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Abstract: In this paper, a fuzzy Luenberger observer (LO) 
and a Kalman filter (KF) are combined for sensorless 
sliding mode control (SMC) of induction motor drives (IM). 
The rotor speed and flux are estimated by using the fuzzy 
LO and the KF respectively. The sliding mode control 
technique utilizes a robust control law to model uncertain 
and disturbances while the system in sliding mode. We use a 
saturation function to limit phenomenon chattering that 
presents the major problem to variable structure system 
(VSS). Simulation results are included to illustrate the 
performance and the robustness of the proposed control 
scheme in high and low speeds.  
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1. Introduction 

The induction motor is one of the most widely used 
machines in various industrial applications due to its 
high reliability, relatively low cost, and modest 
maintenance requirements. Several methods of control 
are used to control the induction motor among which 
the field orientation control that allows a decoupling 
between the flux and the torque, in order to obtain an 
independent control of the flux and the torque like dc 
motors [1]. Furthermore, the control of dynamical 
systems in presence of uncertain and disturbances is a 
common problem when algorithms of classical 
regulation such as proportional-integral controllers are 
used. The effect of these uncertainties on the system 
dynamics should be carefully taken into account in the 
controller design phase since they can worsen the 
performance or even cause system instability [2]. For 
this reason, several tools are proposed in the literature, 
from which we quote the variable structure system 
(VSS) [3]. 

The sliding mode control is a type of variable 
structure system characterized by high simplicity and 
robustness against insensitivity to parameters variation 
and disturbances. This approach utilizes discontinuous 
control laws to drive the system state trajectory into a 
sliding or switching surface in the state space. 
However, the discontinuous control presents a major 
drawback and constitutes the main criticism to the 
sliding mode control techniques. To reduce indeed 
limit this problem, a saturation function is used in 
design of sliding mode controllers. 

The sensorless speed control of induction motor 
drives has received over the last few years a great 
interest. Thus it is necessary to eliminate the speed 
sensor to reduce hardware and increase mechanical 
robustness. The main techniques of sensorless control 
of induction motors are: Model reference adaptive 
systems (MRAS), Kalman filter (KF) [4] and 
Luenberger observer (LO) [5]. In this work, a 
Luenberger observer, with fuzzy adaptation mechanism 
combined with a Kalman filter are used simultaneously 
for the estimation of the rotor speed and flux 
respectively of induction motor drives.  
 
2. Induction motor model 
 The dynamic model of the induction motor written 
in (d-q) reference frame can be described by the state 
equation as follows [6]: 
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Where x is the state vector of the system, u is the 
control vector and y is the output vector given as: 
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3. Direct field oriented control 
 
 The vector control of induction motor technique 
imposes the orientation of the rotor flux with respect to 
the d–axis, rd r  and 0rq  . In these conditions, 

the model of the induction motor is written by the 
following equations system: 
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 The space angle of the rotor flux is given by the 

following equation: 

 s sdt    ; s r     (3) 

 
With ωr is the slip angular speed: 
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4. Sliding mode control 
 

Sliding mode technique is a type of variable 
structure system (VSS) applied to the non-linear 
systems. The sliding mode control design is to force the 
system state trajectories to the sliding surface S(x) and 
to stay on it by means a control defined by the 
following equation [7]: 

 eq nu u u   (5) 

 

Where ueq and un represent the equivalent control and 

the discontinue control respectively. 
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Here ξ defines the thickness of the boundary layer and 
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To attract the trajectory of the system towards the 
sliding surface in a finite time, un(x) should be chosen 
such that Lyapunov function satisfies the Lyapunov 
stability: 

     0S x S x <  (8) 

 
The general equation to determine the sliding surface 
proposed is as follow [8]: 
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Here, e is the tracking error vector, λ is a positive 
coefficient and n is the system order. 
 
4.1 Design of speed controller 
 

Considering the equation (9) and taken 1n  , the 

sliding surface of speed can be defined as: 

   *S      (10) 
 
By derivation of equation (10) and taken the fifth 

equation of the system (2), we obtain: 
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We take: 
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During the convergence mode, the condition 

    0S S <   must be verified. Therefore, the 

discontinue control action can be given as: 
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To verify the system stability, coefficient isqk  must 

be strictly positive. 
 

