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Abstract: This paper presents dynamic modelling for 
Automatic Generation Control of two area interconnected 
power system considering diverse sources in each area. 
The two areas are interconnected by AC tie- line. The 
hydro, thermal and gas power plants constitute the 
generation.  To carry out the investigations, PI control 
strategy based optimal AGC regulators are designed. To 
assess the stability of the system, pattern of open-loop and 
closed-loop system eigenvalues are computed. The 
dynamic performance of system with optimal AGC 
regulators is obtained for 1% step load disturbance in one 
of the control area. 
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1. Introduction 

The power system consists of large numbers of 
generators interconnected by networks of transmission 
lines, which provide power to consumers at rated voltage 
and frequency. The maintenance of these parameters at the 
rated values is necessary for having high efficiency and 
minimum wear and tear of the consumer equipment. 
Therefore, main parameters to be controlled are the system 
frequency and voltage, which determine stability and 
quality of the power supply.  

In a power system, frequency deviations are mainly due 
to real power mismatch between generation and load, 
where as voltage variations are due to reactive power 
imbalance in the system. The reactive power is produced 
close to requirements as involves only capital cost but no 
fuel cost and it is not exported on the lines to avoid large 
transmission losses.  

In a power system active power balance can be 
achieved by controlling the generation and it is called 
automatic generation control (AGC). The control loops of 
these two parameters, therefore, assumed to be decoupled 
[1-2]. 

The fossil fuels such as coal, oil and natural gas, 
nuclear energy, and falling water are commonly used 

energy sources at the power plant. Since fossil fuels are 
depleting day by day, therefore, a wide and growing 
variety of non-conventional energy sources have also been 
developed, including cogeneration, solar energy, wind 
generators, and waste materials. Thus in present day 
scenario, the control areas are supposed to have various 
types of energy sources. 

A large number of papers have been appeared in 
literature relating various aspects of AGC of power 
systems during over last five decades [1-14] and these 
literatures of AGC are well reviewed in [3-5] by Ibraheem 
et al. A novel approach to solve the matrix Riccati equation 
for designing the optimal AGC regulators is presented in 
[6]. Dynamic performance enhancement of power system 
with optimal AGC regulators in interconnected power 
system using AC/DC links has investigated in [7-9].  

  However, in [1-9] the power system models 
considered for studies were of single or multi area 
interconnected power system having single energy source 
like hydro, thermal, gas, nuclear or any other fuel based 
power plants. But, in real situations, each control area has 
generating plants of variable characteristics and types, 
which generates power by using various sources of energy 
such as hydro, thermal, gas, nuclear and etc. Therefore, to 
consider a more realistic model of power system, all these 
types of generating plants must be considered while 
developing a power system model for investigation point of 
view.   

The sampled data AGC of single area power system has 
been investigated by considering multi sources of power 
generation by K.S.S. Ramakrishna et al. in [10]. Whereas 
AGC of two area interconnected power system with 
diverse energy sources has been presented in [11].  

Since optimal AGC regulators are simple to design, less 
costly and offer robust performance. Therefore, this work 
presents the design and implementation of optimal AGC 
regulators for a two area interconnected power system 
consisting of hydro, thermal and gas power plants for 
generation. The patterns of open-loop and closed-loop 



system eigenvalues are obtained to investigate the stability 
margins of the system.   

 
2. Power System Model with Diverse Power 

Generation Sources 
The conventional multi area power system model with 

a single source of power is shown in Fig. 1. Hydro, 
thermal, gas and any other types of energy source based 
power generation sources is considered in area-1, area-2, 
area-3 and area-4 respectively. However, in real situations, 
each control area having many numbers of generating 
stations, which generates power by using various sources 
of energy such as hydro, thermal, gas, nuclear and etc. The 
more practical model of this type is shown in Fig. 2 and 
this type of power system model can be named as “Multi 
area power systems model with diverse or multi source of 
power generation”. 

