
Abstract- In this work, we gives the full dynamical model of a 
commercially available quadrotor helicopter and presents its 
behaviour control at low altitudes through sliding mode control. 
The control law is very well known for its robustness against 
disturbances and invariance during the sliding regime. The plant 
on the other hand, is nonlinear one with state variables are 
tightly coupled the control objective is the position tracking. 
Simulations results have shown that the algorithm successfully 
drives the system towards the desired trajectory. 
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1- INTRODUCTION 
 

Autonomous Unmanned Air vehicles (UAV) are 
increasingly popular platforms, due to their use in military 
applications, trafc surveillance, environment exploration, 
structure inspection, mapping and aerial cinematography, in 
which risks to pilots are often high. Rotorcraft has an evident 
advantage over fixed-wing aircraft for various applications 
because of their vertical landing/take-off capability and 
payload. Among the rotorcraft, quadrotor helicopters can 
usually afford a larger payload than conventional helicopters 
due to four rotors. Moreover, small quadrotor helicopters 
possess a great maneuverability and are potentially simpler to 
manufacture. For these advantages, quadrotor helicopters have 
received much interest in UAV research [1,2]. 
 

The quadrotor we consider is an underactuated 
system with six outputs and four inputs, and the states are 
highly coupled, several recent works were completed for the 
design and control in pilotless aerial vehicles domain such that 
quadrotor [1,3,4]. Also, related models for controlling the 
vertical take-off and landing (VTOL) aircraft are studied by 
Hauser et al. [5]. A model for the dynamic and configuration 
stabilization of quasi-stationary flight conditions of a four 
rotors VTOL, based on Newton formalism, was studied by 
Hamel et al. [6] where the dynamic motor effects are 
incorporated and a bound of perturbing errors was obtained for 
the coupled system. Castillo et al. [7] performed autonomous 
take-off, hovering and landing control of a four rotors by 
synthesizing a controller using the Lagrangian model based on 
the Lyapunov analysis. In [8], authors take into account the 
gyroscopic effects and show that the classical model 
independent PD controller can stabilize asymptotically the 
attitude of the quadrotor aircraft. Moreover, they used a new 
Lyapunov function, which leads to an exponentially 
stabilizing controller based upon the PD2 and the 
compensation of coriolis and gyroscopic torques. While in [9] 
the authors develop a PID controller in order to stabilize 

altitude. In [10], a PID controller and a LQ controller were 
proposed to stabilize the attitude. The PID controller showed 
the ability to control the attitude in the presence of minor 
perturbation and the LQ controller provided average results, 
due to model imperfections Madani et al. studied a full-state 
backstepping technique based on the Lyapunov stability 
theory and backstepping control [11], Yet another 
backstepping control method was proposed by P. Castillo et al. 
They used this controller with a saturation function and it 
performed well under perturbation [12]. In [13] a mixed robust 
feedback linearization with linear GH infinie controller is 
applied to a nonlinear quadrotor unmanned aerial vehicle, 
Robust adaptive-fuzzy control was applied in [14]. This 
controller showed a good performance against sinusoidal wind 
disturbance. In [15] presente the comparison between a based 
model method and a fuzzy inference system, In [16] the 
quadrotor has been controlled in 3 DOF using the combination 
of the backstepping technique and a nonlinear robust PI 
controller, in [17] The control strategy includes feedback 
linearization coupled with a PD controller for the translational 
subsystem and a backstepping-based PID 
nonlinear controller for the rotational subsystem of the 
quadrotor, in References [18, 19] used a feedback linearization 
approach to stabilise the Four Rotors Helicopter.  
 

The sliding mode control has been applied 
extensively to control quadrotors. The advantage of this 
approach is its insensitivity to the model errors, parametric 
uncertainties, ability to globally stabilize the system and other 
disturbances [20]. In [21] author use the Sliding mode control 
of a class of underactuated systems and he took the quadrotor 
as a sample application, In [22] the authors presents a 
continuous sliding mode control method based on feedback 
linearization applied to a Quadrotor UAV, In [23] presents a 
new controller based on backstepping and sliding mode 
techniques for miniature quadrotor helicopter, In [24] This 
paper presents two types of nonlinear controllers for an 
autonomous quadrotor helicopter. One type, a feedback 
linearization controller involves high-order derivative terms 
and turns out to be quite sensitive to sensor noise as well as 
modelling uncertainty. The second type involves a new 
approach to an adaptive sliding mode controller using input 
augmentation in order to account for the underactuated 
property of the helicopter. 
 

