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Abstract: Nonlinear characteristic and internal behavior increased desire for vehicles with less emission has
of the Proton Exchange Membrane (PEM) Fuel Cellsmade PEM fuel cells attractive for vehicular
under different load conditions is of paramount gpplications since they emit essentially no pollutants
importance. This paper presents an adaptiv_e neuralynd have high-power density and quick start.
cont_roller based on a back-propagation algorithnr fo PEM fuel cells are good energy sources to provide
maximum power control of PEM fuel cell system. The o a6 nower at steady state. So the PEM fuel cells

system consists of a buck-boost converter connéattu: d the d d of electri b .
fuel cell. The adaptive neural controller receithe error ~ ©21 G€créase the aemand or electric energy by using

and change of error signals as inputs during loadrges opergtlng p_0|nt which provides maximum power all
and generates the DC-DC converter duty cycle. Bygus the time. Since the current-voltage characteristic of
the inference, the duty ratio of the buck-boostveoter is the fuel cell is nonlinear, then the tracking control of
controlled so that the fuel cell can provide thexmaum  the maximum power is a complicated problem. In
power. The ANN controller monitors also the tempee, order to overcome this problem, many tracking
the pressure and the cell voltage. In this papee th control strategies have been proposed such as in
dynamic model for proton exchange membrane fué cel pertyrbation [1]: An observe method is used to

using ten parameter model is used. The model hes be obtain maximum power for fuel cell in fuel

implemented  in  MATLAB/SIMULINK. ~Both = the oo hauery hybrid power system. In [2] a Maximum

double-layer charging effect and the thermodynamic . ° . . :
character?/stic insio?e %he fuel cell are included %/he Efficiency Point T_racklng (MEPT) algorlthm based.
model. on the perturbation and observation method is
proposed for finding the optimal air supply rate to
Keywords: Proton Exchange Membrane; Ten Parameter Maximize the net-power generation of FC system.
Model; Adaptive Neural Network Controller; Maximum An adaptive fuzzy logic controller for maximum
Power Tracking. power control of grid-connected solid oxide fuel cell
system is presented in [3]. In this paper an adaptive
neural controller based on a back-propagation
algorithm is used to extract maximum power point
Proton Exchange Membrane fuel cells show greatrom PEM fuel cell stack under partial load insertion
promise for use as distributed generation sourcesand rejection test. Dynamic analysis of PEM fuel cell
Compared with other DG technologies, such as windncluding thermodynamics of the cell and double
and photovoltaic generation, PEM fuel cells have thQayer charging effect by using ten parameter model is
advantage that they can be placed at any site in gresented in simulation by “Matlab/Simulink”.

distribution system, without geographic limitations, pPartial load insertion and rejection test is presented to
to achieve the best performance. Electric vehicles argjmulate the behavior of the PEM fuel cell under

another major application of PEM fuel cells. The different loading conditions.

1. INTRODUCTION



This paper is organized as following: The basic

operation of the PEM fuel cell and the dynamic [ Loac ) €
model to execute design and analysis of adaptive
neural controller are derived in Section 2. The Membrane
. . . Cathod Anode
adaptive neural network controller is used to achieve Air channe
maximum power which is described in Section 3. o) ——| Hechannel
Simulation results from the PEM fuel cell system is Catalytic layers ’

presented in Section 4. Finally, the conclusion is|
stated in section 5. Air channe S H, channel
2
H

2. Fuel Cell Basic Operation
A PEM fuel cell converts the chemical energy of fuelyy+ 2 02+2e . H0 Hog) SoHY Y+
hydrogen (H) and oxidizer oxygen (£ in to (b)

electrical energy. The typical PEM fuel cell stack is

illustrated in Fig. 1. On the side of the cell in Fig. Fig. 1 (a) Schematic diagram of fuel stack model, (b)lFue
1(b), referred as anode, the fuel is supplied under cell structure.

certain pressure. The fuel for this model is a pure gas

H,. The fuel spreads through electrodes until reache$ en Parameter M odel

the Cata|ytic |ayer of the anode where it reacts tol €n pargmeter model is based on the fO”OWing initial
form protons and electrons as described by equatioASsumptions:

1.The protons are transferred through the electrolyte he chemical reactions in the polymeric membrane
(solid membrane) to the catalytic layer of the areinstantaneous:

cathode. The voltage across the cell terminals is given by the

Hyg — 2H*Y +2e ) following equation [4-8]:

V.. =E -V, -V, -V 4
On the other side of the cell, the oxidizer flows in fe Nernst™ Tact ~ fohmic_ “eone @)

the channels of the plate and it spreads through the!n the equation (4), Nems IS the thermodynamic
electrode until it reaches the catalytic layer of thepotentlal of the cell and it represents its reversible

cathode. The oxygen is consumed with the protoné’ ltage, when I.osses are not can|de_red in the
and electrons and the product, liquid water, igProcess of electrical energy production without load.

produced with residual heat in the surface of thevflet IS thef ?\Ct'vat'%n vo(;tar?e drP(])p q due_ toh the
catalytic particles. The electrochemical reaction thal’g‘c'['v""tIon of the anode and the cathodgwmVIs the
ohmic voltage drop, a measure of the ohmic voltage

happens in the cathode is:
PP associated with the conduction of the protons of solid

2H++£02+2e- ~ H,O+heat ) electrolyte and internal electronic resis_tance and
2 Veone represents the voltage drop resulting of the

Then the full chemical fuel cell reaction is: concentration or transport of mass of oxygen and
1 hydrogen. The Nernst voltage for given temperature

H, +§Oz - H,0+heat+electrical energy (3) T, oxygen pressure,oR and hydrogen pressure,,P
is given by the following equation [7], [10]:

Enerns= 1229- 085x10° 3(T —29815) +

Loac

H ¥ ] 1
2 H —5
Input Outzpu 43x10°xT ><{ln(PH 2) +§|n(Poz) )
H The hydrogen and the oxygen partial pressures are
ot )
0, water calculated as in [7], [8].
Input Fuel stac The influence of fuel and oxidant delays on the fuel

cell-output voltage during load transients can be
written as [6]:

& = A i) Dexp(—ri)] ©)

e

Cooling system

(a) Schematic diagram of fuel stack model
Converting (6) to the Laplace domain, we obtain:



Y

T S Rohmic |
= _e¥w YAAYA
Vg4 (S) = Al (8) 5+l @) e 4 ¢+
Where A is constant factorz. is the overall flow Ra
delay time and this voltage is considered to be

. ) cC==
subtracted from the right side of (5). Reonc Ve Veal
The activation voltage drop including anode and ¥
cathode can be calculated by [7], [10], and [11]: =

Ner nst

V=G GTHETINGR) +4, TGO (8) C
in which: i is the stack current (A), T is the stack Fig. 2 Equivalent electrical circuit of the double-layer
temperature (K),(1, (o {3 and ¢, are empirical charging effect inside the PEM fuel cell.

coefficients given in table 1, A is the cell area ) _
(cn?),Cw2 is the hydrogen concentration in molidgm The voltage across Cis [9]:

and G is the oxygen concentration on the cathodev = (I _CdVC)(R +R..) (12)

in mol.cmi® [4]. ¢ dt 7ot e

The ohmic voltage drop is given by: The double-layer charging effect is integrated into
Vormic =i (Ry +R.) 9) the modeling, by using Mnstead of \; and Vionc,

: . . to calculate Vei.
Where Ris the equivalent resistance of the electron_l_he fuel-cell output voltage now turns out to be:

flow and R is the proton resistance considered as

constant [1], [4] VceII = ENernst_Vohmic_Vc (13)
_ pnL 10 And the stack fuel cell voltage can be calculated a
=" B0V =Ny Ve (14)

In which L is the thickness of the membrane (cm),Where Ngjis the number of cells in the stack.
A is the membrane active area @randp,, is the

specific resistivity for the electrons flo®(cm). Thermodynamics of the fuel cell
The concentration voltage drop can be calculateduring transitions, the temperature of the fuel cel
from the following equation: will rise or drop according to the following equeati
Voone = —~Mexphi) (11) [4], [6]:
Where m and n are empirical coefficients [4], [11], ¢ a7 _ i(Enerne ~Vee ) - H (T —Tf) (15)
is the stack current density (A/&m tdt emst - Tee

Where G is the thermal capacity of whole fuel cell
Double-layer Charging Effect volume, H is the thermal transmission coefficiet f