 

Fig. 1. Multi area power systems with single source of 
generation 

Suppose for ith area Kti, Khi, Kgi, Kni, Kwi, Kdi, Ksi and 
Kaoi are share of power generation by thermal, hydro, 
gaseous, nuclear, wind, diesel, solar and any other type of 
fuel respectively. The value of share factor depends upon 
the total load and economic load dispatch.  Suppose PGti, 
PGhi, Pgi, PGni, PGwi, PGdi, PGsi and PGaoi are power generation 
in MW by thermal, hydro, gas, nuclear, wind, diesel, solar 
and any other type of fuel in the ith area respectively. Under 
normal operating conditions, there is no mismatch between 
generation and load; the total generations in the ith area say 
PGi is given by: 

GaoiPGsiGdiGtwiGniGgiGhiGtiGi PPPPPPPPP            (1) 

For small perturbation, eqn. (1) can be written as; 

GaoiGsiGdiGtwiGniGgiGhiGtiGi PPPPPPPPP              (2)                               

Where, PGti=KtiPGi, PGhi=KhiPGi, PGgi=KgiPGi, 
PGni=KniPGi, PGwi=KwiPGi, PGdi=KdiPGi, PGsi=KsiPGi and 
PGaoi=KaoiPGi and eqn. (1) can be rewritten as;  

1KKKKKKKK aoisidiwinigihiti     (3) 

The various transfer function model of power systems 
using single source of power generation is given in [12-14]. 
The Transfer function model of two area interconnected 
power systems with diverse power generation sources is 
shown in Fig. 3. In this model each area having hydro, 
thermal and gas power plants.  

3. State Space Model of Power System  
The power system model considered being a linear 

continuous-time dynamic system can be represented by the 
standard state space model as; 

dPUBXAX
dt
d

                                         (4) 

XCY                                                                   (5) 

Where;  X, U, dP and Y are the state, control, 

disturbance and output vectors respectively and A, B, Γ 
and C are the system, input, disturbance and output 
matrices, respectively. These matrices are constant with 
compatible dimensions depend upon the system parameters 
and the operating point.  The various vectors and matrices 
are considered for power system model under investigation 
in Fig. 3 can be obtained in the following section. 

3.1 Power System Control Vector 
The state, control and disturbance vectors for power 

system model under investigation are given by; 

State Vector 

[X]T=[x1  x2 x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . x24  x25 ] 

 The state from transfer function model of power system 
can be written as; 

[X]T= [∆F1 ∆Ptie12 ∆F2 ∆PGt1  ∆PRt1 ∆Xt1 
∆PGh1 ∆PRh1  ∆Xh1  ∆PGg1  ∆PRg1 ∆PVP1 
∆Xg1   ∆PGt2  PRt2               ∆Xt2 ∆PGh2 ∆PRh2 
∆Xh2  ∆PGg2  ∆PRg2  ∆PVP2 ∆Xg2 ʃACE1dt 
ʃACE2dt] 

Control vector 

[U]T= [∆PC1 ∆PC2]   

Disturbance Vector 

 [Pd]T= [∆Pd1 ∆Pd2] 
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Fig. 2. Multi area power systems with diverse sources of generation 

 

Fig. 3. Transfer function model of two area interconnected power system with diverse energy sources 

