
PREP SYSTEM-ON-CHIP TEST DATA COMPRESSION BASED ON
SPLIT- DATA VARIABLE LENGTH (SDV) CODE

First J. ROBERT THEIVADAS Second V. RANGANATHAN
Department of ECE Reserach Scholar, Anna University,Chennai, Tamil Nadu, India, roberttheivadas@gmail.com

Department of ECE, Vignan University, Guntur, Andrapradesh, India, India, drvrangan@gmail.com,

Third J. RAJA PAUL PERINBAM
Department of ECE, KCG College of Technology, Chennai, Tamil Nadu, India, rperinbam@yahoo.com.

Abstract: System-on-a-chips with intellectual property cores
need a large volume of data for testing. The large volume of
test data requires a large testing time and test data memory.
Therefore new techniques are needed to optimize the test data
volume, decrease the testing time, and conquer the ATE
memory limitation for SOC designs. This paper presents a new
compression method of testing for intellectual property core-
based system-on-chip. The proposed method is based on new
split-data variable length (SDV) codes that are designed using
the split-options along with identification bits in a string of
test data. This paper analyses the reduction of test data
volume, testing time, run time, size of memory required in ATE
and improvement of compression ratio. Experimental results
for ISCAS 85 and ISCAS 89 Benchmark circuits show that
SDV codes outperform other compression methods with the
best compression ratio for test data compression. The
decompression architecture for SDV codes is also presented
for decoding the implementations of compressed bits. The
proposed scheme shows that SDV codes are accessible to any
of the variations in the input test data stream.

.

Key words: Test data compression, SDV codes, SOC, ATE,
Benchmark circuits

1. Introduction

One of the important objectives of detailed testing of
VLSI (very large scale integration) circuits and systems
is to make sure that there are no defects in the
manufactured products, and that they meet the
specifications. Further, the information generated during
the testing may come of help in increasing the product
yield via improvising the process technology by
reducing the production cost.

The fabrication process of the integrated circuit has
different steps including photolithography, printing,
etching and doping. During manufacturing, each of these
steps has its own flaws. These flaws may lead to failure
in the operation of the individual ICs. VLSI technology
has made the testing of ICs complex and time
consuming resulting in the increased cost of the ICs.
The problems related to testing have enormously
intensified in case of SOC (System on Chip) because of
the large numbers of IP (Intellectual Property) cores on a
single silicon chip. This huge reduction in the circuit
size has increased the sensitivity to performance

variations and still require complete testing before they
are shipped to the customers. There is no denying of the
fact that the overall quality of the final product is greatly
improved through testing, though it has no bearing on
the manufacturing caliber of the ICs. The testing ensures
the imperfections of the product are detected only if it is
implemented during the crucial stages of the
development cycle. It can also be taken as an approach
to validate the design and check the process involved.

The different IP cores of a SOC are not readily
accessible because of the complexity of the SOC and
inadequate test pins. However, one can increase the
accessibility of a controllable or observable node in the
circuit by applying the DFT (Design-For-Testability)
strategies. These strategies the test cost, increase the
product’s quality, and makes easy the design
characterization and test program implementation. In
order to test these systems effectively, each IP core must
be exercised duly with the core vendor’s set of
established test patterns. In case of VLSI systems, due to
higher storage requirements for fault-free responses, the
traditional test processes become quite expensive.
Alternate approaches are pursued in order to reduce the
test data volume or the amount of storage required.

A design methodology called BIST (Built-in-
Self-Testing) [1] - [3] is capable of providing solutions
to numerous problems faced in testing digital systems.
In order to test a SOC, the test patterns are initially
generated and stored in an exclusive computer. The
increase in the different types of SOCs has increased the
requirement for the numbers of test patterns and also the
frequent downloading of these test patterns into an ATE
(Automatic Test Equipment). The size of these test
patterns can be quite large that it may require a lot of
time for downloading an ATE. However, the data
memory, input-output channel capacity, and speed of
traditional ATEs are limited. These machines are also
quite expensive. Because of this, newly developed
compression techniques are expected to decrease testing
time and storage capacity.

mailto:roberttheivadas@gmail.com
mailto:drvrangan@gmail.com
mailto:rperinbam@yahoo.com

