
Abstract— This paper deals with asymptotic output 

tracking algorithm using the adaptive sliding mode control. 

The integral sliding mode is used to nullifies the matched 

uncertainties and nonlinearities and also to avoid the 

reaching phase, so that the manifold in reached at the first 

time. The output feedback and feedforward  adaptive mode 

is used to enforce the outputs of the uncertain control 

system to track the outputs of the reference model. The 

output error between the uncertain system and the 

reference model vanishes asymptotically despite 

uncertainties and modeling error. Simulations examples 

are given to demonstrate the usefulness of the proposed 

algorithm and a  perturbation is added to show the 

robustness of the command. 
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I. INTRODUCTION 

 

 The simple MRAC of MIMO plants was first proposed by 

Sobel, Kaufman and Mabius [1]. This class of algorithms 

requires neither full state access nor satisfaction of the perfect 

model following conditions. Asymptotic stability is ensured 

provided that the plant is almost strictly positive real (ASPR). 

That means, there exist a constant output feedback so that the 

closed loop system is SPR Barkana [2], Many researchers 

extended the original algorithm, to a class of plants which 

violates this condition. This approach involved designing a 

supplementary feedforward filter  to be included in parallel 

with the original plant resulting in a new  augmented plant 

which had to satisfy the same strictly positive real condition, 

unfortunately, the tracking error was not the true difference 

between the plant and the model outputs since it included the 

contribution of the  supplementary feedforward filter which 

leads to an asymptotically stable error [3,4,5,6,7,8]. More 

advances has been done for non-square systems, Where 

Fradkov in [9] introduced the concept of passification of non 

square systems using a fictitious output so that the resulting 

system is square that means the number of outputs and inputs 

are equal. The same concept has been used by  Barkana for 

linear time varying systems, he called his theory the mitigation 

condition [10].     In an attempt to extend the concept of output 

feedback system to nonlinear systems, Fradkov [11] uses the 

concept of exponential minimum phase systems, and, based on 

this concept one can found an adequate output feedback 

control so that the closed loop control system is exponentially  

passive. The introduction of sliding mode [12] helps the 

resolution of the problem of tracking for unmodelled dynamics 

and external disturbances. Where a manifold is chosen so that 

once the trajectory of the control system is on this manifold, 

the dynamic of the system is independent of the nature of the 

system but depend only by the form of this manifold called 

sliding surface. So a good choose of this manifold imposes a 

good dynamic of the control system. To achieve this, a 

switching control law must be designed to drive  the system to 

this manifold in finite time. One of the drawbacks of the 

sliding mode control is the sensibility of the system to 

uncertainties and modeling error in reaching phase and a rapid 

oscillation of the control law on the sliding surface which must 

be avoided in real application. The combination of adaptive 

and sliding mode has been studied  by many researchers  

[13,14,15], where an adequate law has been found for 

parameter  adaptation of the controller for unknown systems, 

which in the reaching phase, the discontinuous law moves the 

trajectory of the control system to  the sliding manifold and 

once the trajectory is on the sliding surface, the equivalent 

control law [12] compensate the matched uncertainties and 

enforce the system to reach the equilibrium point in finite time.  

In order to avoid this  phase and to let a robustness from the 

initial time, the  concept of integral sliding mode has been 

introduced [13,14,15]. The integral sliding mode has find many 

application in industrial process like robots and 

electromechanical systems, etc, [16,17]. Besides it’s advantage 

like  the classical mode, the integral sliding mode can only  

remove the matched uncertainty once the system is on the 

sliding surface, that means the unmatched uncertainty still 

exist. To overcome this matched uncertainty, one add a robust 

continuous control like   H [18], and 2L theory [19]. This 

paper aims to provide a robust controller for a linear system 

with parameter variation and unmodelled dynamics, the 

tracking error between the output of the system and the 

reference model is asymptotically stable and the robustness 

against perturbation is guaranteed from the initial time. The 

new is the application of integral sliding mode outside the 

sliding surface and the simple adaptive control in the sliding 

surface. The simple adaptive control in this case  requires just 

the output measurement and not the state measurement and the 

system order can be higher then the model order besides the 

system parameter are unknown. 
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The paper is organized as follows. In session II, we give an 

overview of the integral sliding mode control. In session III we 

analyses   the model reference adaptive control for system with  

uncertainty and modeling error. The stability proof is 

investigated in section IV. Simulations results are given in 

section V, and we finish by a conclusion in section VI 

 

 

II. INTEGRAL SLIDING MODE CONTROL 

 

The design concept of Integral sliding mode control ISMC is 

that a discontinuous term is added to the existing feedback 

controller for a nominal plant model to ensure the desired 

performance despite parametric uncertainty and external 

disturbances. The design procedure of ISMC [13] is described 

briefly as follow. 