Then, we present a control technique based on the 
development and the synthesis of a control algorithm based upon 
sliding mode approach ensuring the locally asymptotic stability 
and desired tracking trajectories expressed in term of the center of 
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mass coordinates along (X, Y, Z) axis and yaw angle, while the 
desired roll and pitch angles are deduced . Finally all synthesized 
control laws are highlighted by simulations which gave results 
considered to be satisfactory. 

 
2 - QUADROTORS DYNAMICS MODELING  

 
A sketch of the quadrotor rotorcraft system studied in this 
study is shown in Fig. 1, where the Euler angles and the 
cartesian coordinate frame are shown. The equations of 
motion are given in (1) and the values of some variables seen 
are tabulated in Table. 1 
 

Let ),,,( ZYXOE denote an inertial frame, and 
),,,( zyxOB ′  denote a frame rigidly attached to the quadrotor  

 
   
 
 
 

 
 
 
 
 
 
 
 

Fig. 1 General view of the quadrotor 
 
 
 
We will make the following assumptions: 
 

•  The quadrotor structure is rigid and symmetrical. 
•  The center of mass and o’ coincides. 
•  The propellers are rigid. 
•  Thrust and drag are proportional to the square of the 
• propellers speed. 
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The Coriolis and centripetal vector denoted by ( )ηη &,C  is 
defined as below and computed as given by (8). 
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where 22 2, mlImlII zzyyxx === . Model inputs and the 

aerodynamic forces ( if ) created by each propeller are related 
to each other as described below and l is the distance from the 
motors to the centre of gravity and 

iMτ is the couple produced 

by each motor iM . 
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im  Motor weight 0.08 kg 

bm  Battery weight 0.20 kg 
m  Total weight of the quadrotor  0.52 kg  
l  Distance from motors to the centre 

of gravity  
0.205 kg 

g Gravitational acceleration   9.81 2/ sm  
 

Table. 1 Physical parameters of the quadrotor  
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3- ROTOR DYNAMICS 

 
The rotor is a unit constituted by D.C-motor actuating a 

propeller via a reducer. The D.C-motor is governed by the 
following dynamic equations: 
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The different parameters of the motor are defined such: 
 
V : Motor input 

me kk , : Electrical and mechanical torque constant 
respectively  

rk : Load constant torque  
r   :   Motor internal resistance 

rJ : Rotor inertia 

sC : Solid friction  
 
Then the model chosen for the rotor is as follows  
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4- CONTROL STRATEGY  

 
To achieve a robust path following for the quadrotor 

helicopter, two techniques, capable of controlling the 
helicopter in presence of sustained external disturbances, 
parametric uncertainties and unmodelled dynamics, are 
combined. The proposed control strategy is based on the 
decentralized structure of the quadrotor helicopter system, 
which is composed of the dynamic Equation (1). The overall 
scheme of the control strategy is depicted in Fig. 2. 
 

The translational motion control is performed in two 
stages. In the first one, the helicopter height, z , is controlled 
and the total thrust, u, is the manipulated signal. In the second 
stage, the reference of pitch and roll angles ( rθ and rφ , 
respectively) are generated through the two virtual inputs xu  
and yu , computed to follow the desired xy movement. 
Finally the rotation controller is used to stabilize the quadrotor 
under near quasi-stationary conditions with control 
inputs ψτ , θτ , φτ . 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. SLIDING MODE CONTROL DESIGN 
 

A Sliding Mode Control is a Variable Structure 
Control (VSC). Basically, VSC includes several different 
continuous functions that map plant state to a control surface. 
The switching among these functions is determined by plant 
state which is represented by a switching function [25]. 
 
Considering the system to be controlled described by state-
space equation: 
 

( ) ( )utxgtxfx n ,,)( +=                                          (15) 
 
Where ( ) ( ))1()1( .,,........., −= nxxxtx  is the vector of state 
variable ( )txf ,  and ( )txg ,  are both nonlinear functions 
present the system, u is the control part. 
 
The design of the sliding mode control needed two steps. The 
choice of the sliding surface, and the design of the control law. 
 
step1: the Choice of the Sliding Surface 
 

Slotine in [26] propose the general form, when its 
consist of defined the scalar function for de sliding surface in 
the phase plan. The objective is the convergence of state 
variable x at its desired value .The general formulation of the 
sliding surface is given by the following equation [31]: 
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When 1=nλ , and ( )nii ...1=λ  present the plan coefficients. 
 