The emergence of new test vector compression
techniques [4], [5] and data compression in SOC
techniques (SOC containing an embedded processor
core) [6], [7] has been recently reported. Embedded
processor has significantly increased Soc design
flexibility, lengthened SOC product lifetime, and
reduced design errors by permitting the devices to adapt
to evolving standards and by allowing the addition of
extra features over time [8]. Therefore, the compression
technique must not only be efficient enough to decrease
the test data volume, but also effective enough in its
decompression. Various techniques have been proposed
in the literature for compressing test data and their
decompression. The Test sets are compressed using the
selective Huffman coding is presented in [9] assuming
full scan circuits and allowing reduction of hardware
overhead of Huffman FSM. The Test data is encoded by
using nine-types of codeword, Nine-Coded Compression
based on fixed to variable coding scheme. The drawback
of the method is the increased length of symbol. Other
methods are presented based on Frequency-Directed
Runlength (FDR) [10], Golomb Codes, Variable-input
Huffman coding (VIHC), Lempel-Ziv-Welch (LZW)
Coding [12], Associative Coder of Buynovsky (ACB)
[11] , Run Length Coding (RLC), Burrow-Wheeler
Transform (BWT) [14],Variable to Variable Huffman
code and Tunstall coding. Compression techniques are
proposed in order to reduce test data volume. In [10], the
test vectors are compressed as difference vectors Tdiff

from Original Test vectors TD and this leads to the
reduction of testing time and smaller test sets.

In this paper, a new technique has been presented for
efficient implementation of test data compression and
decompression for system-on-a-chip designs. This paper
introduces a new class of variable length compression
codes that are designed using the split-options along
with identification bits of string of test data.

2. Proposed Methodology

2.1. SDV Codes

The Split-data algorithm technique approach is to split-
off the data from a string of test data vector in order to
achieve compressed bits in the form of variable-length
codes. The Simple Run-length code for remaining
higher order bits contains a run of ‘0s’ which is equal to
the decimal value of the higher order bits. Digit ‘1’ is
deployed after a sequence of ‘0s’.For Example, Simple
Run Length code is shown in Table 1 by using some of
the code word. The Bth split-option splits the code word
into LSB and MSB, whereas LSB splits-off based on the

value of B. In case, if B split bit is 0 then it results in no
split-bit of LSB, Incase B split bit is 1, one bit from LSB
splits-off, if B split bit is 2, two bits from LSB splits-off
and remaining higher order bits are encoded to a run
length codes. In this paper, the Bth split-option is
extended up to value of B=7,since each of the code word
is taken as 8 bits and each of the split-option results in
the reduction of the number of bits. The Table 2 shows
the Split-options using simple Run-Length Codes
(RLC). Test vectors considered in Table 2 are analyzed
for each B value by using the concept of split-data. For
example, in the code word 00001111, since there is no
data split for B, B=0 so only the RLC is performed. This
results in some compression. For B=1, 1 LSB splits-off
and remaining higher bits are encoded into
7zeroes+1.After concatenation of LSB and RLC, the
total number of bits is 9 (1LSB+RLC->1+7zeroes+1).
For B=2, 2 LSB splits-off and so RLC is performed as
3zeroes+1 resulting in 6 bits (2LSB+RLC-
>11+3zeroes+1). In order to know highest reduction of
bits from all the B split-option, the overall number of
bits in each B split option has to be added. The reduction
of the number of bits for each split B option is seen in
Table 2. This is made up to B=7. To find highest
compressed bits, in each and every split-option total
number of compressed bits must be added from all the
code words. In Table 2, the total number of compressed
bits for B=0 is 518bits, B=1 is 201bits,B=2 is 114 bits,
B=3 is 74bits,B=4 is 58 bits and finally B=5 is 55 bits.
By comparing all the total number of compressed bits
for all the values of B, the highest compression is
achieved in B=5 with 55 bits. This result in a higher
reduction of bits compared to other values of B. From
Table 2, B=5 will achieve the data reduction from the
original 64 bits to 55 bits. In this case, B=5 will be
selected. The split-option achieving the highest
compression is selected to identify the option to the
decoder

Table 1.Run Length code

CODE
WORD

3-BIT
RUN-

LENGTH
CODE

CODE
WORD

4-BIT RUN-
LENGTH CODE

000

001

010

011

.

