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Abstract— In this paper, a sliding mode control strategy (SMC)
associated to the field-oriented control (FOC) of dual-stator
induction motor drives (DSIM) fed by matrix converters (MC)
is investigated. The induction machine has two sets of stator
three-phase windings spatially shifted by 30 electrical degrees;
the sliding mode control is a robust non linear algorithm which
uses discontinuous control to force the system states trajectories
to join some specified sliding surface, it has been widely used
for its robustness to model parameter uncertainties and external
disturbances, is studied. Is also investigated the direct AC/AC
frequency converter, called matrix converter. In order to verify
the validity of the proposed method, a dynamic model of
the proposed system has been simulated, to demonstrate the
performance of the system.

Index Terms— Dual-stator induction motor drives, field-
oriented control, matrix converter, sliding mode control.

I. I NTRODUCTION

I NVENTED by Nikola Tesla in 1888, the alternating-current
(AC) induction motor has had a major role in the develop-

ment of the electrical industry [1]. The primary advantages
of induction machine are less maintenance cost, brushless
construction (squirrel-cage rotor), better transient, etc.

Since the late 1920s, dual-stator AC machines have been
used in many applications (such as: pumps, fans, compressors,
rolling mills, cement mills, mine hoists [2]), for their advan-
tages in power segmentation, reliability, lower torque pulsa-
tions, less dc-link current harmonics, reduced rotor harmonics
and higher power per ampere ratio for the same machine
volume, etc. [3]-[6].

Matrix converter (MC) is a modern energy conversion
device that has been developed over the last two decades [7].
The matrix converter drive has recently attracted industrial
applications and the technical development has been further
accelerated because of the increasing importance of power
quality and energy efficiency [8]. Furthermore, matrix con-
verter (MC) eliminates the dc-link filter elements and thus re-
solves the size, weight and reliability issues and also provides
an option for the design of the converter as a compact/modular
unit. The main advantages of the MC allows for power factor
correction (including unity), bidirectional power flow and the
possibility for more compact equipment building [9]-[12]. The
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Fig. 1. Scheme of dual-stator windings induction machine.

VENTURINI classical algorithm for control of the MC is used
[13].

The sliding mode control theory was proposed by Utkin
in 1977 [14]. Thereafter, the theoretical works and its ap-
plications of the sliding mode controller were developed.
Since the robustness is the best advantage of a sliding mode
control, it has been widely employed to control nonlinear
systems, especially the systems that have model uncertainty
and external disturbance [15]-[19]. These advantages justify
the necessity of applying this kind of control for the DSIM.

The paper is organized as follows. Description of the DSIM
and the mathematical model are provides in Section II. The
field oriented control of a DSIM is developed in Section III.
The sliding mode control theory is presented in Section IV.
The sliding mode control of a DSIM is developed in Section
V and its proprieties are validated through simulation results
in Section VII. The matrix converter modeling is presented in
Section VI. Finally, Section VIII summarizes conclusions.

II. M ACHINE MODEL

A schematic of the stator and rotor windings for a dual-
stator induction machine is given in Fig. 1. The six stator
phases are divided into two wye-connected three-phase sets,
labeled(as1, bs1, cs1) and(as2, bs2, cs2), whose magnetic axes
are displaced byα = 30◦ electrical angle. The windings of
each three-phase set are uniformly distributed and have axes



that are displaced120◦ apart. The three-phase rotor windings
(ar, br, cr) are also sinusoidally distributed and have axes that
are displaced by120◦ apart [20]-[22].

The following assumptions have been made in deriving the
dual-stator induction machine model:

• Machine windings are sinusoidally distributed;
• The two stators have same parameters;
• Flux path is linear;
• The magnetic saturation and the mutual leakage are

neglected.

