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Abstract: Linearized Biogeography-Based Optimization 
(LBBO) is a new version of Biogeography-Based 
Optimization (BBO). BBO is an evolutionary optimization 
algorithm based on the mathematical model of organism 
distribution of Biological systems. BBO permits a 
recombination for the features of candidate solutions 
(habitats) by means of emigration and immigration. This 
paper presents a new migration model based on the sigmoid 
function (S curve) to be one of the nonlinear migration 
models. This paper also presents an analysis of three linear 
and three nonlinear different migration models, including 
the sigmoid model, in LBBO and tests their performance 
with the non-noisy 23 benchmark functions that have been 
accepted for 2005 Congress on Evolutionary Computation 
(CEC). Another test with seven transfer functions is carried 
out and the performance study explores that sigmoid 
migration model has the best performance between the 
different models that will be discussed. The proposed LBBO 
algorithm with the sigmoid migration function (LBBO-S) 
had been tested with 23 benchmarks and then compared 
with the 20 algorithms that have been accepted for 2005 
CEC. The proposed algorithm achieved advanced rank 
between them and it gave better results and lower variance, 
which proved to have competitive performance with state-
of-the-art evolutionary algorithms. An application of the 
proposed sigmoid model is applied here to tune 
Proportional Integral Derivative (PID) controller, which is 
widely used in industrial control systems. Enhancement the 
performance and ensuring the system stability of an 
industrial process by tuning PID controller parameters is 
an important issue. By using Matlab/Simulink and the 
objective function is chosen to be the squared error integral 
criteria, LBBO algorithm with the sigmoid migration model 
is applied to the seven transfer functions, and a comparison 
with Particle Swarm Optimization (PSO), BBO, and 
Modified Biogeography-Based Optimization (MBBO) is 
carried out. The results of the simulation proved that the 
proposed algorithm (LBBO-S) is an effective tuning method 
and has better performance compared with other 
algorithms 
 
Key words: Biogeography-Based Optimization (BBO), 
Evolutionary Algorithm (EA), and Proportional Integral 
Derivative control. 

1. Introduction. 
 Biogeography-Based Optimization (BBO) is a 
relatively newer evolutionary algorithm. Since it was 
introduced by Dan Simon [1] for the first time, many 
papers were presented in that area to improve the BBO 
performance as: Equilibrium Species Counts and 
Migration Model Tradeoffs for BBO [2], BBO with 
Blended Migration for Constrained Optimization 
Problem [3], Linearized BBO with Re-initialization 
and Local Search [4], and a Modified BBO (MBBO) 
[5]. 
 BBO has some problems, for example, although 
most of our real-world problems are non-separable, 
BBO deals with one independent variable at a time so 
it is suitable for separable optimization problems. 
Another version of BBO is introduced by Dan Simon 
[4] which is called Linearized Biogeography-Based 
Optimization (LBBO) applies some modifications to 
the standard BBO as gradient descent, boundary 
search, re-initialization, and restart. A new migration 
model in LBBO will be introduced in this paper which 
is called sigmoid migration model, and a comparison 
among different migration models will be carried out 
to examine their performance using the non-noisy 23 
benchmarks that have been used in 2005 congress and 
then it is tested with a set of transfer functions of 
different orders. 
 As an application of the proposed sigmoid 
migration model we apply it to PID parameters tuning 
problems, which finding the PID control parameters’ 
optimum value is a very difficult task. Most 
conventional PID tuning techniques require a 
considerable technical experience to apply those 
formulas, so PID controller parameters are rarely 
tuned optimally due to the conventional techniques 
difficulties. In the past, Ziegler-Nichols rules were 
used based on open and closed loop tests [6, 7]. Now, 
intelligent control replaces the conventional 
techniques, so it became a focus of research such as 
Artificial Neural Network (ANN) controller, fuzzy 



 

 

controller and evolutionary algorithms based 
controller [8-11]. 
 Many optimization techniques based on the 
Evolutionary Algorithm (EA) principle have been 
used for solving a variety of engineering problems as 
Ant Colony Optimization (ACO), Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA), 
Bacterial Foraging scheme, and fish swarm Algorithm 
[12-18]. 
 The rest of this paper will be organized as follows: 
Section 2 reviews Biogeography-Based Optimization. 
Section3 presents the Linearized Biogeography-Based 
Optimization. In Section 4 explores six different 
migration models and compares between them. 
Section 5 compares our proposed algorithm with the 
algorithms that have been accepted for CEC2005. 
Section 6 application and comparison of PSO, BBO, 
MBBO, and LBBO will be carried out and discussed. 
Finally, the conclusions are stated in section 7. 
 
2. Biogeography-Based Optimization. 
    BBO is based on the science of biogeography. 
Biogeography is a science that deals with the 
migration of plants and animals between their habitats 
(islands). Every possible solution in BBO is presented 
by a habitat. Each habitat has a Habitat Suitability 
Index (HSI) which it is considered a measure of the 
solution fitness. A good solution which has high HSI 
has a good performance in the optimization process, 
while a habitat with low HSI has a bad performance. 
Any solution yk has a number of features called a 
suitability index variable (SIV) such as rainfall, 
topography, diversity of vegetation, temperature, etc. 
The problem dimension determines the number of SIV 
in each solution yk [19]. 
 The offspring generation in BBO is obtained 
through two main operations. Firstly, the 
recombination between the solutions in BBO is done 
by immigration and emigration of the solution features 
between the different habitats. As an island tends to 
have high species’ count, the species tend to leave the 
island to share their good features with other habitats. 
So islands with a good HSI will have high emigration 
rate μk and low immigration rate λk. A small species 
count will be on a habitat with low HSI, hence, low 
emigration rates μk and high immigration rates λk 
[20]. The second operation is the mutation process 
which is done with a manner like mutation in Genetic 
Algorithm. 
2.1. Migration 
    As shown in algorithm 1, the immigration rate λk is 
used probabilistically to decide whether the solution 
will immigrate or not. 