111

1

01

001

0001

.

00000001

0011

0100

1010

1001

.

1111

0001

00001

00000000001

0000000001

.

0000000000000001

Table 2.Split-Options Using Simple Run Length Codes (RLC)

BLOCK DIAGRAM AND ALGORITHM OF PROPOSED
METHOD

Figure 1 shows the block diagram of the proposed
technique. The Test vectors required for testing an
SOC are compressed in software mode. The
Execution of the decompression program allows
recovering the uncompressed original test vectors and
then these test vectors are applied to each and every

core of the SOC to analyze the output responses. The
Test vectors provided by core vendor are divided into
8 bits of equal size and the size of the block depends
on the total number of bits in each vector. The Block
selection is divided into several blocks of equal size
based on the total number of bits. In this paper, the
number of bits for each block is an 8bit code word
and the total number of blocks presented here is 8
blocks in parallel i.e. B=0 to B=7.

CODE
WORD

B=0

(RLC)

B=1

(1LSB+RLC)

B=2

(2LSB+RLC)

B=3

(3LSB+RLC)

B=4

(4LSB+RLC)

B=5

(5LSB+R
LC)

00001111 15zeroes+1=

16 bits

1+7zeroes+1=9
bits

11+3zeroes+1=
6 bits

111+1zero+1=
5 bits

1111+1=5bits 01111+1=
6bits

00011111 31zeroes+1=

32bits

1+15zeroes+1=
17bits

11+7zeroes+1=
10bits

111+3zeroes+1
=7bits

1111+1zero+1
=6bits

11111+1=
6bits

01011010 90zeroes+1=

91bits

0+45zeroes+1=
47bits

10+22zeroes+1
=25bits

010+11zeroes+
1=15bits

1010+5zeroes+
1=10bits

11010+2z
eroes+1=8

bits

00111100 60zeroes+1=

61bits

0+30zeroes+1=
32bits

00+15zeroes+1
=18bits

100+7zeroes+1
=11bits

1100+3zeroes+
1=8bits

11100+1z
ero+1=7bi

ts

00001111 15zeroes+1=

16 bits

1+7zeroes+1=9
bits

11+3zeroes+1=
6 bits

111+1zeroes+1
=5 bits

1111+1=5bits 01111+1=
6bits

01100100 100zeroes+1=1
01bits

0+50zeroes+1=
52bits

00+25zeroes+1
=28bits

100+12zeroes+
1=16bits

0100+6zeroes+
1=11bits

00100+3z
eroes+1=9

bits

00110100 52zeroes+1=

53 bits

0+26zeroes+1=
28bits

00+13zeroes+1
=16bits

100+6zeroes+1
=10bits

0100+3zeroes+
1=8bits

10100+1z
ero+1=7bi

ts

00001010 10zeroes+1=

11 bits

0+5zeroes+1=7
bits

10+2zeroes+1=
5bits

010+1zero+1=
5bits

1010+1=5bits 01010+1=
6bits

TOTAL
BITS

518 201 114 74 58 55

Fig 1: Block Diagram of Proposed Method

Table 3: Selection of Identification Bit pattern

BLOCK-OPTION 3-BIT LENGTH ID
BITS(B<7)

B=0

B=1

B=2

B=3

B=4

B=5

001

010

011

100

101

110

The selection of the blocks is made on the basis of
giving ID bit pattern that the selected option will use
to split the LSB and encodes remaining higher order
bits of current block of samples. An ID bit sequence
specifies the selection of option to encode the set of
code words. With the same ID bits, the decoder is
used for partial implementations of encoded bits. At
last, ID bits and concatenation of the LSB and RLC is
encoded to generate encoded test data TE. This results
in limited memory, whereas original test vectors
results in high memory for storage. The Overall
concept of SDV compression is shown in Algorithm
1. At the initial stage, test vectors are generated along

with ID bits, this allows to select any one of the split-
option and this is repeated until TD has binary values.

