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Abstract: The optimal capacitor switching (OCS) is an 
important measure for loss minimization of distribution 
systems via an optimal capacitor dispatch schedule. The 
OCS is used to improve the voltage profile and minimize 
system losses. A novel neural network based approach uses 
minimum number of iterations to solve the OCS problem in 
radial distribution systems. For a typical distribution 
network, where a power flow is used in an unbalanced 
phase, it is necessary to optimize the number of switched 
banks in the bus of each single phase independently. The 
NN based OCS is used to find the size and location of the 
capacitor for loss reduction and to improve the voltage 
profile in Radial Distribution System (RDS). 
 
Keywords: Radial Distribution System (RDS), Optimal 
Capacitor Switching (OCS), Neural Network (NN), 
Forward-only Algorithm, Capacitor suitability index (CSI) 
 

NOMENCLATURE 
PLI :    Power loss Index    
PV :     Per unit Node Voltage    
CSI :    Capacitor suitability Index 
Vmin :   Minimum node voltage 
Vmax :   Maximum node voltage 
Vi   :     Rated voltage at node i 
Eloss :    Energy loss      
Csystem : Total system cost 
Cp  :     Cost coefficient of peak power loss  
Qc  :     Capacitor kVAr at node i 
Ce  :     Cost coefficient of peak power loss  
P(i)  :    Active power load at node i 
Q(i)  :   Reactive power load at node i 
pl(i)  :   Active power loss in branch terminating at node i 
ql(i)  :   Reactive power loss in branch terminating at node i 
ploss  :     Total active power loss of the system 
qloss   :   Total reactive loss of the system 
Pbase  :   Base power for the system 
Qc(i)  : Value of capacitor placed at node i 
Ic      : Capacitive Current 
np    :  Neurons patterns 
nx     : Weights of neurons 
nn     : Neuron network 
no     : Neuron output 
ny     : Weights connected to neurons 
 

I. INTRODUCTION 
       Capacitor placement is a hard problem in power 
system research, because it involves integer variables 
for determining the placement, locations and discrete 
variables for deciding the number of capacitor banks 
to be installed [1]. It is a large-dimension constrained 
optimization problem considering the system and 
investment constraint. In this paper, neural network 
based approach is proposed to solve this problem. 
The size and solution quality of the resulting 
candidate solution set is reduced and improved 
iteration by iteration, and a good enough capacitor 
placement pattern in the final iteration is obtained. 
The test results show that the approach is superior for 
the capacitor placement problem.  
 
A. Problems in Capacitor placement 
       Conventionally capacitor placement problem is 
formulated as a problem of minimization of the total 
system cost. The total system cost is defined as the 
summation of the capacitor installation cost, cost of 
peak power loss and cost of energy loss. The 
objective function is minimized subject to the nodal 
voltage regulations maintained within the permissible 
limits. The problem is thus stated as, 
Min:

 
       …  (1) 

Subject to:                    …  (2) 
 
where, fcosti is the capacitor installation cost at node i, 
Qci the capacitor kvar at node i, Ppeakloss, the peak 
power loss, Eloss the energy loss, Cp the cost 
coefficient of peak power loss, Ce the cost coefficient 
of energy loss. As the capacitors are commercially 
available in discrete sizes fcosti varies in discrete steps. 
Capacitor cost has two parts (i) fixed part and (ii) 
variable part depending upon the kVAr capacity. The 
capacitor installation cost is shown in Table 1 where 



Rs/KVAr represents the scaling factor and is chosen 
as listed in Appendix I.  

 
Table 1 Capacitor installation size and costs  

 
Normalise 
Qc(kVar) 

Rs/kVAr Normalise 
Qc(kVar) 

Rs/kVAr 

0.037 30 0.556 9.82 
0.074 21 0.593 10.2 
0.111 15.18 0.629 11.34 
0.148 13.2 0.667 11.22 
0.185 16.56 0.704 10.98 
0.222 10.98 0.741 10.8 
0.259 13.68 0.778 11.7 
0.296 10.2 0.815 10.44 
0.333 12.42 0.852 11.28 
0.372 12.06 0.889 10.2 
0.407 11.54 0.926 10.98 
0.444 11.22 0.963 10.92 
0.481 12.66 1 10.74 
0.516 10.56   