The electrical equations of the dual-stator induction motor
drives in the synchronous reference frame(d−q) are this given
by [23]-[25]

vd1 = r1ıd1 + pψd1 − ωeψq1 (1)

vq1 = r1ıq1 + pψq1 + ωeψd1 (2)

vd2 = r2ıd2 + pψd2 − ωeψq2 (3)

vq2 = r2ıq2 + pψq2 + ωeψd2 (4)

vdr = rrıdr + pψdr − (ωe − ωr)ψqr = 0 (5)

vqr = rrıqr + pψqr + (ωe − ωr)ψdr = 0 (6)

with,
vd1, vd2, ıd1, ıd2, and ψd1, ψd2 are respectively the“d”
components of the stator voltages, currents and flux linkage;
vq1, vq2, ıq1, ıq2, and ψq1, ψq2 are respectively the“q”
components of the stator voltages, currents and flux linkage;
vdr, ıdr andψdr are respectively the“d” components of the
rotor voltage, current and flux linkage;
vqr, ıqr andψqr are respectively the“q” components of the
rotor voltage, current and flux linkage;
r1, r2 and rr are respectively the per phase stator resistance
and the per phase rotor resistance;
ωe is the speed of the synchronous reference frame;
ωr is the rotor electrical angular speed;
p is the derivative operator.

The expressions for stator and rotor flux linkages are

ψd1 = L1ıd1 + Lm(ıd1 + ıd2 + ıdr) (7)

ψq1 = L1ıq1 + Lm(ıq1 + ıq2 + ıqr) (8)

ψd2 = L2ıd2 + Lm(ıd1 + ıd2 + ıdr) (9)

ψq2 = L2ıq2 + Lm(ıq1 + ıq2 + ıqr) (10)

ψdr = Lrıdr + Lm(ıd1 + ıd2 + ıdr) (11)

ψqr = Lrıqr + Lm(ıq1 + ıq2 + ıqr) (12)

where,
L1, L2 and Lr are respectively the per phase stator self
inductance and the per phase rotor self inductance;
Lm is the mutual inductance between stator and rotor.

The electromagnetic torque is evaluated as

Tem = P
Lm

Lm + Lr
[(ıq1 + ıq2)ψdr − (ıd1 + ıd2)ψqr] (13)

with, P is the number of pole pairs.
The mechanical equation of machine is described as

JpΩ + fΩ = Tem − TL (14)

III. F IELD ORIENTED CONTROL OF A DSIM

The main objective of the vector control of induction motors
is, as in DC machines, to independently control the torque and
the flux [26]. In this order, we propose to study the FOC of
the DSIM. The control strategy used consists to maintain the
quadrate component of the flux null(ψqr = 0) and the direct
flux equals to the reference(ψdr = ψ∗r ):

ψdr = ψ∗r (15)

ψqr = 0 (16)

pψ∗r = 0 (17)

Substituting (15), (16) and (17) into (5) and (6), yields

rrıdr + pψ∗r = 0 ⇒ ıdr = 0 (18)

rrıqr + ω∗slψ
∗
r = 0 ⇒ ıqr = −ω

∗
slψ

∗
r

rr
(19)

with, ω∗sl = ω∗e − ωr, (ωsl is the slip speed).
The rotor currents in terms of the stator currents are divided

from (11) and (12) as

ıdr =
1

Lm + Lr
[ψ∗r − Lm(ıd1 + ıd2)] (20)

ıqr = − Lm
Lm + Lr

(ıq1 + ıq2) (21)

Substituting (21) into (19), obtain

ω∗sl =
rrLm

(Lm + Lr)
(ıq1 + ıq2)

ψ∗r
(22)

The final expression of the electromagnetic torque is

T ∗em =
PLm

(Lm + Lr)
(ıq1 + ıq2)ψ∗r (23)

With taking into the rotor field orientation, the stator voltage
equations (1)–(4) can be rewritten as

v∗d1 = r1ıd1 + L1pıd1 − ω∗e(L1ıq1 + τrψ
∗
rω

∗
sl) (24)

v∗q1 = r1ıq1 + L1pıq1 + ω∗e(L1ıd1 + ψ∗r ) (25)

v∗d2 = r2ıd2 + L2pıd2 − ω∗e(L2ıq2 + τrψ
∗
rω

∗
sl) (26)

v∗q2 = r2ıq2 + L2pıq2 + ω∗e(L2ıd2 + ψ∗r ) (27)

where,τr = Lr

rr
is time rotor constant.