4.2 Design of flux controller 
 

Considering the equation (9) and taken 1n  , the 
sliding surface of flux can be defined as: 

 

   *
rd rd rdS      (15) 

 
By derivation of equation (15) and taken the third 

equation of the system (2), we obtain: 
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During the sliding mode and in permanent regime, 

    0rd rdS S   , 0n
sdi  . The equivalent control 

action can be defined as follow: 
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During the convergence mode, the condition 

    0rd rdS S <   must be verified. Therefore, the 

discontinue control action can be given as: 
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To verify the system stability, coefficient isdk  must 

be strictly positive. 
 

4.3 Design of current controllers 

 
Considering the equation (9) and taken 1n  , the 

sliding surface of stator currents can be defined as: 

  sd sd sdS i i i *  (20) 

  sq sq sqS i i i *  (21) 

 
By derivation of equation (20) and (21) and taken 

the first and second equation of the system (2) 
respectively, we obtain: 
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During the sliding mode,     0sd sdS i S i  , 
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control actions can be defined as follow: 
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Therefore, the discontinue control action can be given 
as: 
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To verify the system stability, coefficients vsdk  and 

vsqk  must be strictly positive. 

 
5. Fuzzy logic controller 
 

Figure 1 shows the block diagram of fuzzy logic 
controller system where the variables Kp, Ki and B are 
used to tune the controller. 

 
Fig. 1. Block diagram of fuzzy logic controller 

 
There are two inputs, the error e and the change of 

error ce. The FLC consists of four major blocks, 
fuzzification, knowledge base, inference engine and 
defuzzification. 

 
5.1 Fuzzification 
 

The input variables e and ce are transformed into 
fuzzy variables referred to as linguistic labels. The 
membership functions associated to each label have 
been chosen with triangular shapes. The following 
fuzzy sets are used, NL (Negative Large), NM 
(Negative Medium), NS (Negative Small), ZE (Zero), 
PS (Positive Small), PM (positive Medium), and PL 
(Positive Large). The universe of discourse is set 
between –1 and 1. The membership functions of these 
variables are shown in Figure 2. 
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Fig. 2. Membership functions 

 
5.2 Knowledge base and inference engine 
 

The knowledge base consists of the data base and 
the rule base. The data base provides the information 
which is used to define the linguistic control rules and 
the fuzzy data in the fuzzy logic controller. The rule 
base specifies the control goal actions by means of a set 
of linguistic control rules [9]. The inference engine 
evaluates the set of IF-THEN and executes 7*7 rules as 
shown in Table 1. 



 

 

Table 1 
Fuzzy rules base 
ce/e NL NM NS ZE PS PM PL 

NL NL NL NL NL NM NS ZE 

NM NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 

ZE NL NM NS ZE PS PM PL 

PS NM NS ZE PS PM PL PL 

PM NS ZE PS PM PL PL PL 

PL ZE PS PM PL PL PL PL 

 
5.3 Defuzzification 
 

In this stage, the fuzzy variables are converted into 
crisp variables. There are many defuzzification 
techniques to produce the fuzzy set value for the output 
fuzzy variable. In this paper, the centre of gravity 
defuzzification method is adopted here and the 
inference strategy used in this system is the Mamdani 
algorithm. 
 
6. Speed estimation with Luenberger observer 
 

The Luenberger observer is a deterministic type of 
observer based on a deterministic model of the system 
[10] and does not take account the presence of the 
noises. In this work, the Luenberger observer with 
fuzzy adaptation mechanism is used to estimate the 
rotor speed of induction motor. In general, the 
equations of the LO can be expressed as follow: 

 x = Ax Bu L( y y )

y = Cx
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The symbol ^ denotes estimated value and L  is the 

observer gain matrix. The estimation error of the stator 
current and rotor flux, which is the difference between 
the observer and the model of the motor, is given by 
[11]: 
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We consider the following Lyapunov function 
defined by: 
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Where  is a positive parameter. Its derivative is given 
as: 
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The adaptation law for the estimation of the rotor 
speed can be deduced by the equality between the 
second and third terms of (34): 
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The speed is estimated by a PI controller described 

as: 
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With Kp and Ki are positive constants. The feedback 
gain matrix L  is chosen to ensure the fast and robust 
dynamic performance of the closed loop observer [12, 
13]. 
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With l1, l2, l3 and l4 are given by: 
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Where d is a positive coefficient obtained by pole 
placement approach [14]. In this work, we will replace 
the PI controller in LO adaptation mechanism by a 
fuzzy logic controller as shown in the following figure. 