ALGORITHM 1: SDV COMPRESSION
SDV_algo()
begin
generate Test Vectors (TD) with ID bits
select Split-option Block B
repeat

begin
TC=SD(ID,LSB,MSB)
MSB=RLC(higher order bits)
Simulate TC

end
until TD has binary values

end
until all ID bits
while all TD have ID bits
begin

TE=encode(ID,LSB,MSB)
end
until TD have binary value
while tester have all split option block B values
begin

THC= highest compression of TD values
repeat
end

Fig 2: Conceptual Architecture of Decompression

The Figure 2 describes the overall concept of
decompression to recover the original test vectors. The
encoded bits are decoded with presence of ID bits, to
select any one of the blocks based on ID bits. To
convert to 8 bit code word, counters are used to count
number of 0s until it reaches 1. These numbers of 0s
are transferred to code word and finally LSB and
converted code word is concatenated to result in the
original uncompressed test vector. Algorithm 2
describes the overall concept of decompression to
achieve the original uncompressed bits.

ALGORITHM 2: SDV DECOMPRESSION
SDV_algo()
begin
generate encoded test vectors (TE)
select split-option block B
B=decode (TE)
repeat

begin
TDCMP=SD(LSB,MSB)
MSB= counter (higher order bits)
simulate TDCMP

end
until all TE has binary values

3. RESULTS OF SIMULATION EXPERIMENTS

Test vector generation program was employed to
obtain a set of test vectors to provide 100% fault
coverage, MINTEST. The percentage of data
compression is computed based on

The Experimental results are shown in Table 4 & 5,
Table 6, Figure 3 and 4, and Figure 5.

Table 4 and 5 shows compression results obtained
from ISCAS 85, ISCAS 89 combinational and
sequential benchmark circuits. The scan size is also
considered for combinational and sequential circuits
and compression achieved is 80%.The column 4
illustrates the original size of test vectors and
consequently remaining column shows the
compression achieved for split options with various
combinational and sequential circuits, which is
extended up to a value of 7.

Table 4: Test Vector Compression Percentage Several ISCAS’85 Benchmark Combinational Circuits Using

Proposed Technique

Circuit
Name

Sca
n

Size

No. of
Test

Vectors

Total
origina
l Bits

Compre
ssion %

B=2

Compre
ssion %

B=3

Compressi
on %
B=4

Compres
sion %

B=5

Compressi
on %
B=6

Compression
%

B=7

C432 36 27 972 44.65 65.63 75.6 79.62 80.96 80.76

C499 41 52 2132 26.6 56.8 71.2 77.67 80.11 80.54
C880 60 15 960 30 58.7 72.5 78.64 81.04 81.45

C1355 41 84 3442 67.5 77.13 81.05 82.24 82.01 81.14
C1908 33 106 3498 42.9 64.95 75.15 79.5 80.8 80.7
C2670 233 44 10252 44.4 65.6 75.3 79.51 80.7 80.62
C3540 50 63 4200 38.72 62.8 74.11 78.9 80.5 80.52
C5315 178 136 6586 42.86 64.84 75.11 79.42 80.74 80.71
C6588 32 94 384 13.2 51.3 69.7 78.3 82.03 83.07
C7522 207 148 15111 43.8 65.2 75.17 79.32 80.6 80.5

Table 5: Test Vector Compression Percentage Several ISCAS 89 Benchmark Sequential

