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Abstract: Nonlinear characteristic and internal behavior 
of the Proton Exchange Membrane (PEM) Fuel Cells 
under different load conditions is of paramount 
importance. This paper presents an adaptive neural 
controller based on a back-propagation algorithm for 
maximum power control of PEM fuel cell system. The 
system consists of a buck-boost converter connected to the 
fuel cell. The adaptive neural controller receives the error 
and change of error signals as inputs during load changes 
and generates the DC-DC converter duty cycle. By using 
the inference, the duty ratio of the buck-boost converter is 
controlled so that the fuel cell can provide the maximum 
power. The ANN controller monitors also the temperature, 
the pressure and the cell voltage. In this paper the 
dynamic model for proton exchange membrane fuel cells 
using ten parameter model is used. The model has been 
implemented in MATLAB/SIMULINK. Both the 
double-layer charging effect and the thermodynamic 
characteristic inside the fuel cell are included in the 
model. 
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1. INTRODUCTION 

Proton Exchange Membrane fuel cells show great 
promise for use as distributed generation sources. 
Compared with other DG technologies, such as wind 
and photovoltaic generation, PEM fuel cells have the 
advantage that they can be placed at any site in a 
distribution system, without geographic limitations, 
to achieve the best performance. Electric vehicles are 
another major application of PEM fuel cells. The 

increased desire for vehicles with less emission has 
made PEM fuel cells attractive for vehicular 
applications since they emit essentially no pollutants 
and have high-power density and quick start. 
PEM fuel cells are good energy sources to provide 
reliable power at steady state. So the PEM fuel cells 
can decrease the demand of electric energy by using 
operating point which provides maximum power all 
the time. Since the current-voltage characteristic of 
the fuel cell is nonlinear, then the tracking control of 
the maximum power is a complicated problem. In 
order to overcome this problem, many tracking 
control strategies have been proposed such as in 
Perturbation [1]: An observe method is used to 
obtain maximum power for fuel cell in fuel 
cell/battery hybrid power system. In [2] a Maximum 
Efficiency Point Tracking (MEPT) algorithm based 
on the perturbation and observation method is 
proposed for finding the optimal air supply rate to 
maximize the net-power generation of FC system. 
An adaptive fuzzy logic controller for maximum 
power control of grid-connected solid oxide fuel cell 
system is presented in [3]. In this paper an adaptive 
neural controller based on a back-propagation 
algorithm is used to extract maximum power point 
from PEM fuel cell stack under partial load insertion 
and rejection test. Dynamic analysis of PEM fuel cell 
including thermodynamics of the cell and double 
layer charging effect by using ten parameter model is 
presented in simulation by “Matlab/Simulink”. 
Partial load insertion and rejection test is presented to 
simulate the behavior of the PEM fuel cell under 
different loading conditions. 



 

 

This paper is organized as following: The basic 
operation of the PEM fuel cell and the dynamic 
model to execute design and analysis of adaptive 
neural controller are derived in Section 2. The 
adaptive neural network controller is used to achieve 
maximum power which is described in Section 3. 
Simulation results from the PEM fuel cell system is 
presented in Section 4. Finally, the conclusion is 
stated in section 5. 
 
2. Fuel Cell Basic Operation 
A PEM fuel cell converts the chemical energy of fuel 
hydrogen (H2) and oxidizer oxygen (O2) in to 
electrical energy. The typical PEM fuel cell stack is 
illustrated in Fig. 1. On the side of the cell in Fig. 
1(b), referred as anode, the fuel is supplied under 
certain pressure. The fuel for this model is a pure gas 
H2. The fuel spreads through electrodes until reaches 
the catalytic layer of the anode where it reacts to 
form protons and electrons as described by equation 
1.The protons are transferred through the electrolyte 
(solid membrane) to the catalytic layer of the 
cathode. 

−+ +→ eHH g 22)(2                        
(1) 

  On the other side of the cell, the oxidizer flows in 
the channels of the plate and it spreads through the 
electrode until it reaches the catalytic layer of the 
cathode. The oxygen is consumed with the protons 
and electrons and the product, liquid water, is 
produced with residual heat in the surface of the 
catalytic particles. The electrochemical reaction that 
happens in the cathode is: 
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Then the full chemical fuel cell reaction is: 
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1

 
(3) 

 
 
 
 
 
 
 
 
 

 
 
 

(a) Schematic diagram of fuel stack model 
 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 1. (a) Schematic diagram of fuel stack model, (b) Fuel 
cell structure. 

