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Abstract: This paper presents dynamic modelling for
Automatic Generation Control of two area interconnected
power system considering diverse sources in each area.
The two areas are interconnected by AC tie- line. The
hydro, thermal and gas power plants constitute the
generation. To carry out the investigations, Pl control
strategy based optimal AGC regulators are designed. To
assess the stability of the system, pattern of open-loop and
closed-loop system eigenvalues are computed. The
dynamic performance of system with optimal AGC
regulators is obtained for 1% step load disturbance in one
of the control area.
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1. Introduction

The power system consists of large numbers of
generators interconnected by networks of transmission
lines, which provide power to consumers at rated voltage
and frequency. The maintenance of these parameters at the
rated values is necessary for having high efficiency and
minimum wear and tear of the consumer equipment.
Therefore, main parameters to be controlled are the system
frequency and voltage, which determine stability and
quality of the power supply.

In a power system, frequency deviations are mainly due
to real power mismatch between generation and load,
where as voltage variations are due to reactive power
imbalance in the system. The reactive power is produced
close to requirements as involves only capital cost but no
fuel cost and it is not exported on the lines to avoid large
transmission losses.

In a power system active power balance can be
achieved by controlling the generation and it is called
automatic generation control (AGC). The control loops of
these two parameters, therefore, assumed to be decoupled
[1-2].

The fossil fuels such as coal, oil and natural gas,
nuclear energy, and falling water are commonly used

energy sources at the power plant. Since fossil fuels are
depleting day by day, therefore, a wide and growing
variety of non-conventional energy sources have also been
developed, including cogeneration, solar energy, wind
generators, and waste materials. Thus in present day
scenario, the control areas are supposed to have various
types of energy sources.

A large number of papers have been appeared in
literature relating various aspects of AGC of power
systems during over last five decades [1-14] and these
literatures of AGC are well reviewed in [3-5] by Ibraheem
et al. A novel approach to solve the matrix Riccati equation
for designing the optimal AGC regulators is presented in
[6]. Dynamic performance enhancement of power system
with optimal AGC regulators in interconnected power
system using AC/DC links has investigated in [7-9].

However, in [1-9] the power system models
considered for studies were of single or multi area
interconnected power system having single energy source
like hydro, thermal, gas, nuclear or any other fuel based
power plants. But, in real situations, each control area has
generating plants of variable characteristics and types,
which generates power by using various sources of energy
such as hydro, thermal, gas, nuclear and etc. Therefore, to
consider a more realistic model of power system, all these
types of generating plants must be considered while
developing a power system model for investigation point of
view.

The sampled data AGC of single area power system has
been investigated by considering multi sources of power
generation by K.S.S. Ramakrishna et al. in [10]. Whereas
AGC of two area interconnected power system with
diverse energy sources has been presented in [11].

Since optimal AGC regulators are simple to design, less
costly and offer robust performance. Therefore, this work
presents the design and implementation of optimal AGC
regulators for a two area interconnected power system
consisting of hydro, thermal and gas power plants for
generation. The patterns of open-loop and closed-loop



system eigenvalues are obtained to investigate the stability
margins of the system.
2. Power System Model with Diverse Power

Generation Sources

The conventional multi area power system model with
a single source of power is shown in Fig. 1. Hydro,
thermal, gas and any other types of energy source based
power generation sources is considered in area-1, area-2,
area-3 and area-4 respectively. However, in real situations,
each control area having many numbers of generating
stations, which generates power by using various sources
of energy such as hydro, thermal, gas, nuclear and etc. The
more practical model of this type is shown in Fig. 2 and
this type of power system model can be named as “Multi
area power systems model with diverse or multi source of
power generation”.
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Fig. 1. Multi area power systems with single source of
generation

Suppose for i area Ky, Kpi, Kg, Kni, Kui, Kai, Ksi and
Kai are share of power generation by thermal, hydro,
gaseous, nuclear, wind, diesel, solar and any other type of
fuel respectively. The value of share factor depends upon
the total load and economic load dispatch. Suppose Pg;,
Pehi, Pgia Peni, Powi, Padis Pasi and Pcaoi are power generation
in MW by thermal, hydro, gas, nuclear, wind, diesel, solar
and any other type of fuel in the i" area respectively. Under
normal operating conditions, there is no mismatch between
generation and load; the total generations in the i area say
Psiis given by:

Foi =Pati*+ Penit Fagi + Feni+ Fomit Podi T Pepcsit Foaoi @
For small perturbation, egn. (1) can be written as;
AP =N+ ARg + AP + AP + APyt AP+ M+ AP (2)

Where, Pei=KiiPai, Pehi=KniPai, Pegi=KgiPai
Peni=KniPsiv  Powi=KwiPai, Poedi=KaiPei, Posi=KsiPei and
Psaoi=KaiPsiand eqn. (1) can be rewritten as;

Ky + Ky + K + K + Ky + Ky + K + K =1 3)

The various transfer function model of power systems
using single source of power generation is given in [12-14].
The Transfer function model of two area interconnected
power systems with diverse power generation sources is
shown in Fig. 3. In this model each area having hydro,
thermal and gas power plants.

3. State Space Model of Power System

The power system model considered being a linear
continuous-time dynamic system can be represented by the
standard state space model as;

EX:AX+ BU+TP, 4)
dt —

Y=CX ®)
Where; X, U, Pd and Y are the state, control,

disturbance and output vectors respectively and A, B, T’
and C are the system, input, disturbance and output
matrices, respectively. These matrices are constant with
compatible dimensions depend upon the system parameters
and the operating point. The various vectors and matrices
are considered for power system model under investigation
in Fig. 3 can be obtained in the following section.

3.1 Power System Control Vector
The state, control and disturbance vectors for power
system model under investigation are given by;

State Vector

Ty Xo X o v ee e et Xo4 X25]

The state from transfer function model of power system
can be written as;

[X1'= [AF, AP, AF;  APay  APry  AXy
APghy APrni AXyy  APgg  APrg  APyp
AXg APgry  Pre AXyp  APgr2  APgrp
AXp ~ APsy APrg APy, AXg SACEdt
JACE,dt]

Control vector
[U]"= [APcy APG,]
Disturbance Vector

[Pa]"= [APu1 APg]
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Fig. 2. Multi area power systems with diverse sources of generation
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Fig. 3. Transfer function model of two area interconnected power system with diverse energy sources



3.2 Power Generating Eqns.

The dynamic equations for power systems model under
investigation are obtained in this section. Under normal
operating conditions, the generation in area-1 is given by;

Pe1=Peu +Pen1 +Pggt
For small perturbation egn. (7) can be written as:

APg1=APgy +APgn1 +APgy

(6)

Y

Where, Pey =Ki1Pe1, Peni =KniPe1and Peg =KgPe1

Therefore, egn. (7) can also be written as:
Kyt Kpt Kg=1
Similarly for area-2
APG2=APgp +APgn2 +APgg
Kt Kot Kgp=1

3.3 Dynamic Equations

(8)

()
(10)

The dynamic egns. associated with Fig. 3 are derived as

follows;
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3.4 State Space Matrices

The importance of these equations is that the state space
power system matrices can be developed. The state space
matrices associated with power system model under
investigation are obtained by arranging egns. (11-36).

The input matrix [A] is of order of 25x25 and its non-

zero element o ; of matrix [A] is obtained as;
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24,2 Olgs o = Oy O3 =P,

The control matrix [B] is of order of 25x2 and its non-
zero elements bi'j can be given by:

1 K.T T
b61 = b7,1 =2 bs,1 = -
Pl Toui T Tern Trnn
1 X, _1_ X
by, =— b1y = Ty Tz
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1 b..—_2 K2 Tra b — T,
b16 2= = 72— 182 =
' ng TGHZTRHZ TGHZTRHZ
1 X, _1 X
b,,=— Dyy =—- G2 = Y, Y?
o TRHZ b2Y2 ’

The disturbance matrix [I'] is of order of 25x2 and its
non-zero elements P;; can be given by:

K K
P1,1 —__m Ps,z —__ P2
TPl TPZ

The output matrix [C] is of order of 25x25, output
matrix is an identity matrix and matrix [Q] =[C].