 

 
Fig. 3. Block diagram of fuzzy Luenberger observer 
 

7. Flux estimation with Kalman filter 
 

The Kalman filter can be used to estimate state and 
parameters for nonlinear systems. In this work, we 
estimate the rotor flux of induction motor by using KF.  



 

Considering the process noise w and the 
measurement noise v, the dynamic behavior of the 
induction motor can be given by the following system 
[15, 16]: 
  x = f x,u + w  (38) 

  y = h x + v  (39) 
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The covariance matrices Q and R of these noises are 

defined respectively as: 

 tQ = cov(w) = E ww ;  tR = cov(v) = E vv  

 

From the induction motor dynamic model, the rotor 

flux can be estimated by the following Kalman filter 

algorithm. 

 

1) Prediction of state variables : 

  k+1|k k|k kx = f x ,uˆ  (40) 

 

2) Estimation of error covariance matrix : 
 t

k+1|k k k|k kP = F P F + Q  (41) 

 
Where: 
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3) Kalman filter gain : 
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4) Estimation of state variables : 
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5) Update of error covariance matrix : 
 k 1|k 1 k 1|k k 1 k k 1|kP P - K H P      (46) 

 

Figure 4 shows the block diagram of the proposed 

control scheme for sensorless sliding mode control for 

field oriented control of induction motor. 

 

 
Fig. 4. Block diagram for sensorless sliding mode control 

of induction motor 

 

8. Simulation results and discussion 
 

A series of simulation tests were carried out on 
sliding mode control of induction motor using 
Luenberger observer combined with Kalman filter. 
Simulations have been realized under the 
Matlab/Simulink environment.  

The parameters of the induction motor are given in 
Appendix. Many cases are considered in the following 
simulation tests. 

 
 

 



 

 

8.1 Operating with no and full load 
 

The rotor flux reference is fixed to 1 Wb and the 
speed reference value is set to 100 rad/s. A load torque 
with 10 N.m is applied at t=1 s and eliminated at t=2 s. 
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Fig. 5. Simulation responses under load torque 

8.2 Operating with reverse speed rotation 
 

In this case, a test of robustness of the control is 
realized by the reverse speed rotation between -100 
rad/s and 100 rad/s. 
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Fig. 6. Simulation responses with reverse speed 



 

8.3 Operating with low speed functioning 
 

In this case, the estimated speed is carried out for 
low speed between -10 rad/s and 10 rad/s and we set 
the rotor flux to 1 Wb. 
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Fig. 7. Simulation responses at low speed 

 

With the simulation results illustrated in figures 5, 6 
and 7, we can notice the good estimated speed tracking 
performance test in different working during 
application of load torque, reverse speed rotation and 
low speed operation in terms of overshoot, static error 
and fast response. The estimation error is near to zero. 
The observed flux is similar to the nominal case during 
application of the load. The stator phase current 
remains sinusoidal and takes appropriate value.  

It is evident from these simulation results that the 
proposed sliding mode controllers of induction motor 
drives present an excellent performance and robustness 
and the new observer gives the better results. 

 

9. Conclusion 
 

In this research, we have investigated the sliding 
mode controllers designed to achieve thrust, flux and 
speed tracking objective under load torque disturbance 
associated to the Luenberger observer and Kalman 
filter for sensorless induction motor drives control. The 
numerical simulation has shown that this nonlinear 
control and combing observation techniques ensure 
good performance and allow a complete decoupling 
between the flux and the torque and guarantee a good 
robustness towards load torque disturbance. 

 
Appendix 
 

Table 2 
Induction motor parameters 
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