 
 
B. Objective of the work  
       The objective of the capacitor placement 
problem is to determine the locations and sizes of the 
capacitors so that the power loss is minimized and 
annual savings are maximized [6]. Even though 
considerable amount of research work was done in 
the area of optimal capacitor placement, there is a 
need to develop more suitable and effective methods 
for the optimal capacitor placement. Although some 
of these methods to solve capacitor allocation 
problem are efficient, their efficacy relies entirely on 
the goodness of the data used [8] and does not 
compensate for any lack of uncertainty in the data.  
To overcome this, this work integrates heuristics 
judgments into the capacitor allocation optimization 
process. Furthermore, the solution obtained from the 
proposed algorithm is adaptive and can be quickly 
assessed to determine their feasibility in being 
implemented in a distribution system [9].  
 
C. Background of the proposed development 
       The purpose of placing capacitors is to improve 
the node voltages and to reduce system losses. It is 
well known that for voltage drop in a power system, 
reactive power flow is more responsible than the flow 
of active power. Moreover, a large portion of power 
system loads being of constant power type, low 
voltage becomes responsible for high power losses 
[3]. Thus, the neural based capacitor placement 
methods are developed using node voltages and 
active and reactive branch power losses [7]. These 
neural methods are very sensitive to the weighting 
factors representing the membership functions. These 
weighting factors are tuned properly in order to have 
the best results. There is no guarantee that the same 

set of factors will perform uniformly for all the 
networks. The novelty of this work is to explore the 
development of Neural Network, which are less 
dependent on the above set of factors. 
 

II. PREVIOUS WORK 
       Shyh-Jier Huang [2000] proposed an Immune 
Algorithm (IA) based optimization approach for 
solving the capacitor placement problem. Shikha 
Gupta et al., [2011] presented an efficient approach 
for capacitor sizing and location on a RDS using 
Artificial Intelligence Technique. S. Ghosh et al.,   
[1999] proposed a simple and efficient method for 
the load flow of RDS network using the evaluation 
based on algebraic expression of receiving end. 
Sundhararajan [1994] presented the capacitor 
placement problem in a distribution system using a 
genetic algorithm. Prakash [2007] presented a novel 
particle swarm optimization based approach for 
capacitor placement on RDS. M. Damodar Reddy et 
al., [2008] proposed the placement of capacitors on 
the primary feeders of the RDS to reduce the power 
losses to improve the voltage profile. Haque M.H. 
[1999] proposed the capacitor placement problem is 
to determine the locations and sizes of the capacitors 
so that the power loss is minimized and annual 
savings are maximized. Ng H.N. et al., [2000] 
proposed the capacitor placement problem by using 
fuzzy approximate reasoning. K. Ellithy, [2008] 
proposed the location and sizes of the capacitor to be 
placed in distribution networks in an optimal manner 
to reduce the energy losses and peak power losses of 
the networks. Usha Reddy et al., [2011] presented a 
fuzzy and differential Evolution (DE) method for the 
placement of capacitors on the primary feeders of the 
RDS to reduce the power losses and to improve the 
voltage profile. S.K. Bhattacharya [2009] proposed a 
new fuzzy based solution of the capacitor placement 
in RDS. Youman, et al., [2001] proposed an approach 
with fuzzy variables is for solving the capacitor-
switching (CS) problem in RDS. Aravindhababu P., 
et al., [2009] presented a new algorithm for optimal 
locations and sizing of static and/or switched shunt 
capacitors, with a view to enhance voltage stability. 
Y.M. Deng, et al., [2003] presented an approach 
which uses fuzzy variables to solve the (CS) problem 
in RDS. Khalil, et al., [2006] presented a binary 
particle swarm optimization (PSO) for optimal 
placement and sizing of fixed capacitor banks in 
radial distribution lines with nonsinusoidal substation 
voltages. Baskaran, et al., [2006] proposed a non-
traditional optimization technique, a Genetic 
Algorithm (GA) is conjunction with Fuzzy logic (FL) 
is used to optimize the various process parameters 
involved in introduction of FACTS devices in a 
power system. S. Jshak, et al., [2004] proposed a 