Consequently, the electrical and mechanical equations for
the system after these transformations in the space control
may be written as follows:

pıd1 =
1
L1

{v∗d1 − r1ıd1 + ω∗e(L1ıq1 + τrψ
∗
rω

∗
sl)} (28)

pıq1 =
1
L1

{
v∗q1 − r1ıq1 − ω∗e(L1ıd1 + ψ∗r )

}
(29)

pıd2 =
1
L2

{v∗d2 − r2ıd2 + ω∗e(L2ıq2 + τrψ
∗
rω

∗
sl)} (30)

pıq2 =
1
L2

{
v∗q2 − r2ıq2 − ω∗e(L2ıd2 + ψ∗r )

}
(31)

pψr = − rr
Lr + Lm

ψr +
rrLm

Lr + Lm
(ıd1 + ıd2) (32)

pΩ =
1
J

{
P

Lm
Lr + Lm

(ıq1 + ıq2)ψ∗r − TL − fΩ
}

(33)



IV. SLIDING MODE CONTROL

We consider a system described by the following state space
equation:

[Ẋ] = [A][X] + [B][U ] (34)

with,
[X] ∈ Rn is the state vector;
[U ] ∈ Rm is the control input vector;
[A] and [B] are system parameter matrices.

The first phase of the control design consists of choosing the
number of the switching surfacesS(x). Generally this number
is equal the dimension of the control vectorU . In order to
ensure to convergence of the state variablex to its reference
value x∗, [16] proposes a general function of the switching
surface:

S(x) = (
d

dt
+ λ)r−1e(x) (35)

where,
λ is a strictly positive constant;
r is the smallest positive integer such that∂Ṡ∂U 6= 0: ensure
controllability;
e(x) = x∗ − x is the error variable.

The second phase consists to find the control law which
meets the sufficiency conditions for the existence and reachi-
bility of a sliding mode such as [14], [27]

S(x)Ṡ(x) < 0 (36)

Intuitively, the existence of a sliding mode on the sliding
surface implies stability of the system. One of the possible
solutions is given by

Uc = Ueq + Un (37)

Ueq is the so called equivalent control. It plays the feedback
linearization role is the solution of

Ṡ(x) = 0 ⇔ ∂S

∂X
{[A][X] + [B]Ueq}+

∂S

∂X
[B]Un = 0 (38)

During the sliding mode, theUn is equal zero, thenUeq is

Ueq = −
{
∂S

∂X
[B]

}−1 {
∂S

∂X
[A][X]

}
(39)

with
∂S

∂X
[B] 6= 0 (40)

During the convergence mode, theUn 6= 0. We substituting
(39) into (38) yields

Ṡ(x) =
∂S

∂X
[B]Un (41)

Substituting (41) into (36), obtain

S(x)
∂S

∂X
[B]Un < 0 (42)

So that the state trajectory be attracted to the switching
surfaceS(x) = 0. A commonly used from ofUn is a constant
relay control [27].

Un = kxsgn(S(x)) (43)

sgn(S(x)) is a sign function, which is defined as

sgn(S(x)) =
{
−1 if S(x) < 0
1 if S(x) > 0 (44)

kx is a constant.
This introduces some undesirable chattering. Hence, we will

substitute it by the function plotted in Fig. 2.
Consequently,Un is defined as

Un = kx
S(x)

|S(x)|+ ξx
(45)

ξx is small positive scalar.

V. SLIDING MODE CONTROL OF A DSIM

The proposed control scheme is a cascade structure at it
is shown in Fig. 3, in which six surfaces are required. The
internal loops allow the control stator current components
(ıd1, ıq1, ıd2 and ıq2), whereas the external loops provide the
regulation of the speedΩ and the fluxψr. The bloc of the
FOC(SMC) is presented in Fig. 4.