Thermal Power Plants dynamics 

Hydro Power Plants dynamics 

Gas Power Plants dynamics 

Diesel Power Plants dynamics 

Nuclear Power Plants dynamics 

Wind Power Plants dynamics 

Any Others Power Plants dynamics 

Solar Power Plants dynamics 

Kt 

Kh 

Kg 

Kn 

Kw 

Kd 

Ks 

Kao 

Power system control area-2 

∑ 

Thermal Power Plants dynamics 

Hydro Power Plants dynamics 

Gas Power Plants dynamics 

Diesel Power Plants dynamics 

Nuclear Power Plants dynamics 

Wind Power Plants dynamics 

Any Others Power Plants dynamics 

Solar Power Plants dynamics 

Kt 

Kh 

Kg 

Kn 

Kw 

Kd 

Ks 

Kao 

∑ 

Load 

Power system control area-1 

Tie Line 

Thermal Power Plants dynamics 

Hydro Power Plants dynamics 

Gas Power Plants dynamics 

Diesel Power Plants dynamics 

Nuclear Power Plants dynamics 

Wind Power Plants dynamics 

Any Others Power Plants dynamics 

Solar Power Plants dynamics 

Kt 

Kh 

Kg 

Kn 

Kw 

Kd 

Ks 

Kao 

Power system control area-4 

∑ 

Hydro Power Plants dynamics 

Gas Power Plants dynamics 

Diesel Power Plants dynamics 

Nuclear Power Plants dynamics 

Wind Power Plants dynamics 

Any Others Power Plants dynamics 

Solar Power Plants dynamics 

Kt 

Kh 

Kg 

Kn 

Kw 

Kd 

Ks 

Kao 

∑ 

Load 

Power system control area-3 

Load 

Load 

Tie Line 

Thermal Power Plants dynamics 



3.2 Power Generating Eqns. 
The dynamic equations for power systems model under 

investigation are obtained in this section. Under normal 
operating conditions, the generation in area-1 is given by; 

PG1=PGt1 +PGh1 +PGg1                                                                               (6) 

For small perturbation eqn. (7) can be written as: 

      ∆PG1=∆PGt1 +∆PGh1 +∆PGg1                    (7)  

Where, PGt1 =Kt1PG1, PGh1 =Kh1PG1 and PGg1 =Kg1PG1 

Therefore, eqn. (7) can also be written as: 

       Kt1+ Kh1+ Kg1=1       (8)  

Similarly for area-2 

      ∆PG2=∆PGt2 +∆PGh2 +∆PGg2                    (9)  

Kt2+ Kh2+ Kg2=1                      (10) 

3.3 Dynamic Equations 
The dynamic eqns. associated with Fig. 3 are derived as 

follows; 
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3.4 State Space Matrices  
The importance of these equations is that the state space 

power system matrices can be developed.  The state space 
matrices associated with power system model under 
investigation are obtained by arranging eqns. (11-36).  

 The input matrix [A] is of order of 25x25 and its non- 
zero element j,i  of matrix [A] is obtained as; 
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12,24   
122,25   23,25   

The control matrix [B] is of order of 25x2 and its non-
zero elements j,ib can be given by: 

1g
1,6 T

1b   
1RH1GH

1R1h
1,7 TT

TK2b   
1RH1GH

1R
1,8 TT

Tb   

1RH
1,9 T

1b   
11

1
12,1 Yb

Xb   2
1

1

1
13,1 Y

X
Y
1α 

 

2g
2,16 T

1b   
2RH2GH

2R2h
2,17 TT

TK2b   
2RH2GH

2R
2,18 TT

Tb 
 

2RH
2,19 T

1b 
 22

2
22,2 Yb

Xb   2
2

2

2
23,2 Y

X
Y
1α 

 

The disturbance matrix [Г] is of order of 25x2 and its 
non-zero elements Pi,j can be given by: 
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The output matrix [C] is of order of 25x25, output 
matrix is an identity matrix and matrix [Q] =[C]. 

4 Simulation and Discussion of Results 
In the present work, the full state feedback theory is 

applied to design of PI structure based optimal AGC 
regulator. The designing of these AGC regulators is carried 
out as given in [6-9]. The power system model under 
consideration is simulated using MATLAB software. 
Using optimal control theory, the optimal gains of 
feedback matrix [Ψ*] are given in Table-I.   

Table-I: Optimal Feedback Gain Matrix [Ψ*] 

Elements of  [Ψ*] 

[ 0.8810   -2.5746    0.2083    7.2609   -0.7221    
0.4790    2.7813    1.5566   -0.1667    1.2926    
0.3537    0.3027    0.3996    1.2240   -0.1791   
0.0057    0.3581    0.2062   -0.0451    0.1500    
0.0139    0.0012   -0.0079    1.0000   -0.0000; 
0.2083    2.5746    0.8810    1.2240   -0.1791    
0.0057    0.3581    0.2062   -0.0451    0.1500    
0.0139    0.0012   -0.0079    7.2609   -0.7221   
0.4790    2.7813    1.5566   -0.1667    1.2926    
0.3537    0.3027    0.3996    0.0000    1.0000] 

 
. The patterns of open-loop and closed-loop system 

eigenvalues are given in Table-II. 
 