 Generally the sliding surface is given by the 
following linear function: 
 
 ( ) eexS &λ+=                                                         (17) 
Where λ is constant positive value, and dxxe −= . 
 

Fig. 2. Quadrotor helicopter control structure. 
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When the function of commutation it’s calculated the problem 
of tracking needed the conception of the law control with the 
stat vector ( )te  rested on the sliding surface then ( ) 0, =txs  
for only 0≥t . 
 
A suitable control u has to be found so as to retain the error on 
the sliding surface s ( ) 0, =te . To achieve this purpose, a 
positive Lyapunov function V is defined as: 
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2
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The sufficient condition for the stability of the system is given 
by: 
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Where η  is the positive value ( )0>η . 
 
Step2: the Choice of the Sliding Surface 
 
The sliding mode control comports two terms which are 
equivalent control term and switching control term: 
 
 seq uuu +=                                                            (20) 

equ  is the equivalent part of the sliding mode control, i.e. the 
necessary known part of the control system when  0=s& . 
 

su Described the discontinues control is given by: 
 

( )ssignkus −=                                                      (21) 
 

6- SLIDING MODE CONTROL OF THE QUADROTR 
 

The model (1) developed in the first part of this paper 
can be rewritten in the state-space form: 

 
( ) ( ) δ++= UXgxfX ,&  and TxxX ],...,[ 121= is the 

state vector of the system such as: 
 

],,,,,,,,,,,[ φφθθψψ &&&&&& zzyyxxX =                        (22) 
 
From (1) and (22) we obtain the following state 
representation:  
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To synthesize a stabilizing control law by sliding mode, the 
necessary sliding condition ( )0<SS & must be verified; so the 
synthesized stabilizing control laws are as follows: 
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Such as ( )iik λ,  2R∈  
 
Proof  
  
The tracking errors are defined by: 
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The sliding surfaces are chosen as follows: 
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The lyapunov function is defined by: 
 

( ) 2

2
1

φφ SSV =   

if ( )( )0<φSV&  then ( )0<SS &  ,  we can say that the necessary 
condition has verified  and the stability of Lyapunov is 
guaranteed 
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The chosen law for the attractive surface is the time derivative 
of (36) satisfying  ( )0<SS & : 
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Than:  
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According to (30) we obtain:   
 

( )
⎩
⎨
⎧

+=
−=∆

21

1

exu
Ssignku

rxeq

xx

λ&&
                                            (32) 

 
The same steps are followed to extract θψ ττ ,,, uu y and φτ   
  
The desired roll and pitch angles in terms of errors between 
actual and desired speeds are, thus, separately given by:  
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7. SIMULATION RESULTS 

 
Fig. 3 shows the tracking of desired trajectory by the real one 
and the evolution of the quadrotor in space and its 
stabilization.  
Fig. 4 highlights the tracking of the desired trajectories along 
yaw angle (ψ) and (X,Y,Z) axis respectively. the tracking in 
yaw presents a rather weak permanent error when the desired 
trajectory is dynamic.  
Fig. 5 represents the errors made on the desired trajectory 
tracking.   
Fig. 6 presents the Pitch and roll angles response of a 
quadrotor helicopter. Finally fig 7 presents the robustness test to 
measurement noise added to the roll, pitch, and yaw angles (inertial 
measurement unit sensor noise)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Global trajectory of the quadrotor in 3D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Tracking simulation results of the desired trajectories 
along yaw angle ( ψ) and (X, Y, Z) axis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Tracking errors according yaw (ψ) angle and (X, Y, Z) 
axis 
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Fig. 6 Pitch and roll angles Response of a quadrotor helicopter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig .7. Robustness test to measurement noise  
 

8. CONCLUSION 
 

In this paper, we presented stabilizing control laws 
synthesis by sliding mode. Firstly, we start by the 
development of the dynamic model of the quadrotor taking 

into account the different physics phenomena which can 
influence the evolution of our system in the space, this says 
these control laws allowed the tracking of the various desired 
trajectories expressed in term of the center of mass coordinates 
of the system in spite of the complexity of the proposed 
model. As prospects we hope to develop other control 
techniques in order to improve the performances and to 
implement them on a real system. 
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