technique to determine the location of the SVC in 
order to minimize loss in the system. Changcheng 
Zhao, et al., [2002] proposed an algorithm for 
reactive power optimization with time-varying fuzzy 
load model for medium-high voltage distribution 
network. [19] Mohmoud A. Sayed and Takaharu 
Takeshita, “Load Voltage Regulation and Line Loss 
Minimization of Loop Distribution Systems using 
UPFC” IEEE Transactions, 2008.  Sayed et al., 
[2008] presented new methods for achieving line loss 
minimization and voltage regulation in the loop 
distribution system.  [20] S. Chandramohan, et al., 
[2010] presented to use a non-dominated sorting 
genetic algorithm (NSGA) for reconfiguring a radial 
Distribution Corporation (DisCo) to minimize its 
operating costs considering real and reactive power 
costs while maximizing its operating reliability and 
satisfying the regular operating constraints.[21]H.Yu 
et al., [2010] proposed second order algorithms such 
as Levenberg  Marquart algorithm are recommended 
for neural network training. [22] B. M. Wilamowski 
et al., [2010] developed second order algorithm 
Neuron by Neuron (NBN) to train close to optimal 
architecture.  

 
III. NEURAL NETWORK BASED CAPACITOR 

LOCATION 
Figure 1 proposes the capacitor placement for typical 
33 bus system  
 
 

 
Fig.1. 33 Bus system 

 

In Figure 1, along with the optimizations of reactive 
power is the minimization of total active power 
losses and control of voltage in real-time. This is 
achieved by placing the optimal value of capacitor at 
proper locations in the electrical distribution systems. 
The proposed methodology uses an intelligent NN 
approach of critical buses detection for optimal 
placement and sizing of capacitor banks. The critical 
node is also determined using Neural Network along 
with the sizing of capacitor banks [2].  
 
A. Algorithm for Capacitor Placement 
 
     step1 

Read INPUTS PLI; PV 
     step2 
      Normalize INPUTS [0, 1] 
     step3 
      OP = Neural (INPUTS) 

Normalize OP 
     step4 
     If [OP >=threshold] 
              Place Capacitor 
          else 
              No change 
       The node voltages and power loss indices are the 
inputs to the neural network used to determine the 
suitability of a node in the capacitor placement 
problem. The suitability of a node is chosen from the 
capacitor suitability index (CSI) at each node. The 
higher values of CSI are chosen as best locations for 
capacitor placement. The power loss indices are 
calculated as, 
 
 
PLI(i)=(LR-LMAX)/(LMIN-MMAXN), i=2,…N   ...(3) 
 
where,    LR : Loss reduction,  

LMIN: Minimum reduction,  
LMAX: Maximum reduction,  
N: Number of bus 
 

To determine the critical buses the voltage and power 
loss index at each node is calculated. 
       A close study of the capacitor placement problem 
reveals that the capacitor locations are only 
dependent upon the node voltages and branch power 
losses. The relation between PLI (input), PV (input) 
and CSI (output) is given in Table 2.  
 

 
 
 
 
 



Table 2 Determine optimum capacitor location 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The magnitudes of the active and reactive loads of 
the nodes also are equally important deciding factors. 
Figure 2 shows the capacitor (fixed or switched type) 
placement algorithm (to be installed at a specific 
node), which is based on the system minimum and 
maximum reactive power demands, QL-min and QL-max 
in a defined period. They are chosen such that the 
reactive power is drawn from fixed capacitors and 
once optimal locations are acquired the switched 
capacitor is chosen. The available value of capacitor 
from ic is chosen as 
 

                   … (4) 

                 … (5) 
 
 
 
 

 
 

Fig. 2 Flow chart of the Capacitor placement 
 

IV. NEURAL NETWORK WITH BACK 
PROPAGATION SCHEME 

       The back propagation algorithm is used in 
layered feed-forward NN, which means the artificial 
neurons are organized in layers and send their signals 
“forward” and then the errors are propagated 
backwards. The idea of the back propagation 
algorithm is to reduce this error, until the ANN learns 
the training data. The training begins with random 
weights and the goal is to adjust them till the error is 
minimal.  