 
Ten Parameter Model 
Ten parameter model is based on the following initial 
assumptions: 
The chemical reactions in the polymeric membrane 
are instantaneous: 
The voltage across the cell terminals is given by the 
following equation [4-8]: 

concohmicactNernstfc vvvEv −−−=
              

(4)                

 In the equation (4), ENernst is the thermodynamic 
potential of the cell and it represents its reversible 
voltage, when losses are not considered in the 
process of electrical energy production without load. 
Vact is the activation voltage drop due to the 
activation of the anode and the cathode, Vohmic is the 
ohmic voltage drop, a measure of the ohmic voltage 
associated with the conduction of the protons of solid 
electrolyte and internal electronic resistance and 
Vconc represents the voltage drop resulting of the 
concentration or transport of mass of oxygen and 
hydrogen. The Nernst voltage for given temperature 
T, oxygen pressure, PO2, and hydrogen pressure, PH2, 
is given by the following equation [7], [10]:
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The hydrogen and the oxygen partial pressures are 
calculated as in [7], [8]. 
 The influence of fuel and oxidant delays on the fuel 
cell-output voltage during load transients can be 
written as [6]: 
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Converting (6) to the Laplace domain, we obtain: 
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Where λe is constant factor, τe is the overall flow 
delay time and this voltage is considered to be 
subtracted from the right side of (5).               

 The activation voltage drop including anode and 
cathode can be calculated by [7], [10], and [11]: 
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in which: ifc is the stack current (A), T is the stack 
temperature (K), ζ1, ζ2, ζ3 and ζ4 are empirical 
coefficients given in table 1, A is the cell area 
(cm2),CH2 is the hydrogen concentration in mol.cm-3 

and CO2 is the oxygen concentration on the cathode 
in mol.cm-3 [4]. 
The ohmic voltage drop is given by:  

)( cmfcohmic RRiv +=
                       

(9)                 

Where Rmis the equivalent resistance of the electron 
flow and Rc is the proton resistance considered as 
constant [1], [4]: 
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 In which L is the thickness of the membrane (cm), 
A is the membrane active area (cm2) and ρm is the 
specific resistivity for the electrons flow (Ω.cm).  
The concentration voltage drop can be calculated 
from the following equation: 

)exp(nimvconc −= (11)                 
Where m and n are empirical coefficients [4], [11], i 
is the stack current density (A/cm2). 
 
Double-layer Charging Effect 
 In the PEM fuel cell, the two electrodes are 
separated by a solid membrane (Fig. 1(b)) which 
allows only the H+ ions to pass, but blocks the 
electron flow. The electrons will flow from the anode 
through the external load and gather at the surface of 
the cathode, to which the protons of hydrogen will be 
attracted at the same time. Thus, two charged layers 
of opposite polarity are formed across the boundary 
between the porous cathode and the membrane. The 
layers, known as electrochemical double layer, can 
store electrical energy and behave like a super 
capacitor. The equivalent circuit of fuel cell 
considering this effect is given in Fig. 2. In this 
circuit, C is the equivalent capacitor due to the 
double-layer charging effect. Since the electrodes of 
a PEM fuel cell are porous; the capacitance C is very 
large and can be in the order of several Farads. Ract 

and Rconc are equivalent resistances of activation and 
concentration voltage drops. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Equivalent electrical circuit of the double-layer 
charging effect inside the PEM fuel cell. 

 
The voltage across C is [9]: 
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(12)   

The double-layer charging effect is integrated into 
the modeling, by using Vc instead of Vact and Vconc , 
to calculate Vcell. 
The fuel-cell output voltage now turns out to be: 

cohmicNernstcell VvEV −−=                   (13)                

And the stack fuel cell voltage can be calculated as: 

cellcell VNV =                            (14)                
Where Ncell is the number of cells in the stack. 
 