A. Design of the Switching Surfaces

In this work, six sliding surfaces are used and taken as
follows since a first order is defined as

S(Ω) = Ω∗ − Ω (46)

S(ψr) = ψ∗r − ψr (47)

S(ıd1) = ı∗d1 − ıd1 (48)

S(ıq1) = ı∗q1 − ıq1 (49)

S(ıd2) = ı∗d2 − ıd2 (50)

S(ıq2) = ı∗q2 − ıq2 (51)

B. Development of the Control Laws

By using the equations systems (28)-(33), (37) and (45), the
regulators control laws are obtained as follows:

Fig. 2. Shape of thesgn function.



Fig. 3. Indirect FOC scheme for DSIM.

Fig. 4. Bloc diagram of the FOC (SMC).

1) For the Speed Regulator:

S(ωr)Ṡ(ωr) < 0 ⇒ ı∗q = ıqeq + ıqn (52)

with
ıq = ıq1 + ıq2 and ωr = PΩ;

ıqeq =
J

P 2

Lr + Lm
Lmψ∗r

+
[
pω∗r

f

J
ωr +

P

J
TL

]
;

ıqn = kωr

S(ωr)
|S(ωr)|+ ξωr

.

2) For the Flux Regulator:

S(ψr)Ṡ(ψr) < 0 ⇒ ı∗d = ıdeq + ıdn (53)

where
ıd = ıd1 + ıd2;

ıdeq =
Lr + Lm
rrLm

[
pψ∗r +

rr
Lr + Lm

ψr

]
;

ıdn = kψr

S(ψr)
|S(ψr)|+ ξψr

.

3) For the Stator Currents Regulators:

S(ıd1)Ṡ(ıd1) < 0 ⇒ v∗d1 = vd1eq + vd1n (54)

S(ıq1)Ṡ(ıq1) < 0 ⇒ v∗q1 = vq1eq + vq1n (55)

S(ıd2)Ṡ(ıd2) < 0 ⇒ v∗d2 = vd2eq + vd2n (56)

S(ıq2)Ṡ(ıq2) < 0 ⇒ v∗q2 = vq2eq + vq2n (57)



with

vd1eq = L1 ı̇
∗
d1 + r1ıd1 − ω∗e [L1ıq1 + τrψ

∗
rω

∗
sl] ;

vq1eq = L1 ı̇
∗
q1 + r1ıq1 + ω∗e [L1ıd1 + ψ∗r ] ;

vd2eq = L2 ı̇
∗
d2 + r2ıd2 − ω∗e [L2ıq2 + τrψ

∗
rω

∗
sl] ;

vq2eq = L2 ı̇
∗
q2 + r2ıq2 + ω∗e [L2ıd2 + ψ∗r ] ;

and

vd1n = kd1
S(ıd1)

|S(ıd1)|+ ξd1
;

vq1n = kq1
S(ıq1)

|S(ıq1)|+ ξq1
;

vd2n = kd2
S(ıd2)

|S(ıd2)|+ ξd2
;

vq2n = kq2
S(ıq2)

|S(ıq2)|+ ξq2
.

To satisfy the stability condition of the system, the gains
kωr

, kψr
, kd1, kq1, kd2 and kq2 should be taken positive by

selecting the appropriate values.

VI. M ATRIX CONVERTERMODELING

Matrix converter consists of nine bidirectional switches,
which are considered ideal for the ease of this presentation
[28]. Each output phase is associated with three switches
set connected to three input phases. This configuration of
bidirectional switches enables the connection of any input
phasea1, b1 or c1 to any output phaseA1, B1 or C1 at any
instant (matrix converter Fig. 3 and Fig. 5). The switching
function of a switchSij in Fig. 3 is defined (referred to matrix
converter 1) as

Sij =
{

1 Sij is closed,
0 Sij is open,

(58)

i ∈ {a1, b1, c1},
j ∈ {A1, B1, C1}.

Fig. 5. Matrix converter topology.

A. The Switching Angles Formulation

The switching angles, of the nine-bidirectional switchesSij
which will be calculated, must comply with the following rules
[7], [9].