An actual system with uncertainty conditions is 
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txhuxBxfx pppp                (1.1)          

)()( txCty ppp                            (1.2) 

and the  ideal closed-loop system is given by  
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where 
n

p Rx  is the state vector and mRu  is the control 

input vector, 
mRy  is the output vector, )( pxB  is an 

appropriate matrix with mxBrank p ))(( , ),( txh p represents 

uncertainty conditions such as parameter variations, 

unmodelled dynamics and external disturbances, and  0x  is the 

state trajectory of the ideal system under ideal feedback control 

0u  . In order to construct the robust control law, we make the 

following assumptions 

Assumption 1 

),( txh p is a matched uncertainties, that means 

),(),( 1 txBhtxh pp   

Assumption 2 

The uncertainty ),(1 txh p is bounded and is of the form:  

 ),( max1 htxh p    

where maxh  is the upper bound which is an known  positive 

constant. 

To ensure the sliding surfaces from the initial time instant, that 

means  0s  for 0t , the control law is given as follow 

duuu  0                               (3) 

Where, the first control 
mRu 0  is to ensure the ideal system 

trajectory chosen by classic control theory like pole placement, 

linear quadratic regulator or other methods, and  the second 

control part 
m

d Ru   is chosen to reject the perturbation and 

lead the state of the control system to reach the sliding surface 

in finite time, and once the state is on the manifold, the control 

system looks like the ideal one driven by the ideal command.  

The sliding surface is constructed by two terms. The first  term  

)(0 pxs is a function of the state px and, in general, it can be 

chosen to be  a  linear combination  of the state, this first 

surface is used to construct the second sliding mode by the 

following manner. 
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with 
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p Rzxss ),(, 0 . To enforce the sliding mode, we must 

have 0
.

 ss . The derivation of the variable s  is given by: 
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The integral item is defined to meet the requirement  
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With the initial condition  0)0( ts ,  

So, equaling 
.

s  to zero, and taking into account that on the 

sliding mode, one must replace du  by the equivalent control 

equu  [12], one gets: 
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Then, the  equivalent control is given by  

),(1 txhu pequ                                 (7) 

The control  law du  is defined to enforce sliding mode along 

the manifold and is given be,  

s

s
xMu pd )(                          (8) 

Where (.) stands for Euclidian norm and )( pxM   is the 

control gain, selected as constant or  varying matrix. In the 

case where the bound of the uncertainties is unknown, one can 

choose an adaptive form for )( pxM  which estimates this 

upper bound. In order to study the stability of the variable s  

we choose the Lyapunov function candidate as: 
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And the control gain )( pxM  is chosen so that the time 

derivative of V is negative definite, so the sliding manifold is 

equal to zero in finite time which is our objective. The time 

derivative of V  along (5) is given by:  
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Taking  into account that the uncertainty ),( txh p  is matched 

(assumption 1), then  putting (6) in the  relation (10) gives:  
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If we replace the expression of du given by (8), in (11) one 

gets: 
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Which can be written as: 
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Let’s take )()(0
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s
Q
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 , so (13) becomes: 
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So, ,0
.

V  if and only if  
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A necessary condition for (14) to be achieved is that 

)(min Q must be positive, so the matrix Q  must be positive 

definite. For the SISO linear system, where 1m and for a 

choose of the variable Cxs 0 , the relation (14) is verified for 

max.hCBCBMQ  . Then, for 0CB , and in order to have 

a non-increasing Lyapunov function, one must have: 

maxhM    for 0 CB                               (15) 

For  the MIMO linear system, and with the variable Cxs 0  

and for a large positive  )(min Q , the relation (14) is verified. 