Circuits Using Proposed Technique

Circuit Name Scan

Size

No. of

Test

Vectors

Total

original

Bits

Compre

ssion %

B=2

Compres

sion %

B=3

Compres

sion %

B=4

Compress

ion %

B=5

Compre

ssion %

B=6

Compre

ssion %

B=7

S420 34 43 1505 49.1 68.03 76.6 80.33 81.3 81.06

S444 24 24 576 30.7 59.2 73.09 79.16 81.77 82.2

S510 25 54 1350 46.22 66.5 75.8 79.8 81.18 80.9

S526 24 49 1176 42.2 64.5 74.9 79.2 80.95 80.8

S820 23 93 2139 45.02 65.9 75.54 79.6 80.87 80.87

S838 67 75 5025 48.2 67.4 76.2 79.9 80.99 80.69

S5378 214 97 20765 37 61.89 73.48 78.5 80.34 80.43

S9234 247 105 25935 41.4 64.07 74.5 79.11 80.5 80.5

S13207 700 233 163100 39.99 63.35 74.26 78.91 80.4 80.4

S15850 611 94 57434 41.2 63.99 74.57 79.08 80.55 80.5

S38417 1664 68 113152 34.44 60.6 72.9 78.3 80.21 80.3

S38584 1464 110 161040 40.08 63.77 74.46 79.04 80.52 80.44

Finally, Figure 3 and 4 graphically shows the test
vector compression results for several ISCAS 85 and
ISCAS 89 benchmark circuits using SDV coding for
various values of B. The graphical diagram shows that
the overall average percentage for both combinational
and sequential circuits is 80. Table 6 describes the
overall compression percentage and time taken to
compress the test data under the proposed scheme.
Figure 5 shows graphically the time taken to compress
the test data in seconds for combinational and
sequential circuits.

Fig 3: Test Vector Compression Results for Several

ISCAS 85 Benchmark Circuits Using Proposed

Technique

Fig 4: Test Vector Compression Results for Several

ISCAS 89 Benchmark Circuits Using Proposed

Technique

Table 6: Test Vector Compression Ratio and Time Taken for both ISCAS 85 Combinational Circuits and

ISCAS’89 Sequential Circuits

Circuit

Name

Total original Bits Compressed Bits

B=6

Compression

Percentage

Proposed scheme

Time taken to

compress the test

data(s)

C432 972 185 80.96 0.2055

C499 2132 424 80.11 0.356

C880 960 182 81.04 0.196

C1355 3442 619 82.01 0.533

C1908 3498 671 80.8 0.536

C2670 10252 1972 80.7 1.399

C3540 4200 819 80.5 0.623

C5315 6586 1268 80.74 0.915

C6588 384 69 82.03 0.132

C7522 15111 2925 80.6 2.07

S420 1505 280 81.3 0.266

S444 576 105 81.77 0.162

S510 1350 254 81.18 0.281

S526 1176 224 80.95 0.2353

S820 2139 409 80.87 0.364

S838 5025 955 80.99 0.876

S5378 20765 4080 80.34 3.331

S9234 25935 5037 80.5 3.786

S13207 163100 31824 80.4 22.707

S15850 57434 11166 80.55 8.062

S38417 113152 22387 80.21 16.021

S38584 161040 31358 80.52 22.477

Fig 5: Time Taken to Compress Test Data for ISCAS 85 and ISCAS 89 Benchmark Circuits (Seconds)

Table 7: Test Vector Compression Results for ISCAS 85 and ISCAS 89 Benchmark Circuits Using Other Compression
Methods and Proposed Technique

Fig 6: Test Vector Compression Results for Several ISCAS 89 Benchmark Circuits Using Proposed Technique and Other
Compression Technique

Circuit

Name

Huffman

[13]

ACB

[11]

LZW

[12]

BWT

[14]

Proposed

Scheme

C432 46.58 43.54 45.73 53.29 80.96

C499 69.47 67.12 70.38 80.01 80.11

C880 63.96 56.85 62.63 69.78 81.04

C1355 71.49 64.07 69.79 74.09 82.01

C1908 51.83 46.93 50.52 57.58 80.8

C2670 62.73 58.21 62.29 66.03 80.7

C3540 66.07 64.52 65.83 70.26 80.5

C5315 62.95 61.28 63.79 65.82 80.74

C6588 54.67 48.72 55.08 57.05 82.03

C7522 56.71 51.74 55.83 59.53 80.6

S420 60.52 51.24 59.37 63.72 81.3

S444 32.63 29.32 32.57 32.98 81.77

S510 67.27 63.74 68.08 73.48 81.18

S526 65.86 53.28 65.17 68.19 80.95

S820 64.73 43.93 65.42 67.46 80.87

S838 55.1 54.18 59.06 62.82 80.99

S5378 58.14 - N/A - 80.34

S9234 54.2 - 70.26 - 80.5

S13207 77 - 81.69 - 80.4

S15850 66 - 76.26 - 80.55

S38417 59 - 70.6 - 80.21

S38584 64.1 - 75.14 - 80.52

Table 7 shows the compression results obtained from
ISCAS 85 and ISCAS 89 benchmark circuits with
comparison of other compression techniques. The
Highest compression is obtained compared to
Huffman coding, Lempel-Ziv-Welch (LZW) Coding,
Associative Coder of Buynovsky (ACB), Burrow-
Wheeler Transformation (BWT) presented in Table 7.
From the proposed technique, data compression is
achieved mainly due to SDV technique in successive
test vectors. Figure 6 shows the comparative results of
various techniques along with proposed technique.
From the comparative experimental results, the
developed compression strategy provides better
compression results than other various compression
methods.