1) At any time ‘t’, only one switchSij (j = 1, 2, 3) will
be in ‘ON’ state. This assures that no short circuit will
occur at the input terminals;

2) At any time ‘t’, at least two of the switchesSij (j = 1,
2, 3) will be in ‘ON’ state. This condition guarantees a
closed-loop path for the load current (usually this is an
inductive current).

During thekth switching cycleTs (Ts = 1/fs) (Fig. 5),
the first phase output voltage is given by

va1=


vA1 for 0 ≤ t− (k − 1)Ts < mk

a1A1Ts
vB1 for mk

a1A1Ts ≤ t− (k − 1)Ts <
(mk

a1A1 +mk
a1B1)Ts

vC1 for (mk
a1A1 +mk

a1B1)Ts ≤ t− (k − 1)Ts < Ts

(59)

wheremk
ij is defined by

mk
ij =

tkij
Ts

(60)

where tkij is the time interval whenSij is in ‘ON’ state,
during thekth cycle, andk being the switching cycle sequence
number. Themk

ij has the physical meaning of duty cycle.
Also,

mk
iA1 +mk

iB1 +mk
iC1 = 0 and 0 < mk

ij < 1

which means that during every cycleTs, all switches of the
first phase output voltages will turn on and off once (Fig. 6).

B. Algorithm of VENTURINI

The algorithm of VENTURINI [12], [13], allows a control
of the Sij switches so that the low frequency parts of the
synthesized output voltages (va1, vb1 and vc1) and the input
currents (iA1r, iB1r and iC1r) are purely sinusoidal with the
prescribed values of the output frequency, the input frequency,
the displacement factor and the input amplitude. The average
values of the output voltages during thekth sequence are thus
given by

va1=
tka1A1

Ts
vA1 +

tka1B1

Ts
vB1 +

tka1C1

Ts
vC1

vb1=
tkb1A1

Ts
vA1 +

tkb1B1

Ts
vB1 +

tkb1C1

Ts
vC1 (61)

vc1=
tkc1A1

Ts
vA1 +

tkc1B1

Ts
vB1 +

tkc1C1

Ts
vC1

Fig. 6. Segmentation of the axis time for the consecutive orders of intervals
closing of the switches.



If times of conduction are modulated in the shape of
sinusoidal with the pulsationωm while Ts remains constant,
such asωo = ωi + ωm, these times are defined as follows:

1) For the1st phase, we have

ta1A1=
Ts
3

(1 + 2q cos(ωmt+ θ))

ta1B1=
Ts
3

(1 + 2q cos(ωmt+ θ − 2π
3

)) (62)

ta1C1=
Ts
3

(1 + 2q cos(ωmt+ θ − 4π
3

))

2) For the2nd phase

tb1A1=
Ts
3

(1 + 2q cos(ωmt+ θ − 4π
3

))

tb1B1=
Ts
3

(1 + 2q cos(ωmt+ θ)) (63)

tb1C1=
Ts
3

(1 + 2q cos(ωmt+ θ − 2π
3

))

3) For the3rd phase

tc1A1=
Ts
3

(1 + 2q cos(ωmt+ θ − 2π
3

))

tc1B1=
Ts
3

(1 + 2q cos(ωmt+ θ − 4π
3

)) (64)

tc1C1=
Ts
3

(1 + 2q cos(ωmt+ θ))

where,
ωi is the pulsation of the reference input current vector;
ωo is the pulsation of the reference output voltage vector;
θ is the initial phase angle.

The output voltage is given byva1vb1
vc1

 =

1 + 2q cosβ 1 + 2q cos γ 1 + 2q cos δ
1 + 2q cos δ 1 + 2q cosβ 1 + 2q cos γ
1 + 2q cos γ 1 + 2q cos δ 1 + 2q cosβ

×
vA1

vB1

vC1


where

β=ωm + θ,

γ=β − 2π
3
,

δ=β − 4π
3
,

ωm=ωo + ωi.