Or CBMBM
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 )(.)()()( maxmaxmin MCBMCBQQQQ    

The relation (14) is then verified if maxmax .)( hCBMCB   

Then,  for the MIMO linear system, the sliding surface is 

attractive and the Lyapunov function  is negative definite if and 

only if the control gain M is chosen so that the inequality 

bellow is verified.   

 

maxmax )( hM  with 0)()( minmin  CBMQ        (16) 

 

So, the control law du (8) leads the system‘s state to the sliding 

surface. One simple choose of M is mmIM  , M is a 

positive  scalar.  The inequality (16) becomes maxh with 

0)(min  CB , so the Lyapunov function is negative definite  

if and only if  

maxh    and 0CB                (17) 

 

III. DIRECT MODEL REFERENCE     ADAPTIVE  

CONTROL 

 The linear time invariant model reference adaptive control is 

considered for the plant: 
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where )(txp is the )1( n state vector, )(tup  is the 

)1( m control vector, )(typ is the )1( q  plant output pA , 

pB are matrices with appropriate dimensions. The range of the 

plant parameters is assumed to be known and bounded with        
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The objective is to find, without explicit knowledge of  pA and  

pB , the control )(tu p such that the plant output vector 

)(typ follows the reference model 

)()(

)()()(
.

txCty

utBtxAtx

mmm

mmmmm



                 (21) 

where )(txm  is the )1( mn state vector, mu  is the 

)1( q control vector, )(ty p is the )1( q  plant output. The 

output my  is the desired response to the set point 

command mu . The model incorporates the desired behavior of 

the plant, but its choice is not restricted. In particular, the order 

of the plant may be much larger than the order of the reference 

model. The ideal control law that generates perfect output 

tracking and ideal state trajectories is assumed to be a linear 

combination of the model states and model input, i.e. [20,21]. 
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Where the ijS matrices satisfy 
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Then the adaptive control law based on the command generator 

tracker (CGT) approach is given as: [6,21] 
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Where                      )()()( tytyte pmy   

 

and )(tKe , )(tKx and )(tKu are adaptive gains and 

concatenated into the matrix )(tK as:       

 )(  )(  )()( tKtKtKtK uxe                    (25) 

Defining the vector )r(t)(nr 1 where mnqn mr   as: 
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The control )(tu p is written in a compact form as 
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where              )()()( tKtKtK ip                              (28)       
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In the case where there is an output perturbation like noise 

measurement, one can use an modified version of (30) called 

the σ modification and given by :  
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 is a positive scalar      

 

IV. STUDY OF THE STABILITY 

 

The first step of the demonstration is to design  a positive 

definite quadratic form in the state variable  

)()()( * txtxte ppx    and   )(tKI  of the adaptive system. 

Before doing this, it is assumed that 
1

iT    is a symmetric 

positive definite matrix. Then an appropriate choice of the 

Lyapunov function is: 
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where  Tr  : represents the trace of a matrix 

Its time derivative is given by: 
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Where P    is a symmetric positive definite matrix of size 

nn ,  
~

K  is a matrix of dimension  rnm    and  S   is a non-

singular matrix of dimension mm  .   

since the matrix 
~

K  appears only in the function V  and not in 

the control algorithm, it is called fictitious gain matrix, it has 

the same dimension as K  where 
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And the three gains eK
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Substituting 
*
pu from (22) and pu from (24), one gets: 
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Then the adaptive system is described by: 
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Substituting (36), (37) in (32), one gets: 
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 We can write it as: 
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Knowing that for two vectors )1,(lU and ),1( lV  then   UVVUTr ..   

Therefore 

 



                                     )(2

)(

~

22

21

2221

.

rKKSSCe

PeBCreTrPeBKrPeBSu

PeBSxrTreCPBerKPBe

uSPBexSPBeePAPAeV

I
TT

p
T
x

x
T
p

T
p

T
x

T
p

T
x

T
p

T
I

T
x

T
p

TT
m

x
T
p

TT
mp

T
xpp

T
xIp

T
x

mp
T
xmp

T
xx

T
pp

T
x









(40.a)  