The Neural Networks uses traditional designs, (i) 
(most popular training algorithm) Enhanced back 
propagation (EBP) algorithm and (ii) Multi Layer 
Perceptron (MLP) network. The constraints to be 
considered in the NN design are, 

(i) Large size  
(ii) Poor generalization ability 

 
The BPN based NN with the inputs PLI, PV and the 
output CSI is shown in Figure 3 where K1, K2&K3 
are scaling factors chosen suitably to prevent NN 
saturation. 
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Fig. 3 BPN based neural network specifications 

 
A. Problems in Second Order Training Algorithms 
(Memory Limitation) 
 
       Conventional second order training algorithms 
are such that, the update formula has the form given 
in eqn. [6], 

 
(JTJ + µI)-1                        … (6) 

 
where, 

  
                                                                     ..... (7) 

The size of matrix is proportional to the   size of 
networks and as the size of networks increases, 
second order algorithms may not be as efficient as the 
first order algorithms [21, 22]. 
 

(i) The size of Jacobian matrix J is P×M×N 
(ii) P is the number of training patterns 
(iii) M is the number of outputs 
(iv) N is the number of weights 

 

Practically, the number of training patterns is huge 
and is encouraged to be as large as possible. It 
involves matrix inversion, 
In conventional algorithm, the computational 
duplication exists, i.e. 

(i) Forward computation (calculate errors) 
and 

(ii) Backward computation: error back-
propagation  

There exists an architecture limitation and also 
neuron by neuron computation. In second order 
algorithms, the error back-propagation process has to 
be repeated for each output. Hence, this is very 
complex and inefficient for networks with multiple 
inputs and outputs. 
 
B.Second Order Improved Derivation Computation 
       In neural network training, considering each 
pattern is related to one row of Jacobian matrix and 
patterns are independent of each other. The weight 
update equation is given by,  
 
       … (8) 
 
Computation of Q in equation (8) where 

     … (9) 
Computation of qpm (Sub Matrix) in equation (9) 
where  

                                           ... (10) 

 
                                                                             ... (11) 
Computation of g in equation (8) where 
 
 

 
                                                                          … (12) 

 
Computation of pm (Sub Vector) in equation (12) 
where 
 

  gIQw 1 



 

                      … (13) 

 
     … (14) 
 
 
Computation of jpm in equation (10) where 
 
 

     … (15) 
 

 
This differs from conventional weights update 
algorithms which employs, 
 Δw = (JTJ + µI)-1 JTe  
 
C. Advantages of Second Order Computation 
  
The training scheme has the following merits: 

(i) No need for Jacobian matrix storage 
(ii) Vector operation instead of matrix operation 
(iii) Significant memory reduction 
(iv) Memory reduction benefits and increased 

computation speed 
 
D.Pseudo code of Integrated Training algorithms 
 
       In forward-only computation, the backward 
computation is replaced by extra computation in 
forward process and is given in Figure 4. 
 

 

 

 
Fig. 4 Conventional forward-backward algorithm 



 
V. RESULTS AND DISCUSSION 

 
       The capacitor selection and trained NN output is 
given in Table 3 and Table 5 respectively.  
 

Table 3 Capacitor Selection 
 

Branch 
Project 
Final  PF                                           0.92 
Load Details Initial PF          

Ratings in   KW 
Assured 

Q 
T 
Y 

Total  kVAr 
Reqd. 

Motors 0.8 200 2 400 130 
Motors 0.8 100 1 100 40 
Transformer 
Ratings in KVA 

 1000 1 1000 100 

Total kVAr Reqd. 
We are assumed 
Motors are 
operating at 75% 
Load 

Given in 
25KVAr 

Units 

   275 

With MPP-S 
($) 

61875 
(Approx.) 

    

With MPP-H ($) 82500 
(Approx.) 

    

With MD-XL ($) 128150 
(Approx.) 

    

With MD ($) 128150 
(Approx.) 

    

With FF/APP 
Double ($)  

128150 
(Approx.) 

    

With FF/APP-
Single ($) 

93500 
(Approx.) 

    

 
 

The capacitor placement and kVAr requirement is given in 
Table 4. 
 