Algorithm 1. r is a random number ~  U(0,1), 

λk∈(0,1), and yk,s is the kth candidate solution and sth 

solution features, s  ∈  (1,n) where n is the problem 

dimension 

   If r < λk 

            Immigrate to yk,s  (i.e.  yk,s                   yj,s) 

     else 

             Do not immigrate to yk,s 

    End if 

2.2. Mutation 
   Mutation is done for each variable like mutation in 
GA as described in algorithm 2. 

Algorithm 2.   r is a random number ~  U(0,1), 

probability of mutation pm∈(0,1), Ls and Us is the 

minimum and maximum values of the variables 

    If  r < pm 

       yk,s                     U(Ls,Us) 

     End if 

  
3. Linearized Biogeography-Based Optimization 

(LBBO) [4]. 
   Due to limitations of BBO as it changes with one 
variable at a time in each solution, and it has a 
weakness of its local search ability, so a gradient 
descent is being used in LBBO. Several modifications 
to the original BBO as Migration equation, boundary 
search, re-initialization, and restart will be discussed. 
3.1. LBBO Migration 
   As in original BBO, the immigration rate λk is used 
probabilistically to decide whether a solution zk to 
immigrate or not. The solution zk is linearly combined 
with the k emigrating solutions such that zk moves 
towards each emigrating solution yj with an amount 
that is proportional to its emigration rate μj as stated in 
equation 1: 
  zk              zk + μj (yj - zk)                                        (1) 

3.2. Boundary Search 
   A boundary search is applied as there are many 

optimization problems having their solution on the 

boundary of the search space. If the best individual in 

the population is within a certain threshold of the 

search space boundary, then it is moved to the search 

space boundary. 
3.3. Re-initialization 
   The Re-initialization process is performed every Nr 
(Nr is set typically equal to 1000) function 
evaluations. A new random individuals N are 
generated, keeping the best two individuals. This 
gives us a temporary population size of 2N+2. The 
best N individuals are then selected out of these 2N+2 
individuals for the next generation. 
3.4. Restart 
   If there is no improving in the population, a 
randomly-generated population will be started, and 
the entire population is replaced by the new randomly-
generated population. The LBBO flow chart is shown 
in Figure 1. As with standard BBO, elitism is typically 
used where the best two solutions are kept from a 
generation to the next. 
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Fig. 1. Linearized Biogeography-Based Optimization Flow 
Chart. 
 

4. Migration Models. 
     There are various mathematical migration 

equations according to the different mathematical 

models of the biogeography theory [21]. We use here 

6 migration models to test the effect of migration 

curve variation on the optimization performance. 

Three functions of them are linear equations as shown 

in Figure 2, while the other three functions are 

nonlinear. Ko is the number of species at which the 

equilibrium will occur, E is the maximum possible 

emigration rate, and I is the maximum possible 

immigration rate. E and I do not have a remarkable 

influence on optimization performance [22], so we 

add both of E and I to be equal one. 

 



 

 

4.1. Linear models 
   The three linear models stated below do not exist 
actually in biogeography, but they are used due to their 
simplicity compared with the nonlinear equations. The 
three models are: Linear immigration rate and 
constant emigration rate as shown in Figure 2a, 
constant immigration and linear emigration model as 
shown in Figure 2b, and both of immigration and 
emigration are linear as shown in Figure 2c. 

 Model 1: Linear immigration and constant 

emigration model 

λk = I (1 −
k

n
)   ,   μk =

E

2
                                 (2) 

   From equation 2, we can notice that the emigration 

rate (µk) is independent of number of species k as it is 

constant, while the immigration rate (λk) is changing 

linearly with the change of species number; if the 

species number k increases, the λk will be decreased.  

 Model 2: Constant immigration and linear 

emigration model 

𝜆𝑘 =
𝐼

2
   ,    𝜇𝑘 =

𝑘

𝑛
 𝐸                                               (3) 

   Equation 3 states that the λk is constant and equal to 

half of I, while the µk is changing linearly with the 

change of species number; if the species number k 

increases, the µk will be increased. 

 Model 3: Linear immigration and emigration 

models 

𝜆𝑘 = 𝐼 (1 −
𝑘

𝑛
)    ,     𝜇𝑘 =

𝑘

𝑛
 𝐸                               (4) 

   From equation 4, both the λk and µk are changing 

linearly with the change of species number; if the 

species number k increases, the habitat will be 

crowded so λk will be decreased, while the µk will be 

increased as the species will move to another habitat. 

Equation 5 was used in the original BBO [1]. 

 
Fig. 2. The linear migration models, (a) Linear immigration 
and constant emigration, (b) Constant immigration and 
linear emigration, and (c) Linear immigration and 
emigration. 

 
4.2. Nonlinear models 
   The linear models are simpler than the process of 

migration because a simple change in a part of the 
system produces complicated changes in the entire 
system [22]. So three nonlinear migration curves are 
introduced here, as a quadratic, a sinusoidal, and a 
sigmoid migration model. The three nonlinear models 
are shown in Figure 3. 