That means
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By setting : 
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The derivative of the Lyapunov function becomes: 
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Substituting     mumxxper uKxKeCKK
~~~~

    in the 

previous equation, one gets: 
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This derivative consists of two terms. If  pT   it is a positive 

semi-definite matrix and 
T

p CPB  for some 0 TPP , 

then the second term is negative semi-definite in 
T
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then  the derivative of the Lyapunov function  is negative 
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there exist  a 0 TPP and a 0 TQQ so that  
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These relations implies that the feedback system is SPR, so the 

original system is called ASPR. 

 

V. SIMULATION 

 

Before the simulation, one note that outside the sliding surface 

the system is described by equation (1) with an additive 

perturbation and on the sliding surface, the system is given by 

equation (18) that means without perturbation. So, we must 

impose that the system goes to the sliding surface that means 

command’s robustness against added perturbation.  

In the simulation, it is required that the uncertain system track 

the reference model, which is given by: 

CxtpuBAxx  y  )),((
.

 

mmmmmmmm xCyuBxAx    ,
.

 

 

The matrix BA, are unknown but constants, )(tp is a 

perturbation with known bound, that means )(tp . For the 

purpose of simulation, the matrix BA, and C are given by: 











0.0595-   0.0009-

10
A

, 









1

0
B

,
 1.25    0.0431-C  

the matrix mm BA , and mC  are given by 

1,1,1  mmm CBA  so that the transfer function of the 

reference model is given by  
1

1
)(




s
sGm  which 

incorporated all the desired performance. The input to the 

reference model  is a square wave of amplitude 1mu
  

and 

period of 120 seconds. The perturbation is selected to be 

)sin()( ttp  . The initial condition is taken as 

 
.

0 0  1
T

x 
.

0 5.0mx . According to (29) and (30), we select 

31.0 ITT ip   

Case 1 without sliding mode 



In this case, the control input is just the adaptive one given by 

(27). Figure 1 shows the output of the system and model and 

we see that the output is stable but it does not track the 

reference model this is because of the perturbation that the 

adaptive command can’t cancel. Figure 2 depicts the control 

input when we see the effort of the adaptive command to 

maintain a good tracking. The figure 3 represents the evolution 

of the three adaptive gains xe KK  ,
 
and uK   used to construct 

the adaptive command see (25), (26) and  (27).  
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Fig 1 Output of the system and the model without  sliding 

mode 
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Fig 2. Control input  without  sliding mode 

 

Case 2 with sliding mode 

In this case, the control input is hybrid that means constructed 

by the adaptive and sliding mode. The adaptive input has been 

used before and given by equation (27), and we have seen that 

it does not give a good result in view of a bad tracking between 

output of the system and the model (see figure 1). In order to 

overcome this drawback, a sliding mode has been added to the 

adaptive command. This sliding command is given by equation 

(8). So, the final hybrid command applied to our system is 

given by:   
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Fig 3. The  gains xe KK  ,  and uK  without  sliding mode 

s

s
MtrtKutrtKtu dp  )()()()()(                               

That means, we have used  (27) and (8). The gain M is chosen 

according to (17) and for a perturbation )sin()( ttp  , one 

select M to be equal to 1.5. 

Figure 4 shows the output of the system and model and we see 

a good tracking where the error vanishes at about 10s. We see 

also the effect of the sliding mode input that have been added 

in comparison with figure 1. In figure 5 we see the chattering 

phenomena which is inherent to sliding mode which also 

represent a drawback and we must think to add a boundary 

layer to avoid this chattering. Figure 6 represents the three 

adaptive gains xe KK  ,  and uK  
 and we see that these gain 

converge to a fixed value.
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Fig 4 Output of the system and the model with  sliding 

mode 

 

VI CONCLUSION 

 

This paper presents  at first the adaptive command applied to a 
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Fig 5. Control input  with  sliding mode 
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Fig 6. The  gains xe KK  ,  and uK   with  sliding mode 

 

perturbed system and we have seen that this command does not 

give a good result and in order to overcome these drawbacks, a 

integral sliding mode have been added in the second stage. The 

hybrid command constructed by the adaptive and integral 

sliding gives a good result and we have seen that the error 

between the system and model goes to zero in finite time. The 

only drawback of this hybrid command in the existence of 

chattering phenomena where we can remove them by using a 

boundary layer around the surface s. It is also known that the 

system is sensitive to perturbation if one add a boundary layer 

and the robustness of the sliding mode is affected by adding a 

boundary layer. This point will be investigated in future work. 
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