 
 

Table 4 Results of 33-bus system 
 

Bus No.  kVAr 
Requirements 

7 60 
12 70 
22 170 
15 110 
24 20 
27 100 
31 120 

 
 
 
 

 
Table 5 Neural network input and output results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

VI. CONCLUSION 
       It is much easier to use a training algorithm of 
the neural network even when the number of neurons 
is larger than the conventional one. However, with a 
small number of neurons the neural network has 
much better online application. This means it will 
respond correctly to closely related pattern other than 
the one used for training. In this paper, the proposed 
Network is less dependent on the weighting factors 
and are more generic than other Neural Network 
based capacitor placement methods. Also, the use of 
forward-only algorithm simplifies the computation 
process in second order training that can handle 
arbitrarily connected neural networks and has speed 
benefit for networks with multiple outputs.  
 
 

I/P  
PLI         PV 

CSI 
O/P 

0.72 0.1 0.2 
0.76 0.1 0.1 

0.8 0.1 0.2 

0.84 0.1 0.1 

0.88 0.1 0.1 

0.72 0.2 0.4 

0.76 0.2 0.2 

0.8 0.2 0.2 

0.84 0.2 0.1 

0.88 0.2 0.1 

0.72 0.4 0.6 

0.76 0.4 0.4 

0.8 0.4 0.2 

0.84 0.4 0.1 

0.88 0.4 0.1 

0.72 0.6 0.6 

0.76 0.6 0.6 

0.8 0.6 0.4 

0.84 0.6 0.2 

0.88 0.6 0.1 

0.72 0.8 0.8 

0.76 0.8 0.6 

0.8 0.8 0.4 

0.84 0.8 0.2 

0.88 0.8 0.2 
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Appendix –I 
Typical multiplier to determine capacitor kVAr requirements for Power Factor correction 

Original 
Power 
Factor 

Desired Power Factor 
0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0 

0.50 0.982 1.008 1.034 1.060 1.086 1.112 1.139 1.165 1.192 1.220 1.248 1.276 1.306 1.337 1.369 1.403 1.440 1.481 1.529 1.589 1.732 
0.51 
0.52 
0.53 
0.54 
0.55 