The running matrix converter with VENTURINI algorithm
generates at the output a three-phase sinusoidal voltages sys-
tem having in that order pulsationωm, a phase angleθ and
amplitudeqVs (0 < q < 0.866 with modulation of the neutral)
[13].

VII. S IMULATION RESULTS AND DISCUSSION

The dual-stator induction motor parameters used in the
simulation are given in the APPENDIX. The values of sliding
mode switching gains are summarized by the table I below.

The first test concerns a no-load starting of the motor with
a reference speedn∗ = 2500rpm. Then a torque loadTL =
14N.m is applied betweent = 1.5sec and t = 2.5sec. The
results are shown in Fig. 7.

TABLE I

SLIDING MODE CONTROLLER GAINS

kωr 17.2 ξωr 0.95
kψr 1.3 ξψr 0.01

kd1 = kd2 185 ξd1 = ξd2 0.1
kq1 = kq2 200 ξq1 = ξq2 0.12

The second test concerns a no-load starting of the motor
with a reference speedn∗ = 2500rpm. Then att = 1.5sec a
reverse speed is applied. The results are shown in Fig. 8.

The waveforms depicted in Fig. 7 show that the ideal field-
oriented control is established by setting the flux responses
ψdr = 1Wb, ψqr = 0Wb, despite the load variations. The step
changes in the load torque and the reverse of speed response
cause step change in the torque response without any effects
on the fluxes responses, which are maintained constant, due to
the decoupled control system between the torque and the rotor
flux. Thus, the aim of the field-oriented control is achieved,
and the introduction of perturbations is immediately rejected
by the control system.

The aim of the third test is to solve the problem of
detuning in indirect field-oriented control system in the case of
parameter variations of the motor. The coefficients in equations
systems (28)-(33) are all dependent on the motor parameters.
These parameters may vary during on-line operation due
to temperature or saturation effects. So, it is important to
investigate the sensitivity of the complete system to parameters
changes.

Fig. 7. Simulation results for a cascade structure using SMCs.



Fig. 8. Simulation results for a cascade structure using SMCs, with reverse
speed att = 1.5sec.

One of the most significant parameter changes in the motor
is the rotor resistancerr. A simulation taking into account
the variation of 50% rise of rr relative to the identified
model parameter was carried out. The parameters changes
are introduced only in the model of the motor. Neither the
estimator, nor the controller is involved by this variation. The
waveforms obtained are illustrated in Fig. 9. The responses
are approximately similar to chose obtained in Fig. 7 and the
condition of oriented control is obtained in the steady state
(ψqr = 0Wb). Therefore, the sliding mode controller can
ensure a correct robustness against uncertainties of parameters
of the motor. In practice, this fact is important because it is
impossible to have an exact value of each parameter of the
machine.

VIII. C ONCLUSION

A sliding mode control for dual-stator induction motor
drives fed by matrix converters has been presented in this
paper. The first part is dedicated to the description of the DSIM
and the mathematical model and the field oriented control of
a DSIM. In the second part, the sliding mode control strategy
is presented and applied to control of the DSIM. In the third
part, matrix converter modeling is presented.

Simulation results have been carried out, validating, the
effectiveness of the proposed controllers and successfully
implemented a dual-stator induction motor drives.

Fig. 9. Simulation results with variation50% of rr for an indirect FOC
drive with SMCs.

APPENDIX

The machine parameters used in the simulation are as
follows:
• Nominal voltage:vn = 220V ;
• Nominal current:ın = 6.5A;
• Stator resistances per phase (winding setI and II) r1 =
r2 = 3.72Ω;
• Stator self inductances per phase (winding setI and II)
L1 = L2 = 0.022H;
• Rotor resistance per phaserr = 2.12Ω;
• Rotor self inductance per phaseLr = 0.006H;
• Mutual inductance between stator and rotorLm = 0.3672H;
• Inertia J = 0.0625kg.m2;
• Viscous frictionf = 0.001N.m.s/rd;
• Number of pole pairsP = 1.
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