Thermodynamics of the fuel cell 
During transitions, the temperature of the fuel cell 
will rise or drop according to the following equation 
[4], [6]: 

( ) ( )fcellNernstt TTHVEi
dt

dT
C −−−=

         
(15)                

Where Ct is the thermal capacity of whole fuel cell 
volume, H is the thermal transmission coefficient for 
the whole fuel cell surface and Tf= 30+273.15º K.   
The instantaneous electrical power supplied by the 
cell to the load can be determined by the equation 
[7]: 

IVP cellFC =                            (16)                
The FC efficiency can be calculated from the 
equation [7]: 

m
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(17)                

Where µf is the fuel utilization coefficient, generally 
in the range of 95%.Vm is the maximum voltage that 
can be obtained using the Higher Heating Value 
(HHV) for the hydrogen enthalpy. The 
electrochemical potential (standard potential) 
corresponding to the HHV is 1.481 V per cell. 
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3. Adaptive Neural Network (ANN) Controller 
 Neural networks become indispensable tools in 
many areas of engineering and are continuing to 
receive much attention in Maximum Power Point 
Tracking (MPPT). An ANN controller, based on 
back-propagation algorithm, is used for maximum 
power point tracking. The input signals are the error 
(error between output voltage of the buck-boost 
converter and reference voltage) and the change of 
error, and the output signal is the duty cycle of the 
converter. The configuration of the proposed 
feed-forward neural network controller is shown in 
Fig. 3. The network consists of three layers: an input, 
a hidden, and an output layer. The numbers of nodes 
are two, four and one in the input, hidden and output 
layers respectively. The input signals are passed to 
the nodes in the hidden layer then to the output layer 
which provides the duty cycle of the buck-boost 
converter D. The sigmoid activation function is 
utilized in the hidden layer while the linear transfer 
function is utilized in the output layer. Learning 
process for ANNC is defined as change in 
connection weight values that result from capture of 
information. ANN learning is done using the 
backward propagation algorithm which cycles 
through two distinct passes, a forward pass followed 
by a backward pass through the layers of the network. 
Let us denote the weight of the connection from node 
i to node j by wij . The values of wij are initialized to 
small numbers in the range ±0.05. These weights are 
adjusted to new values in the backward pass. This 
phase begins with the computation of the error at 
each neuron in the output layer. The popular error 
function is the squared difference between the output 
of the node k ok and the target value for that node yk.  

 

Fig. 3. Feed-forward neural network controller. 

For each output layer node, the error term is 
computed as: 

( ) ( )kkkkk oyoo −−= 1δ               (18) 

These errors are used to adjust the weights of the 
connections between the last-but-one layer of the 
network and the output layer. The new value of the 
weight wjk of the connection from node j to node k 
is:  

( ) ( ) ( )nwnwnw jk
old
jk

new
jk ∆+=+ 1       (19)   

where, ( )nw jk∆  is the correction to the synaptic 

weight ( )nwold
jk  and is given as:       

( ) ( ) ( ) ( )1−∆+=∆ nwnnonw jkkjjkjk αδη    (20) 

Where jkη  is the learning rate, in the range of 0.1 to 

0.9, α  is the momentum constant and ( )nkδ  is the 
local gradient. 

4. Simulation Results 
 The fuel stack power system configuration is shown 
in Fig. 4. The system consists of fuel stack, DC-DC 
converter, load, and controller for MPPT (ANN 
controller). For validation of the model, the fuel 
stack model SR-12 modular PEM Generator was 
simulated. The parameters used for this simulation 
are presented in Table 1. 

For the determination of the model characteristics, a 
load variation have been simulated in a given time 
range (namely 10000 seconds) leading the stack from 
a no load to a full load condition. 

 

Fig. 4. Fuel stack power system configuration. 

Fig. 5(a) shows the power – voltage-current curves 
of the stack with maximum power 1.07 KW versus 
current density Fig. 5(b) shows efficiency curve of 
the stack start from 79% at very low current density 
to 16% at high current density.            .  



 

 

Fig. 5. Avista SR-12 PEM characteristics. 

  Maximum power tracking under partial load 
insertion and rejection test. 