 Model 4: Quadratic immigration and 

emigration models 

𝜆𝑘 = 𝐼(1 −
𝑘

𝑛
)2  ,    𝜇𝑘 = (

𝑘

𝑛
)2 𝐸                              (5) 

   From equation 5, both the λk and µk are changing in 

a quadratic manner, as shown in Figure 3a, with the 

change of species number; if the island has a small 

number of species count, the λk will be rapidly 

decreased, while the µk will be slowly increased, but 

if the habitat tends to be filled with species, the λk will 

be slowly decreased while the µk will be rapidly 

increased. 

 Model 5: Sinusoidal immigration and 

emigration models 

𝜆𝑘 =
𝐼

2
(cos (

𝑘𝜋

𝑛
) + 1) , 𝜇𝑘 =

𝐸

2
(cos (

𝑘𝜋

𝑛
+ 𝜋) + 1) 

(6) 

   Equation 6 states that both the λk and µk are 

sinusoidal functions of the change of species number 

as shown in Figure 3b; if the habitat has a small or a 

large number of species count, both of the two rates 

will be slowly changed, but for a moderate number of 

species, both of the two rates will be rapidly changed. 

 Model 6: A sigmoid immigration and 

emigration models 

𝜆𝑘 = 𝐼 (1 −
1

1+𝑒
−𝑎(

2𝑘
𝑛

−1)
 )   ,   𝜇𝑘 =

𝐸

1−𝑒
−𝑎(

2𝑘
𝑛

−1)
                                                                    

(7) 

   From equation 7, both the λk and µk are sigmoid 

functions of the change of species number which it has 

S shape so it is sometimes called S curve, shown in 

Figure 3c. For the immigration equation, at any new 

habitat there is a risk from immigration to that place. 

This may be due to lack of services (i.e. lower Habitat 

Suitability Variables (HSV)), so the immigration is 

increased slowly, and after reaching a certain value of 

species number, the HSV will be increased and it will 

encourage more species to immigrate to that island, 

and hence the λk will be increased rapidly and linearly 

for intermittent number of species. Finally when the 

island tends to be filled with species, the λk will be 

increased slowly. The emigration curve is on the 

contrary of the λk behavior. The constant (a) determine 

the slope and stiffness of the S curve shape; we put its 

value here to be equal 6. 
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Fig. 3. The nonlinear migration models, (a) Quadratic 

immigration and emigration, (b) Sinusoidal immigration 

and emigration, and (c) Sigmoid immigration and 

emigration. 

5. Migration models’ comparison 
   This section consists of two parts. The first part 
deals with testing the six models with the 23 non-noisy 
benchmarks that have been introduced in 2005 CEC. 
The second part deals with testing the six models with 
seven transfer functions of different orders. 
   We compare the performance of 23 non-noisy 

functions that have been accepted for the 2005 

Congress of Evolutionary Computation (F1-F25, 

excluding F4 and F17) as F4 and F17 are noisy functions 

[4]. The following tables are arranged according to the 

average value of the ranks in the 23 benchmark 

functions. Table 1 and table 2 are built on the rank of 

the average values obtained of 25 runs and minimum 

(best) result of the 25 runs, respectively. The number 

beside the rounded parentheses is the optimized 

function value, while the number inside the rounded 

parentheses is the model rank for that function. 

   From Table 1, based on the average values obtained 

from 25 runs, the best model is model 2, while the 

worst model is model 1. So we can get that the 

emigration rate (µk) has a higher impact on the 

optimization performance than the immigration rate 

(λk). Model 5 (sinusoidal) and model 6 (sigmoid) are 

in the second rank. From Table 2, based on the best 

value obtained from 25 runs, the best model is model 

6 (sigmoid), and model 5 (sinusoidal) is in the second 

rank. By taking the summation of the average ranks of 

Table 1 and Table 2, we get that the best one is the 

sigmoid function, then the sinusoidal and model 2 is 

in the second place, while model 1 has the worst 

performance

 

Table 1 
Comparison between the linear and nonlinear models with 23 benchmark functions after 25 Monte Carlo simulations, 

based on the average values. 

Models: Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

F1 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F2 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F3 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F5 0.0035 (3) 0.0035 (3) 0.0033 (2) 0.0055 (5) 0.0056 (6) 0.002 (1) 

F6 6.88E-04 (6) 4.03E-05 (2) 6.74E-05 (3) 1.25E-06 (1) 2.40E-04 (4) 4.30E-04 (5) 

F7 0.0439 (3) 0.16 (6) 0.1136 (5) 0.091 (4) 0.0337 (2) 0.0108 (1) 

F8 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 

F9 8.88E-12 (2) 1.06E-11 (3) 1.44E-11 (5) 1.86E-11 (6) 7.63E-12 (1) 1.27E-11 (4) 

F10 29.0698 (6) 14.208 (3) 12.4569 (1) 14.7254 (5) 13.4518 (2) 14.3672 (4) 

F11 5.6986 (6) 5.194 (3) 5.142 (2) 4.9995 (1) 5.3579 (5) 5.2768 (4) 

F12 0.0263 (6) 0.0102 (4) 6.75E-05 (1) 0.0228 (5) 8.32E-04 (2) 0.0067 (3) 

F13 0.3692 (1) 0.4147 (3) 0.4142 (2) 0.4812 (6) 0.4283 (4) 0.4348 (5) 

F14 3.4312 (6) 3.4108 (5) 3.3241 (4) 3.2288 (1) 3.2822 (3) 3.2493 (2) 

F15 1.57E-12 (3) 2.14E-12 (4) 2.34E-12 (6) 1.29E-12 (2) 2.21E-12 (5) 1.28E-12 (1) 