4 Simulation and Discussion of Results

In the present work, the full state feedback theory is
applied to design of PI structure based optimal AGC
regulator. The designing of these AGC regulators is carried
out as given in [6-9]. The power system model under
consideration is simulated using MATLAB software.
Using optimal control theory, the optimal gains of
feedback matrix [W*] are given in Table-I.

Table-1: Optimal Feedback Gain Matrix [¥*]

Elements of [¥*]

7.2609
-0.1667
1.2240
-0.0451
1.0000
1.2240
-0.0451
7.2609
-0.1667
0.0000

-0.7221
1.2926
-0.1791
0.1500
-0.0000;
-0.1791
0.1500
-0.7221
1.2926
1.0000]

[ 0.8810 -2.5746
0.4790 2.7813
0.3537 0.3027
0.0057 0.3581
0.0139 0.0012
0.2083 2.5746
0.0057 0.3581
0.0139 0.0012
0.4790 2.7813
0.3537 0.3027

0.2083
1.5566
0.3996
0.2062
-0.0079
0.8810
0.2062
-0.0079
1.5566
0.3996

. The patterns of open-loop and closed-loop system
eigenvalues are given in Table-I1.

Table-11: Pattern of Eigenvalues

Open-loop eigenvalues | Closed-loop eigenvalues
-19.9754 -24.7136
-19.9756 -24.7135
-12.6616 -15.5177
-12.6583 -15.5168

-5.8737 -5.7660
-5.8275 -5.7306
-0.1397 + 2.1421i -0.4893 + 1.8879i
-0.1397 - 2.1421i -0.4893 - 1.8879i
-3.9228 -4.0545
-3.9009 -3.9455
-2.9518 -3.7581
-2.8611 -3.7675
-0.7164 + 0.9397i -1.3931 + 0.3731i
-0.7164 - 0.9397i -1.3931 - 0.3731i
-1.6970 -1.8728
-1.3768 -1.2133
-0.9222 -1.1747
-0.0967 -0.4326
-0.2420 -0.2154
-0.0417 -0.0417
-0.0346 -0.0417
-5.0000 -5.0000
-5.0000 -5.0000

0.0000 -0.1643 + 0.0902i
0.0000 -0.1643 - 0.0902i

The observation of open-loop eigenvalues as shown in
Tables-11 infers that the eigenvalues corresponding to 24"
& 25" system states are zero i.e. lies on imaginary axis of
‘s’ plane. Therefore, the above power system model is
marginally stable for open-loop stability.

The pattern of closed-loop system eigenvalues shows
that none of the eigenvalues is in the right half of ‘s’ plane,
therefore, the closed-loop system is stable. A few closed-
loop eigenvalues have higher negative real parts as
compared to open-loop eigenvalues. These increments in
the eigenvalues improve stability margins of the power
system. It has been also observed that the real parts of the
closed-loop eigenvalues for most of the system states are
highly negative as compared to that of open-loop system.
Therefore, the closed-loop system has appreciably higher
stability margins with good damping. However, the
reduced magnitudes of imaginary parts of closed-loop
eigenvalues may result in fast and smooth decay of system
dynamic responses.

The system dynamic responses for 1% step load in
area-1 and area-2 are shown in Figs. 4-5, respectively. It
has been observed from investigation of Fig. 4 that PI
structured optimal AGC regulators are capable to mitigate
small load disturbance in area-1 with less oscillations and
small settling time. Similar results for the dynamic
responses of the system have been obtained for 1% step
load in area-2 and are shown in Fig. 5.
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5. Conclusions

The paper discusses an overview on interconnected two
area power systems consisting of diverse energy generation
sources. The transfer function model of two area
interconnected power system with diverse power
generation sources has been developed. From the patterns
of eigenvalues, it has been revealed that power system
model is marginally stable in open-loop mode while it is
stable with appreciably improved stability margins in
closed-loop mode. Furthermore, few eigenvalues are found
to be very sensitive as far as the dynamic stability margins
of the system is concerned. It has been observed that the Pl
structured optimal AGC regulators are capable to mitigate
small load disturbances.
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