In the PEM fuel cell, the two electrodes are the whole fuel cell surface ang=T30+273.15K.
separated by a solid membrane (Fig. 1(b)) whichThe instantaneous electrical power supplied by the
allows only the H ions to pass, but blocks the cell to the load can be determined by the equation
electron flow. The electrons will flow from the ate®  [7]:
through the external load and gather at the sudéce Pec =V | (16)
the cathode, to which the protons of hydrogenbéll  the FC efficiency can be calculated from the
attracted at the same time. Thus, two charged 3ayerequation [7]:
of opposite polarity are formed across the boundary
between the porous cathode and the membrane. The =y, — a7
layers, known as electrochemical double layer, can Vin
store electrical energy and behave like a supeWherey; is the fuel utilization coefficient, generally
capacitor. The equivalent circuit of fuel cell in the range of 95%.Yis the maximum voltage that
considering this effect is given in Fig. 2. In this can be obtained using the Higher Heating Value
circuit, C is the equivalent capacitor due to the(HHV) for the hydrogen enthalpy. The
double-layer charging effect. Since the electranfes electrochemical potential (standard potential)
a PEM fuel cell are porous; the capacitance Ciig ve corresponding to the HHV is 1.481 V per cell.
large and can be in the order of several Farags. R
and Ry, are equivalent resistances of activation and
concentration voltage drops.



3. Adaptive Neural Network (ANN) Controller o, =0 (1-0,)(y. -0,) (18)
Neural networks become indispensable tools in

many areas hOf tfng;_neerlngManq are Fc):ontmu::r)]g_ iol'hese errors are used to adjust the weights of the
receive much attention in Maximum FOWer FoInt oonnections between the last-but-one layer of the

'tlj'ra(l:(king (MPIPT)' ,IAn .',[A;]NN _controlcljel;, baseo_l N nhetwork and the output layer. The new value of the
ack-propagation algorithm, IS used for maX'mumweight wi of the connection from node j to node k
power point tracking. The input signals are thererr .

is:
(error between output voltage of the buck-boost "

converter and reference voltage) and the change ofVjc (h+1)= Wi (n)+ Aw (n) (19)
error, and the output signal is the duty cyclefe t where, Awj (n) is the correction to the synaptic
converter. The configuration of the proposed old _ _ _
feed-forward neural network controller is shown in Weight — wj (n) and IS given as.
Fig. 3. The network consists of three layers: gniin AW, (n) =1 0 (n) o, (n)+a AW (h-1) (20

a hidden, and an output layer. The numbers of nod
are two, four and one in the input, hidden and aiutp
layers respectively. The input signals are paseed t0.9, a is the momentum constant angj(n) is the
the_ nodes in the hidden layer then to the outpyérla |ocal gradient.

which provides the duty cycle of the buck-boost

converter D. The sigmoid activation function is 4 sjmulation Results

utilized in the hidden layer while the linear 1S The fyel stack power system configuration is shown
function is utilized in the output layer. Learning i, Fig. 4. The system consists of fuel stack, DC-DC
process for ANNC is defined as change inconyerter, load, and controller for MPPT (ANN
connection weight values that result from captdre o conroller). For validation of the model, the fuel
information. ANN learning is done using the gtack model SR-12 modular PEM Generator was

backward  propagation algorithm —which = cycles gimyjated. The parameters used for this simulation
through two distinct passes, a forward pass foltbwe gre presented in Table 1.

by a backward pass through the layers of the n&twor
Let us denote the weight of the connection fromenod For the determination of the model characteris#cs,

I to node j by w . The values of ware initialized to |54 \ariation have been simulated in a given time

S”!a" numbers in the range 20.05. These weights a.r?ange (namely 10000 seconds) leading the stack from
adjusted to new values in the backward pass. Thig no load to a full load condition.

phase begins with the computation of the error at
each neuron in the output layer. The popular error

e . : .
\?\/herefyjk is the learning rate, in the range of 0.1 to

function is the squared difference between theudutp Budehoost Converter
of the node k pand the target value for that node y
Fuel = *
Vi 1ilJ-:- RL
Hidden layer stack =
Taputiayer Output layer -
D L MPET e n
D Controller 1 Veut
{ANN)

Fig. 4. Fuel stack power system configuration.