F16 155.4473 (6) 119.3470(1) 124.4194 (2) 135.4592 (5) 129.7935 (3) 135.1532 (4) 

F18 707.7532 (2) 640.0447(1) 729.2908 (3) 762.3479 (6) 751.1656 (4) 758.4768 (5) 

F19 779.4607 (6) 666.4736(1) 747.3031 (3) 754.1724 (4) 720.6033 (2) 763.2289 (5) 
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F20 760.5281 (6) 743.2118(4) 644.2817 (1) 711.8090 (2) 746.3468 (5) 715.2827 (3) 

F21 436.1320 (1) 476.5827(3) 497.6988 (4) 503.1151 (5) 472.7876 (2) 530.2372 (6) 

F22 794.6820 (6) 728.0441(4) 731.6523 (5) 727.1864 (3) 687.6781 (1) 715.6253 (2) 

F23 629.5909 (5) 600.5325(3) 641.7982 (6) 613.4627 (4) 597.0560 (2) 590.8697 (1) 

F24 219.9607 (6) 204.5532(2) 204.7691 (3) 205.6327 (4) 206.2029 (5) 204.4714 (1) 

F25 215.5818 (6) 203.4514(1) 207.3442 (5) 205.1644 (2) 206.2147 (3) 207.1417 (4) 

Average rank 3.91304348 2.6086957 2.91304348 3.26086957 2.82608696 2.82608696 

Table 2 
Comparison between the linear and nonlinear models with 23 benchmark functions after 25 Monte Carlo simulations, 

based on the best values. 

Models: Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

F1 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F2 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F3 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

F5 5.84E-07 (1) 6.57E-07 (4) 7.36E-07 (6) 6.74E-07 (5) 5.89E-07 (2) 6.39E-07 (3) 

F6 5.17E-10 (4) 6.35E-10 (5) 2.12E-10 (1) 2.55E-10 (2) 8.54E-10 (6) 3.34E-10 (3) 

F7 2.51E-09 (6) 3.88E-10 (4) 9.58E-10 (5) 3.63E-10 (3) 1.62E-10 (1) 1.79E-10 (2) 

F8 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 

F9 5.68E-13 (2) 9.09E-13 (3) 1.25E-12 (4) 2.10E-12 (6) 3.41E-13 (1) 1.65E-12 (5) 

F10 7.9597 (6) 5.9698 (4) 3.9798 (2) 5.9698 (4) 2.9849 (1) 3.9798 (2) 

F11 3.182 (3) 3.3354 (4) 2.7917 (2) 1.7002 (1) 3.5688 (5) 3.8688 (6) 

F12 6.39E-10 (6) 2.77E-10 (3) 2.17E-10 (2) 4.65E-10 (5) 3.81E-10 (4) 1.76E-10 (1) 

F13 0.1814 (5) 0.1595 (4) 0.1102 (2) 0.2299 (6) 0.09 (1) 0.1401 (3) 

F14 2.6399 (6) 2.4264 (5) 2.0457 (1) 2.2926 (4) 2.1506 (2) 2.177 (3) 

F15 4.26E-14 (3) 2.84E-14 (2) 5.68E-14 (5) 8.53E-14 (6) 4.26E-14 (3) 0 (1) 

F16 130.7916 (6) 107.5881(5) 91.4026 (2) 105.6195 (4) 103.9375 (3) 77.9622 (1) 

F18 359.4750 (3) 300 (1) 425.1664 (4) 353.8716 (2) 489.3521 (6) 463.3241 (5) 

F19 357.8895 (2) 357.2726(1) 383.6435 (3) 390.3390 (4) 399.5492 (5) 433.3985 (6) 

F20 423.1574 (6) 397.9806(5) 353.8609 (3) 300 (1) 357.8806 (4) 300 (1) 

F21 200 (1) 200 (1) 200 (1) 300 (6) 200 (1) 200 (1) 

F22 772.540 (6) 300 (1) 300 (1) 300 (1) 300 (1) 300  (1) 

F23 553.9921 (5) 554.0070(6) 553.9470 (4) 478.0971 (3) 463.0759 (2) 425.1725 (1) 

F24 204.9248 (6) 200.7292(4) 200.5771 (3) 200.3649 (1) 200.8344 (5) 200.5497 (2) 

F25 202.9860 (6) 200.4006(1) 201.0543 (4) 200.9487 (2) 201.6704 (5) 201.0236 (3) 

Average rank 3.78260870 2.9130435 2.56521739 3.04347826 2.69565217 2.34782609 

   Table 3 shows the seven transfer functions (plants) 

which will be used in the second test for the six 

migration models. We change only the migration 

models, while all other LBBO parameters will not be 



 

changed. The selected objective function to be 

minimized is the Integral of Square Error (ISE) for a 

step response of a process which is controlled by a PID 

controller as shown in Figure 4, by tuning the 

proportional gain (Kp), integral gain (Ki), and 

differential gain (Kd) using MATLAB/SIMULINK. 