Fig. 6 depicts the load current for test of a partial 
load insertion followed by load rejection and shows 
the curve of the resulting voltage. Initially, the stack 
supplies 15 A to the load; after 5 seconds of 
simulation, the current is increased to 30 A, staying 
at this value until the simulation time reaches 10 
seconds, the stack current is decreased to 15 A for 
another 5 seconds and increase again to 40 A in the 
same period. Finally, the load current is decreased 
again to 15 A until the end of the simulation (t = 25 
seconds). It can be noticed that there is more 
response attenuation in the load insertion than in the 
load rejection, as expected. The values of the voltage 
are 38.58 V before the load increase, 34.52 V, and 
31.55 V during the load pulses of 30A and 40A and, 
again, 38.58 V when the current is decreased. These 
values are obtained after having ceased the transient 
regime.

Fig. 6. Stack current and voltage for partial load insertion 
and rejection test.   

Fig.7 presents the power response and the stack 
efficiency. A peak can be observed at the load 
insertion instant with a maximum value of 1362 W. 
When the load is decreased, the power presents a 
minimum value of 549W. The power steady state 
value is 579W for a current of 15A, 1038W for a 
current of 30A and 1262 W for a current 40A and the 
stack. The steady-state values for the efficiency are: 
51.5% for a current of 15 A, 46 % for a current of 30 
A and 42% for a current 40 A. It can be noticed that 
there is a significant reduction in the efficiency for 
variations of the demanded current, which should be 
taken into consideration when one evaluates a certain 
system. 

Under partial load insertion we used an ANN 
controller to extract the maximum power from 
PEMFC stack as shown in Figs. 8 and 9. The output 
power of the stack by using ANNC under different 
load conditions is tracking the reference power as 
shown in Fig. 8.                            .

Fig.7. Stack power and efficiency for partial load. 
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Fig. 8. Stack output and reference power for partial load 
using ANN controller.                  .

 

Fig. 9. Stack output and reference voltages.  

The output voltage of the converter under different 
loading condition of the stack follows the reference 
voltage value corresponding to maximum power 
points of the stack as shown in Fig. 9.  

 

Fig. 10. Temperature of stack for partial load using ANN 
controller. 

Fig. 10 monitors the temperature of fuel cell with 
ANN controller under different loading states. The 
controller keeps the temperature with range from 
278ºK to 279.2ºK.                 .

Fig. 11.Cell output voltage with ANN controller. 

Fig.11 shows the change of voltage of cell with ANN 
controller under different loading conditions. The 
controller always keeps the cell voltage in range and 
tracking reference power and reference voltage.

Fig. 12. Anode pressure for partial load with ANN.

Fig. 13. Effect of load changing on anode pressure 
with ANN. 
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Figs. 12 and 13 depict the pressure of Anode with 
ANN controller under different loading and under 
change of inlet anode pressure from 1 to 3 atm in 25 
sec. The controller is capable of keeping the pressure 
in permitted range within rated values. 

5. Conclusions 
  This paper has presented maximum power 
tracking, of PEM fuel cell stack power system using 
adaptive feed-forward neural network controller 
based on back-propagation algorithm under partial 
load insertion and rejection test. The Ten parameter 
model is used for dynamic analysis of PEM fuel cell. 
As a matter of fact, the lower the parameter number 
is, the easier the simulations are, but at the same time, 
the gap respect to the real behavior of the real stack 
increases. 

The partial and total load insertion and rejection tests 
demonstrated that the FC output voltage present a 
component which is directly related to the load 
current, known as the ohmic over-potential. This 
varies instantly with the variation of the current. 
There are still two other components which are the 
activation and the concentration over-potential, 
which are responsible for the attenuation of the 
voltage variation as a function of the current 
variation through the cell. Such dynamic voltage 
variation has significant reflexes on the supplied 
power. The simulated results show that the ANN 
controller is capable of tracking Maximum power 
point, temperature, pressure and voltage of the cell. 
The ANN controller gives a good performance for 
FC system with this type of converter under partial 
load conditions. 

APPENDIX 

Table (1) Parameters of the SR-12 Modular PEM 
Generator. 

Param. Value Param Value 
T 323 k n 48 
A 62.5 cm2 ζ1 -0.948 
L 25 µm ζ2 0.00286+0.0002 

ln(A)      
+(4.3·10−5) ln(CH2) 

PH2 1.47628 atm ζ3 7.22e-5 
PO2 0.2095 atm ζ4 -1.0615e-4 
RC 0.0003 Ω ψ 23 
Imax 42 A jmax 0.672 A/cm2 
Ct 22000 H 40 
λe 0.0033 τe 80 
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