Fig. 5(a) shows the power — voltage-current curves
Fig. 3. Feed-forward neural network controller. of the stack with maximum power 1.07 KW versus
current density Fig. 5(b) shows efficiency curve of

For each output layer node, the error term isthe stack start from 79% at very low current densit
computed as: to 16% at high current density. .
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Fig. 6 Stack current and voltage for partial load insertio
and rejection test.

Fig.7 presents the power response and the stack
efficiency. A peak can be observed at the load
insertion instant with a maximum value of 1362 W.
When the load is decreased, the power presents a
minimum value of 549W. The power steady state
value is 579W for a current of 15A, 1038W for a
current of 30A and 1262 W for a current 40A and the
stack. The steady-state values for the efficierrey a
51.5% for a current of 15 A, 46 % for a currenB806f

A and 42% for a current 40 A. It can be noticed tha
there is a significant reduction in the efficienfoy
variations of the demanded current, which should be
taken into consideration when one evaluates aioerta
system.

Fig. 6 depicts the load current for test of a parti Under partial load insertion we used an ANN
load insertion followed by load rejection and showscontroller to extract the maximum power from

the curve of the resulting voltage. Initially, thck

PEMFC stack as shown in Figs. 8 and 9. The output

supplies 15 A to the load; after 5 seconds ofpower of the stack by using ANNC under different

simulation, the current is increased to 30 A, stgyi

load conditions is tracking the reference power as

at this value until the simulation time reaches 10shown in Fig. 8.
seconds, the stack current is decreased to 15 A for 08

another 5 seconds and increase again to 40 A in the |
same period. Finally, the load current is decreased
again to 15 A until the end of the simulation (%
seconds). It can be noticed that there is more
response attenuation in the load insertion thahen
load rejection, as expected. The values of theagelt
are 38.58 V before the load increase, 34.52 V, and
31.55 V during the load pulses of 30A and 40A and, 4
again, 38.58 V when the current is decreased. These i
values are obtained after having ceased the transie

regime.
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Fig.7. Stack power and efficiency for partial load.
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Fig. 9 Stack output and reference voltages.

The output voltage of the converter under different
loading condition of the stack follows the referenc
voltage value corresponding to maximum power
points of the stack as shown in Fig. 9.
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Fig. 10 Temperature of stack for partial load using ANN
controller.

Fig. 10 monitors the temperature of fuel cell with
ANN controller under different loading states. The
controller keeps the temperature with range from

278K to 279.K.
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Fig. 11.Cell output voltage with ANN controller.
Fig.11 shows the change of voltage of cell with ANN
controller under different loading conditions. The
controller always keeps the cell voltage in range a
tracking reference power and reference voltage.
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Fig. 13. Effect of load changing on anode pressure
with ANN.



Figs. 12 and 13 depict the pressure of Anode with
ANN controller under different loading and under
change of inlet anode pressure from 1 to 3 atnbin 2
sec. The controller is capable of keeping the press
in permitted range within rated values.

5. Conclusions

This paper has presented maximum power
tracking, of PEM fuel cell stack power system using
adaptive feed-forward neural network controller
based on back-propagation algorithm under partial
load insertion and rejection test. The Ten paramete
model is used for dynamic analysis of PEM fuel.cell
As a matter of fact, the lower the parameter number
is, the easier the simulations are, but at the sanee
the gap respect to the real behavior of the reakst
increases.

The partial and total load insertion and rejectiests
demonstrated that the FC output voltage present a
component which is directly related to the load
current, known as the ohmic over-potential. This
varies instantly with the variation of the current.
There are still two other components which are the
activation and the concentration over-potential,
which are responsible for the attenuation of the
voltage variation as a function of the current
variation through the cell. Such dynamic voltage
variation has significant reflexes on the supplied
power. The simulated results show that the ANN
controller is capable of tracking Maximum power
point, temperature, pressure and voltage of thie cel
The ANN controller gives a good performance for
FC system with this type of converter under partial
load conditions.

APPENDI X

Table (1) Parameters of the SR-12 Modular PEM
Generator.

Param. Value Param Value
T 323k n 48
A 62.5 cni [ -0.948
L 25um & 0.00286+0.0002
In(A)
+(4.310-5) In(CH2)
Pho 1.47628 atm| (3 7.22e-5
Po2 0.2095 atm C_,4 -1.0615e-4
Rc 0.0003Q i 23
I o 42 A Jmev 0.672 Alcm
G 22000 H 40
he 0.0033 Te 80

o

10.

11.
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