The PID controller transfer function is given by 

equation 8 as: 

𝐺𝑐(𝑆) =
𝑈(𝑆)

𝐸(𝑆)
= 𝐾𝑝 +

𝐾𝑖

𝑆
+ 𝐾𝑑𝑆                                         (8) 

PID Plant
Input

Error 

E(s)

Controller 

output U(s) Output

 

Fig. 4: Block diagram of the seven tested transfer 

functions  

Table 3 
Transfer functions that will be used in the second test 

Plant Number Plants’ transfer functions 

1 
5

S4 + 3S3 + 7S2 + 5S
 

2 
S + 5

S4 + 17S3 + 60S2 + 10S
 

3 
300(S + 100)

S(S + 10)(S + 40)
 

4 
6

S4 + 3S3 + 4S2 + 3S + 1
 

5 
250S + 500

S3 + 12S2 + 100S + 10
 

6 
S + 5

S4 + 17S3 + 60S2 + 5S + 5
 

7 
1

S2 + 0.1S + 1
 

 

 The current comparison between the six migration 

models is split into two main parts as shown in Table 

4 and Table 5. From Table 4 we see that model 3 is the 

best model compared to the other two models for 4 

plants (plants 2, 3, 5, and 6) of the seven transfer 

functions, but model 2 performs the best for two 

transfer functions (plants 1, 4), and model 1 is the best 

one only in plant 7 . If we compare between model 1 

vs. model 2, model 2 vs. model 3, and model 1 vs. 

model 3, we can notice that emigration rate has more 

effect than immigration rate on LBBO performance.  

Table 5 summarizes the results of model 3, as it was 

the best model of the linear migration models, and the 

three nonlinear models for the seven tested transfer 

functions. We can notice that model 6 performs better 

than the other models for 4 transfer functions (plants 

2, 4, 5, 7), and model 3 performs the best in two 

transfer functions (plants 3, 6), while model 4 is the 

best one only in plant 1. If we compare the six models 

one by one for the seven transfer functions by giving 

a high score to the best optimized function value and 

a low score for the worst, we can find that model 6 is 

the best and model 5 is in the second place, while 

model 1 is the worst one at all. The results show that 

sigmoid model was better than the other models and 

has the best performance on optimization functions. 

 

Table 4 
PID tuned parameters and the optimization function’s value 

for the linear models (best results are shown in boldface) 
plant 1 Model 1 Model 2 Model 3 

Kp 1.517460827 1.518880692 1.437167572 

Ki 0.005972866 0.01145678 0.008686865 

Kd 1.358622967 1.297813451 1.162700932 

ISE 1.305258063 1.305009207 1.305122625 

plant 2 Model 1 Model 2 Model 3 

Kp 30 30 30 

Ki 0 0 0 

Kd 19.20623701 19.20542551 19.20623226 

ISE 0.653970518 0.653970936 0.653970518 

plant 3 Model 1 Model 2 Model 3 

Kp 21.27602538 24.70688425 21.20804084 

Ki 15.46202525 1.895481651 2.24041869 

Kd 0.26229168 0.240983173 0.186195418 

ISE 0.012093108 0.011603301 0.011443951 

plant 4 Model 1 Model 2 Model 3 

Kp 0.31324168 0.110093094 0.340474119 

Ki 0.270471295 0.233891592 0.099351231 

Kd 0.576890196 1.942287867 0.526741553 

ISE 1.925869526 1.925358516 1.925384631 

plant 5 Model 1 Model 2 Model 3 

Kp 8 7.851594128 10.00850851 

Ki 4 4.355789208 26.59184716 

Kd 0.129801341 0.13130008 0.192964879 

ISE 0.023948409 0.023940106 0.023938111 

plant 6 Model 1 Model 2 Model 3 

Kp 15 15 15 

Ki 0.792527769 0.819524869 0.649174145 

Kd 14.12555978 13.86057469 13.72593001 

ISE 0.915350976 0.915481103 0.91374047 

plant 7 Model 1 Model 2 Model 3 

Kp 10 10 10 

Ki 2.12734617 2.414544195 2.414646718 

Kd 3.150329035 2.87137054 2.879315506 

ISE 0.302194136 0.302371172 0.303081096 

 

Table 5 

PID tuned parameters and the value of the optimization 

function for the model 3 and the nonlinear models (best 

results are shown in boldface) 

plant 1 Model 3 Model 4 Model 5 Model 6 



 

 

Kp 1.437167 1.538309 1.510413 1.587400 

Ki 0.008686 0.012148 0.004504 0.005263 

Kd 1.162700 1.428397 1.163757 1.312629 

ISE 1.305122 1.305094 1.305219 1.305162 

plant 2 Model 3 Model 4 Model 5 Model 6 

Kp 30 30 30 30 

Ki 0 0 0 0 

Kd 19.20623 19.20762 19.20766 19.20810 

ISE 0.653974 0.653973 0.653971 0.653969 

plant 3 Model 3 Model 4 Model 5 Model 6 

Kp 21.20804 21.92717 21.26515 22.65442 

Ki 2.240418 1.158579 0.480784 1.865495 

Kd 0.186195 0.224218 0.194982 0.234753 

ISE 0.011443 0.011559 0.011471 0.011610 

plant 4 Model 3 Model 4 Model 5 Model 6 

Kp 0.340474 0.329289 0.131805 0.060414 

Ki 0.099351 0.154206 0.232231 0.090207 

Kd 0.526741 0.528091 0.905909 3.139490 

ISE 1.925384 1.925350 1.925338 1.925336 

plant 5 Model 3 Model 4 Model 5 Model 6 

Kp 10.00850 10 8.233459 9.989182 

Ki 26.59184 24.72926 2.925314 8.430907 

Kd 0.192964 0.185724 0.127003 0.154204 

ISE 0.023938 0.023938 0.023933 0.023921 

plant 6 Model 3 Model 4 Model 5 Model 6 

Kp 15 15 15 15 

Ki 0.649174 0.819523 0.622282 0.792093 

Kd 13.72593 13.86057 13.83564 14.12654 

ISE 0.913740 0.915481 0.913765 0.915352 

plant 7 Model 3 Model 4 Model 5 Model 6 

Kp 10 10 9.922937 10 

Ki 2.414646 2.416684 2.461179 2.140948 

Kd 2.879315 2.883789 3.118592 3.150024 

ISE 0.303081 0.303041 0.303043 0.302162 

 