 

Table-II: Pattern of Eigenvalues 

Open-loop eigenvalues Closed-loop eigenvalues 

-19.9754           
 -19.9756           
 -12.6616           
 -12.6583           
  -5.8737           
  -5.8275           

  -0.1397 + 2.1421i 
  -0.1397 - 2.1421i 

  -3.9228           
  -3.9009           
  -2.9518           
  -2.8611           

  -0.7164 + 0.9397i 
  -0.7164 - 0.9397i 

  -1.6970           
  -1.3768           
  -0.9222 
  -0.0967                   
  -0.2420           
  -0.0417           
  -0.0346           
  -5.0000           
  -5.0000  
   0.0000           
   0.0000                   

-24.7136           
 -24.7135           
 -15.5177           
 -15.5168           
  -5.7660           
  -5.7306           

  -0.4893 + 1.8879i 
  -0.4893 - 1.8879i 

  -4.0545           
  -3.9455           
  -3.7581           
  -3.7675           

  -1.3931 + 0.3731i 
  -1.3931 - 0.3731i 

  -1.8728           
  -1.2133           
  -1.1747           
  -0.4326           
  -0.2154           
  -0.0417           
  -0.0417           
  -5.0000           
  -5.0000 

  -0.1643 + 0.0902i 
  -0.1643 - 0.0902i           

The observation of open-loop eigenvalues as shown in 
Tables-II infers that the eigenvalues corresponding to 24th  
& 25th  system states are zero i.e. lies on imaginary axis of 
‘s’ plane. Therefore, the above power system model is 
marginally stable for open-loop stability. 

The pattern of closed-loop system eigenvalues shows 
that none of the eigenvalues is in the right half of ‘s’ plane, 
therefore, the closed-loop system is stable. A few closed-
loop eigenvalues have higher negative real parts as 
compared to open-loop eigenvalues. These increments in 
the eigenvalues improve stability margins of the power 
system. It has been also observed that the real parts of the 
closed-loop eigenvalues for most of the system states are 
highly negative as compared to that of open-loop system. 
Therefore, the closed-loop system has appreciably higher 
stability margins with good damping. However, the 
reduced magnitudes of imaginary parts of closed-loop 
eigenvalues may result in fast and smooth decay of system 
dynamic responses. 

  The system dynamic responses for 1% step load in 
area-1 and area-2 are shown in Figs. 4-5, respectively. It 
has been observed from investigation of Fig. 4 that PI 
structured optimal AGC regulators are capable to mitigate 
small load disturbance in area-1 with less oscillations and 
small settling time. Similar results for the dynamic 
responses of the system have been obtained for 1% step 
load in area-2 and are shown in Fig. 5.  

 



 
 

 
 

 

Fig. 4. Dynamic performance of power system model 
under investigation with PI as AGC regulator 
with 1% load disturbance in area-1 (a) ∆F1 Vs. 
Time, (b) ∆F2 Vs. Time and (c) ∆Ptie12 Vs. Time 

 

 

 
 

 
 
 

Fig. 5.  Dynamic performance of power system model 
under investigation with PI as AGC regulator 
with 1% load disturbance in area-2 (d) ∆F1 Vs. 
Time, (e) ∆F2 Vs. Time and (f) ∆Ptie12 Vs. Time 

 
 
 
 
 



5.  Conclusions 
The paper discusses an overview on interconnected two 

area power systems consisting of diverse energy generation 
sources. The transfer function model of two area 
interconnected power system with diverse power 
generation sources has been developed. From the patterns 
of eigenvalues, it has been revealed that power system 
model is marginally stable in open-loop mode while it is 
stable with appreciably improved stability margins in 
closed-loop mode. Furthermore, few eigenvalues are found 
to be very sensitive as far as the dynamic stability margins 
of the system is concerned. It has been observed that the PI 
structured optimal AGC regulators are capable to mitigate 
small load disturbances. 
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