procedure. The main steps of 
the GLOBAL, in this algorithm are summarized as 
follows: 
Step 1: Draw N points with uniform distribution in X, and 
add them to the current cumulative sample C. Construct 



the transformed sample T by taking a percent of points in 
C with the lowest function value. 
Step 2: Apply the clustering procedure to T one by one. If 
all points of T can be assigned to an existing cluster, go to 
Step 4. 
Step 3: Apply the local search procedure to the points in T 
not yet clustered. Repeat Step 3 until every point has been 
assigned to a cluster. 
Step 4: If a new local minimizer has been found, go to 
Step 1. 
Step 5: Determine the smallest local minimum value 
found, and stop. 
 
5. Design Examples 

Two examples have been worked out to illustrate the 
design procedure. The plants for the controller design are 
taken from [5]. The MATLAB implementation 
GLOBALm, due to [13], has been employed to solve the 
constrained nonlinear optimization problem. The local 
solver FMINCON was chosen to get the finally converged 
solution. The MATLAB scripts were written for each 
example. 

Example 1 
Consider the control system shown in Fig. 3, for which 
the PD controller would be designed to achieve the 
optimal tracking, with ( )G sΔ given as 
 

( ) ( )mG s W sΔ ≤  
with,  

2

0.1( )
0.1 10mW s

s s
=

+ +
. 

 

 
Fig. 3. Control system with perturbed plant in Example 1 
 
Suppose the input is a unit step , then 
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Using (18), the performance index is 

3 ( )J k and is given 
by 
 

2 2 2
2 0 1 1 0 2 0 3 0 2 3

3
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where ,  

)1,2,8.1,8.1(),,,( 313210 kkaaaa =  

)1,2,0(),,( 310 =bbb . 
 
The robust stability constraint as in (8) is given by 
 

0.5max
( ( , )) 1

[0, )
kα ω

ω
<

∈ ∞  
 
The ( , )kα ω  can further be expressed in the following 
form using (9): 
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where, 
2 2 2

3 1
4 2

6 4 2 2 2
3 3 1 1

( , ) 0.81( )

( , ) ( 19.99 100)

[ (4 3.6 ) (3.24 7.2 ) 3.24 ]
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α ω ω
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The following parameter settings were used in 
GLOBALm: 
NSAMPL: 100 
NSEL (defined as χ .NSAMPL): 2 
Maximum number of clusters: 20 
Initial penalty weight: 10 
Local solver: FMINCON 
After 1149 number of function evaluations, the solution 
converged to 1 3.1862 7k e= −  and 3 3.388k = . 
 

 
Fig. 4. Step responses of control system in Example 1  
           with GLOBALPD and GAPD [5]. 



 
Fig. 5. Step responses of control system in Example 1 for  
           nominal plant and perturbed plant. 
 

 
Fig. 6. Control input in Example 1 with GLOBALPD and  
           GAPD 

The Fig. 4 shows the step responses of the control 
system with the designed controller (legend: 
GLOBALPD), and , the one reported in [5] using GA 
(legend: GAPD). The step response with GLOBALPD is 
better than the one obtained GAPD. As shown in the Fig. 
5, the GLOBALPD gives the satisfactory response when 
plant is perturbed with the perturbation ( )P sΔ .In fact, 
there is no effect of plant perturbation on the tracking 
performance. The performance in respect of control effort 
is shown in Fig. 6. The control signal of the control 
system with GLOBALPD has much smaller amplitude as 
compared to the control signal with the GAPD. 
 

Example 2 
Consider the servo motor system in Fig. 2 with 
 

0
0.8( )

(0.5 1)
G s

s s
=

+
 

 
The disturbance is taken to be the sinusoidal signal 
0.1sin(t), and the design aims at achieving 

2H optimal 
tracking and H∞

disturbance attenuation with 0.1.γ =  The 
weighting function is chosen to be 
 

1( )
1dW s

s
=

+
. 

 
Then disturbance rejection constraint as in (14) is given 
by 
 

0.5max
( ( , ))

[0, )
kβ ω γ

ω
<

∈ ∞  
 
The function  ( , )kβ ω  in (15) is expressed as 
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The performance index is 

3 ( )J k  and is given by 
 

2 2 2
2 0 1 1 0 2 0 3 0 2 3

3
0 3 0 3 1 2

( 2 )( )
2 ( )

b a a b b b a a b a aJ k
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where, 
0 1 2 3 2 3 3

0 1 2

( , , , ) (0.8 ,0.8 ,1 0.8 ,0.5)
( , , ) (0,1,0.5)
a a a a k k k
b b b
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The same set of parameters were taken, as in 
Example 1, for running the GLOBALm. The 
solution converged to 

1 29.988k = , 2 0.00118k =  and 

3 30k =  in 2071 number of function evaluations. 
The tracking performance shown in the Fig. 7, in the 
presence of disturbance signal, with the designed 
controller (legend: GLOBALPID) is comparable 
with the controller designed using GA [5]. As shown 
in the Fig. 8 and Fig. 9, the control effort involved in 
both the designs is also comparable. 



 
Fig. 7. The step responses of control system in Example 2 
with GLOBALPID and GAPID [5] 
 

 
Fig. 8. The control input in Example 2 with GLOBALPID 

 
Fig. 9. The control input in Example 2 with GAPID 
 
 
 

6. Conclusions 
In this study, simple design methodologies with 

multi-start clustering global optimization approach 
have been developed for the optimal PID controllers 
for the stability robustness and disturbance rejection. 
The multi-start clustering global optimization 
technique, guarantees the convergence of the 
solution to global or near global optimal. In the first 
example, for the design of PD controller for robust 
stability using the present approach, the tracking 
performance of the closed loop system has been 
better than the controller designed using GA. 
Whereas, in the second design example for the 
optimal PID controller for disturbance rejection 
using present approach with multi-start clustering 
global optimization, the tracking results are 
comparable with that of the PID design using GA. 
Since the optimal PID controller design boils down 
to the constrained optimization problem, other time 
domain and frequency domain performances can 
also be incorporated in the design problem. 
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