   We compared the performance of 23 non-noisy 

functions that have been accepted for the 2005 CEC 

(F1-F25, excluding F4 and F17) with LBBO-S. The 

algorithms that have been introduced in CEC 2005 (in 

alphabetical order) were: 

(ADE) adaptive differential evolution algorithm, 

(BLX-GL50) two-sex genetic algorithm with unique 

crossover operators, (BLX-MA) adaptive memetic 

algorithm, (CMA-GA-PSO) hybrid covariance matrix 

adaptation, genetic algorithm, and particle swarm 

optimization, (DE) differential evolution, (CoEVO) 

co-evolutionary algorithm Differential evolution, 

(DMS-L-PSO) multi-swarm particle swarm 

optimization, (EDA) estimation of distribution 

algorithm, (EvLib) self-adaptive algorithm that 

combines a variety of EAs, (FEA) flexible 

evolutionary algorithm, (G-CMA-ES) covariance 

matrix adaptation evolution strategy, (IPOP-

CMA-ES) variant of the CMA-ES that uses a 

saying population size, (K-PCX) amalgamation 

of various EA strategies, (L-CMA-ES) another 

covariance matrix adaptation evolution strategy, 

(L-SaDE) adaptive differential evolution 

algorithm, (PLES) parameter-less evolution 

strategy, (PSO-CMA-ES) hybrid particle swarm 

optimization, covariance matrix adaptation, and 

evolution strategy, (RMA) region-based memetic 

algorithm, (SPC-PNX) continuous genetic 

algorithm,(STS) combination of scatter search 

and tabu search 

   Some of these algorithms do not include data for all 

of the tested benchmark functions, so we record 

results that are reported in the previous algorithms. 

We will not include the algorithms that do not achieve 

any success in a benchmark function. F1-F7, F9-F12 and 

F15 have known solutions, and F16-F25 are unsolved. If 

we get a solution within 10-6 of the global minimum, 

functions F1-F5will be considered to be solved, while 

F6-F7, F9-F12, and F15 are considered to be solved if we 

get 10-2 of the global minimum. 

   The following section split the 23 benchmark 

functions (F1-F25, excluding F4 and F17) to 3 subsets: 

solved unimodal functions (F1-F3, and F5-F6), solved 

multimodal functions (F7, F9-F12, and F15) and 

unsolved multimodal functions (F8, F13-F14, F16, and 

F18-F25). For the first and second subsets, we order the 

performance of the algorithms according to the rate of 

success, i.e. we will rank the results according to 

number of success; the highest percentage of success 

will be at the top, while the 3rd subset will be arranged 

according to the average of their ranks. 

   Table 6 shows the 10-dimentional unimodal 

functions. Success rate shows the percentage of 

success achieved by getting the global minimum 

within certain accuracy. The number in the rounded 

parentheses is the number of success runs of 25 

independent runs, while the number beside the 

rounded parentheses shows the average number of 

function evaluation divided by the success rate for that 

benchmark divided by the best CEC 2005 algorithm. 

For example, K-PCX is the best algorithm for function 

F1 as it solved it 25 out of 25 with an average number 

of function evaluations equal to 1000, also LBBO-S 

solved it 25 out of 25 independent runs with an 

average number of function evaluations equal to 1700, 

so the number outside the rounded parentheses is 

1700/(
25
25

)

1000/(
25
25

)
= 1.7 

   For LBBO-S, functions F2 and F3 are lower than one, 



 

which means that these algorithms have better 

performance than the best one of 2005 CEC. If an 

algorithm does not achieve any success at all, the 

number inside the square brackets shows its rank 

based on the average values. 

 

Table 6  
Comparison between LBBO-S (shown in bold-italic font) and 16 other algorithms on 5 ten-dimensional unimodal 

benchmark functions after 25 runs, all the algorithms are sorted from best to worst based on the success rate. 

 No. of solved 

functions 

Success 

rate (%) 

F1 F2 F3 F5 F6 

G-CMA-ES 5 100 1.6 (25) 1 (25) 1 (25) 1 (25) 1.5 (25) 

L-CMA-ES 5 100 1.7 (25) 1.7 (25) 1.1 (25) 1 (25) 1.3 (25) 

CMA-GA-PSO 5 100 1.7 (25) 1.1 (25) 1.2 (25) 1.2 (25) 1.5 (25) 

EDA 5 96 10 (25) 10 (25) 2.5 (23) 4.2 (25) 9.6 (22) 

DMS-L-PSO 5 96 12 (25) 12 (25) 1.8 (25) 18.6 (20) 7.7 (25) 

DE 5 95 29 (25) 29 (25) 18.5 (20) 6.9 (25) 6.6 (24) 

LBBO-S 5 83 1.7 (25) 0.9 (25) 0.4 (25) 68.4 (4) 1.3 (25) 

BLX-GL50 4 80 19 (25) 19 (25) [12] 4.7 (25) 7.3 (25) 

SPC-PNX 3 60 6.7 (25) 6.7 (25) [15] 6.8 (25) [13] 

CoEVO 3 60 23 (25) 23 (25) 6.8 (25) [13] [12] 