4. CONCLUSION

Since test Data compression is the most important
technique it must be lossless and effective. The
Compression method herein is based on a Split-Data
Variable length (SDV) coding technique that targets to
split-off the bits to achieve compression. The
technique SDV reduces the test vector sequences, and
results in a higher compression ratio. The compression
process is done before downloading the test vectors
into the on-chip memory. The method proposed helps
in reducing the test data and testing time. Further this
method proposed herein is completely lossless
because of its higher compression ratio.

References

[1] T. Reungpeerakul and D. Kay, “Partial-matching
technique in a mixedmode BIST environment,”IEEE Trans.

Instrumen. Meas., vol. 9, no. 4,pp. 970–977, Apr.
2010.
[2] V. Groza, R. Abielmona, and M. H. Assaf, “A self-
reconfigureurable platform for built-in self-test
applications,” IEEE Trans. Instrumen.Meas., vol. 56, no. 4,
pp. 1307–1315, Aug. 2007.
[3] D. Kay, S. Chung, and S. Mourad, “Embedded test
control schemes using iBIST for SoCs,”IEEE Trans.
Instrumen. Meas., vol. 54, no. 3, pp. 956–964, Jun.
2005.
[4] S. Biswas, S. R. Das, and E. M. Petriu, “Space
compactor design in VLSI circuits based on graph theoretic
concepts,” IEEE Trans. Instrumen. Meas., vol. 55, no. 4,
pp. 1106–1118, Aug. 2006.
[5] S. Biswas and S. R. Das, “A software-based method for
test vector compression in testing system-on-a-chip,” in
Proc. IEEE Instrumen. Meas. Technol. Conf., Apr. 2006,
pp. 359–364.
[6] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G.
Davis, B. Cremen, and B. Troxel, “A hybrid ASIC and
FPGA architecture,” in Proc. Int. Conf. Comput. Aided
Des., 2002, pp. 187–194.
[7] M. Abramovici, C. Stroud, and M. Emmert, “Using
embedded FPGAs for SoC yield improvement,” in Proc.
Des. Autom. Conf., 2002, pp. 713–724.
[8] S. J. E. Wilton and R. Saleh, “Programmable logic IP
cores in SoC design: Opportunities and challenges,” in Proc.
IEEE Conf. Custom Integr. Circuits, May 2001, pp. 63–66.

[9] Jas, J. Ghosh-Dastidar, M. Ng, and N. A. Touba, “An
efficient test vector compression scheme using selective
Huffman coding,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 6,
pp. 797–806, 2003.
[10] Chandra and K. Chakrabarty, “Frequency-directed run
length (FDR) codes with application to system- on-a-chip
test data compression,” in Proceedings of the 19th IEEE
VLSI Test Symposium, pp. 42– 47,MarinaDel Rey, Calif,
USA, May 2001.
[11] T. Skopal, “ACB compression method and query
preprocessing in text retrieval systems,” in Proc. DATESO,
2002, pp. 1–8.
[12] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,”IEEE Trans. Inf. Theory,
vol.IT- 23, no. 3, pp. 337–343, May 1997.
[13] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici,
“Variable-length input Huffman coding for system- on- chip
test,” IEEE Trans.Comput.-Aided Des. Integr. Circuits
Syst., vol. 22, no. 6, pp. 783–796, Jun. 2003.
[14] Satyendra N. Biswas, Sunil R. Das,and Emil M.
Petriu, “On System-on-Chip Testing Using Hybrid Test
Vector Compression” IEEE Transactions on
Instrumentation and Measurement, Vol. 63, No. 11,
November 2014