PSO-CMS-ES 3 60 21.4 (25) 21.4 (25) [11] [16] 11.4 (25) 

L-SaDE 5 59 10 (25) 10 (25) 8 (16) [11] 6.8 (25) 

K-PCX 3 58 1 (25) 1 (25) [10] [15] 1 (22) 

EvLib 3 53 6.7 (25) 6.7 (25) [13] [14] 11.5 (16) 

PLES 3 41 6 (25) 6 (25) [16] 166 (1) [14] 

BLX-MA 2 40 12 (25) 12 (25) [14] [12] [11] 

FEA 2 38 18.5 (25) 18.5 (23) [17] [17] [15] 

Table 7 
Comparison between LBBO-S (shown in bold-italic font) and 16 other algorithms on 6 ten-dimensional multimodal 

benchmark functions after 25 runs, all the algorithms are sorted from best to worst based on the success rate. 

 No. of solved 

functions 

Success 

rate (%) 

F7 F9 F10 F11 F12 F15 

CMA-GA-PSO 6 96 1 (25) 2.6 (25) 1.1 (24) 0.1 (25) 2.1 (25) 2.8 (20) 

PSO-CMS-ES 6 75 5.1 (25) 0.4 (25) 0.2 (25) 0.4 (10) 3.4 (25) 27.2 (2) 

G-CMA-ES 5 63 1 (25) 4.5 (19) 1.2 (23) 1.4 (6) 4 (22) [10] 

LBBO-S 4 57 29.7 (11) 0.21 (25) [14] [13] 3.64 (24) 0.56 (25) 

L-SaDE 4 53 36.2 (6) 1 (25) [6] [12] 3.9 (25) 1 (23) 

DMS-L-PSO 4 47 126 (4) 2.1 (25) [5] [11] 6.6 (19) 1.7 (22) 

K-PCX 3 40 [14] 2.9 (24) 1 (22) [17] 1 (14) [17] 

EvLib 3 33 [17] 0.1 (25) [15] [15] 35.3 (5) 1.7 (19) 

DE 5 30 255 (2) 10.6 (11) [19] 1 (12) 8.8 (19) 75.8 (1) 

FEA 2 28 [15] 0.5 (25) [16] [18] [16] 0.4 (17) 

L-CMA-ES 2 25 1.2 (25) [17] [20] [8] 11.6 (12) [11] 

BLX-GL50 3 17 12.3 (9) 10 (3) [6] [7] 12.1 (13) [16] 

BLX-MA 2 15 [13] 5.7 (18) [9] [9] [14] 8.5 (5) 

EDA 3 9 404 (1) [14] [8] 2.9 (3) 4.3 (10) [14] 

SPC-PNX 2 1 383 (1) [13] [10] 5.8 (1) [15] [12] 

PLES 1 1 [16] [15] [17] [19] 182 (1) [15] 

CoEVO 0 0 [12] [16] [18] [18] [17] [13] 

Table 8  
Comparison between LBBO-S (shown in bold-italic font) and 14 other algorithms on 12 ten-dimensional unsolved 

multimodal functions after 25 runs, all the algorithms are sorted from best to worst based on the average values. 

 Av. Rank F8 F13 F14 F16 F18 F19 F20 F21 F22 F23 F24 F25 

G-CMA-ES 1.92 [1]  [2]  [4] [3] [1] [2] [1] [2] [1] [1] [1] [4] 



 

 

LBBO-S 4.17 [1] [1] [1] [9] [2] [1] [2] [11] [2] [12] [7] [1] 

IPOP-CMA-ES 4.50 [9]  [7]  [2] [1] [9] [9] [8] [2] [3] [1] [1] [2] 

RMA 5.67 [10] [6] [7] [7] [8] [6] [12] [2] [4] [1] [1] [4] 

G-CMA-ES 5.92 [5]  [5]  [8] [2] [9] [9] [8] [2] [5] [1] [13] [4] 

EDA 6.08 [10]  [15]  [12] [11] [4] [4] [4] [2] [7] [1] [1] [2] 

BLX-MA 6.58 [8]  [9]  [4] [14] [5] [5] [5] [2] [10] [8] [1] [8] 

L-CMA-ES 7.00 [1]  [4]  [15] [4] [6] [8] [6] [1] [5] [7] [15] [12] 

STS 7.25 [7]  [3] [3] [10] [7] [6] [7] [2] [12] [9] [11] N/A 

SPC-PNX 7.58 [10]  [8]  [10] [6] [12] [12] [11] [2] [9] [1] [1] [9] 

BLX-GL50 8.33 [15]  [11]  [4] [8] [9] [9] [8] [2] [8] [10] [12] [4] 

K-PCX 8.58 [1]  [14]  [14] [5] [3] [3] [3] [15] [15] [13] [8] [9] 

DE 11.67 [10]  [10]  [12] [13] [13] [13] [13] [12] [11] [11] [9] [13] 

FEA 11.92 [6]  [12]  [9] [12] [14] [14] [14] [14] [13] [14] [10] [11] 

CoEVO 13.67 [10]  [13]  [11] [15] [15] [15] [15] [13] [14] [15] [14] [14] 

From tables 6, 7, and 8 we can conclude the following 

points: 

1) LBBO-S has a moderate performance for the 

solved unimodal functions as it ranked 7th out of 

17 algorithms. 

2) A better performance is obtained in the solved 

multimodal functions, as LBBO-S ranked 4th out 

of 17 algorithms. 

3) LBBO-S has its best performance for the unsolved 

multimodal performance as it ranked 2nd out of 15 

algorithms. 

4) Our proposed algorithm is more suitable for the 

multimodal problems, especially the difficult high 

dimension multimodal functions. 

5) LBBO-S is better than the best algorithm for 

functions F2 and F3 in the solved unimodal 

functions, F9 and F15 in the solved multimodal 

functions and it was the best algorithm for F8, F13, 

F14, F19, and F25 in the unsolved multimodal 

functions. It is ranked 2nd in F18, F20, and F22. 

 

6. Application, Simulation, and Discussion 

   The aim of this part is to apply the LBBO algorithm 

with sigmoid migration (LBBO-S) and make a 

comparison among its performance with PSO, BBO, 

and MBBO. The selected objective function is ISE for 

a step response which is controlled by a PID controller 

for the seven plants stated before.  

Table 9 
PID tuned parameters’ values obtained by LBBO-S, MBBO, BBO and PSO 

Plant No. LBBO-S MBBO BBO PSO 

Kp Ki Kd Kp Ki Kd Kp Ki Kd Kp Ki Kd 

1 1.587 0.005 1.313 1.38 0.005 1.04 1.003 0 1.00 0.56 0 0.62 

2 30 0 19.208 29.68 0 19.07 25.85 0 12.65 4.36 0 14.41 

3 22.654 1.865 0.235 24.20 0.99 1.00 24.99 0.286 10.8 0.17 0 0.03 

4 0.06 0.09 3.139 0.259 0.11 0.40 0.21 0.1 0.4 0.1 0.48 15.92 

5 9.989 8.43 0.154 4.23 3.34 0.129 0.99 1.03 0 0.44 0.18 0.21 

6 15 0.792 14.126 14.99 0.82 13.98 13.98 1.00 13.85 3.78 0.12 13.00 

7 10 2.14 3.15 6.05 1.11 5.02 4.01 0.97 3.00 0.72 1.11 3.58 

Table 10 
Parameters’ values for LBBO-S, MBBO, BBO, and PSO 
Parameter LBBO MBBO BBO Parameter PSO 

No. of 

Islands 

50 50 50 S: Birds’ 

no. in the 

Population 

100 

No. of 

Generation 

25 40 50 Nc: No. of 

Generation 

100 

No. of 

SIVs per 

Island 

3 3 3 n: Search 

Space’s 

Dimension  

3 

Mutation 

Probability 

0.005 0.005 0.005 C2: PSO 

probability 

0.12 

Table 11 
The optimized functions’ values obtained by LBBO-S, 

MBBO, BBO, and PSO (best results is in boldface). 

Plant 

No. 

Minimum Cost Function 

LBBO-S MBBO BBO PSO 

1 1.305 1.360 1.475 1.952 

2 0.654 0.664 0.751 2.240 

3 0.012 0.021 0.216 0.147 

4 1.925 2.031 2.150 21.760 

5 0.024 0.031 0.066 0.370 

6 0.915 0.918 0.951 2.560 

7 0.302 0.512 0.537 1.533 



 

 

 
Fig. 5. Step response of the tested plants, (a) plant no. 1, (b) plant no. 2, (c) plant no. 3, and (d) plant no. 4.

    

 
Fig. 6. Step response of the tested plants, (a) plant no. 5, (b) plant no. 6, and (c) plant no. 7. 

 

Figure 5 shows the unit step response for the first 4 

tested plants using the four optimization algorithms. 

For plant no. 1, shown in Figure 5a, we notice that 

LBBO-S has the lowest settling time, but its overshoot 

was greater than conventional BBO. Figure 5b shows 

plant no. 2. Here LBBO-S has the lowest settling time 

and lowest overshoot while PSO resulted in the plant 

to be over-damped. Plant no. 3 is shown in Figure 5c. 

LBBO-S has the fastest settling time but it has an 

overshoot. Figure 5d shows plant no. 4. We notice that 

LBBO-S has the lowest settling time, and lowest 

overshoot. Here PSO made the plant to be unstable. 

Figure 6 shows the unit step response for the last three 

tested plants. Figure 6a shows plant no. 5. We notice 

that LBBO-S performance was the best one as it has 

the lowest settling time and lowest overshoot. Figure 

6b shows plant no. 6. LBBO-S has approximately the 

same performance of MBBO, with both algorithms 

having the fastest settling time, and PSO here has a 

steady state error. Finally, Figure 6c shows the step 

response of plant 7. LBBO-S has the fastest settling 

time, but with an overshoot.
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7. CONCLUSIONS 
     Linearized Biogeography-Based Optimization 

(LBBO) algorithm had been presented. We also 

explored and analyzed six migration models. To study 

the effect of those migration models on LBBO 

performance, twenty-three benchmark functions and 

seven transfer functions were employed. Simulation 

results showed that different migration models in 

LBBO result has a sensible performance. Also LBBO 

migration models, which are closer to nature (that is, 

nonlinear), are significantly better than linear models 

for most of the functions that were examined in this 

paper. It is also found that the sigmoid function was 

the best one and the sinusoidal function was in the 

second rank. 

   The proposed algorithm LBBO with the sigmoid 

migration (LBBO-S) had been compared with 

conventional BBO, MBBO, and PSO. It was clear that 

the LBBO-S had a better performance than MBBO, 

BBO, and PSO; as it had the lowest cost value of the 

seven tested plants, the lowest settling time, the lowest 

number of oscillations, and the lowest value of 

overshoot, except plants no. 1, 3 and 7. Also it was the 

fastest algorithm as it required the lowest number of 

generations to reach the optimal value. 
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