0.937 
0.893 
0.850 
0.809 
0.769 

0.962 
0.919 
0.876 
0.835 
0.795 

0.989 
0.945 
0.902 
0.861 
0.821 

1.015 
0.971 
0.928 
0.887 
0.847 

1.041 
0.997 
0.954 
0.913 
0.873 

1.067 
1.023 
0.980 
0.939 
0.899 

1.094 
1.050 
1.007 
0.966 
0.926 

1.120 
1.076 
1.033 
0.992 
0.952 

1.147 
1.103 
1.060 
1.019 
0.979 

1.175 
1.131 
1.088 
1.047 
1.007 

1.203 
1.159 
1.116 
1.075 
1.035 

1.231 
1.187 
1.144 
1.103 
1.063 

1.261 
1.217 
1.174 
1.133 
1.093 

1.292 
1.248 
1.205 
1.164 
1.124 

1.324 
1.280 
1.237 
1.196 
1.156 

1.358 
1.314 
1.271 
1.230 
1.190 

1.395 
1.351 
1.308 
1.267 
1.227 

1.436 
1.392 
1.349 
1.308 
1.268 

1.484 
1.440 
1.397 
1.356 
1.316 

1.544 
1.500 
1.457 
1.416 
1.376 

1.687 
1.643 
1.600 
1.559 
1.519 

0.56 
0.57 
0.58 
0.59 
0.60 

0.730 
0.692 
0.655 
0.619 
0.583 

0.756 
0.718 
0.681 
0.645 
0.609 

0.782 
0.744 
0.707 
0.671 
0.635 

0.808 
0.770 
0.733 
0.697 
0.661 

0.834 
0.796 
0.759 
0.723 
0.687 

0.860 
0.822 
0.785 
0.749 
0.713 

0.887 
0.849 
0.812 
0.776 
0.740 

0.913 
0.875 
0.838 
0.802 
0.766 

0.940 
0.902 
0.865 
0.829 
0.793 

0.968 
0.930 
0.893 
0.857 
0.821 

0.996 
0.958 
0.921 
0.885 
0.849 

1.024 
0.986 
0.949 
0.913 
0.877 

1.054 
1.016 
0.979 
0.943 
0.907 

1.085 
1.047 
1.010 
0.974 
0.938 

1.117 
1.079 
1.042 
1.006 
0.970 

1.151 
1.113 
1.076 
1.040 
1.004 

1.188 
1.150 
1.113 
1.077 
1.041 

1.188 
1.150 
1.113 
1.077 
1.041 

1.277 
1.239 
1.202 
1.166 
1.130 

1.337 
1.299 
1.262 
1.226 
1.190 

1.480 
1.442 
1.405 
1.369 
1.333 

0.61 
0.62 
0.63 
0.64 
0.65 

0.549 
0.516 
0.483 
0.451 
0.419 

0.575 
0.542 
0.509 
0.474 
0.445 

0.601 
0.568 
0.535 
0.503 
0.471 

0.627 
0.594 
0.561 
0.529 
0.497 

0.653 
0.620 
0.587 
0.555 
0.523 

0.679 
0.646 
0.613 
0.581 
0.549 

0.706 
0.673 
0.640 
0.608 
0.576 

0.732 
0.699 
0.666 
0.634 
0.602 

 0.759 
0.726 
0.693 
0.661 
0.629 

0.787 
0.754 
0.721 
0.689 
0.657 

0.815 
0.782 
0.749 
0.717 
0.685 

0.843 
0.810 
0.777 
0.745 
0.713 

0.873 
0.840 
0.807 
0.775 
0.743 

0.904 
0.871 
0.838 
0.806 
0.774 

0.936 
0.903 
0.870 
0.838 
0.806 

0.970 
0.937 
0.904 
0.872 
0.840 

1.007 
0.974 
0.941 
0.909 
0.877 

1.048 
1.015 
0.982 
0.950 
0.918 

1.096 
1.063 
1.030 
0.998 
0.966 

1.156 
1.123 
1.090 
1.068 
1.026 

1.299 
1.266 
1.233 
1.201 
1.169 

0.66 
0.67 
0.68 
0.69 
0.70 

0.368 
0.358 
0.328 
0.299 
0.270 

0.414 
0.384 
0.354 
0.325 
0.296 

0.440 
0.410 
0.380 
0.351 
0.322 

0.456 
0.436 
0.406 
0.377 
0.348 

0492 
0.462 
0.432 
0.403 
0.374 

0.518 
0.488 
0.458 
0.429 
0.400 

0.545 
0.515 
0.485 
0.456 
0.427 

0.571 
0.541 
0.511 
0.482 
0.453 

0.598 
0.568 
0.538 
0.509 
0.480 

0.626 
0.596 
0.565 
0.537 
0.508 

0.654 
0.624 
0.594 
0.565 
0.536 

0.682 
0.652 
0.622 
0.593 
0.564 

0.712 
0.682 
0.652 
0.623 
0.594 

0.743 
0.713 
0.683 
0.654 
0.625 

0.775 
0.745 
0.715 
0.686 
0.657 

0.809 
0.779 
0.749 
0.720 
0.691 

0.846 
0.816 
0.786 
0.757 
0.728 

0.887 
0.857 
0.827 
0.798 
0.769 

0.935 
0.905 
0.875 
0.846 
0.817 

0.995 
0.965 
0.935 
0.906 
0.877 

1.138 
1.108 
1.078 
1.049 
1.020 

0.71 
0.72 
0.73 
0.74 
0.75 

0.242 
0.214 
0.186 
0.159 
0.132 

0.268 
0.240 
0.212 
0.185 
0.158 

0.294 
0.266 
0.238 
0.211 
0.184 

0.320 
0.292 
0.264 
0.237 
0.210 

0.346 
0.318 
0.290 
0.263 
0.236 

0.372 
0.344 
0.316 
0.289 
0.262 

0.399 
0.371 
0.343 
0.316 
0.289 

0.425 
0.397 
0.369 
0.342 
0.315 

0.452 
0.424 
0.396 
0.369 
0.342 

0.480 
0.452 
0.424 
0.397 
0.370 

0.508 
0.480 
0.452 
0.425 
0.398 

0.536 
0.508 
0.480 
0.453 
0.426 

0.566 
0.538 
0.510 
0.483 
0.456 

0.597 
0.569 
0.541 
0.514 
0.487 

0.629 
0.601 
0.573 
0.546 
0.519 

0.663 
0.635 
0.607 
0.580 
0.553 

0.700 
0.672 
0.644 
0.617 
0.590 

0.741 
0.713 
0.685 
0.658 
0.631 

0.789 
0.761 
0.733 
0.706 
0.679 

0.849 
0.821 
0.793 
0.766 
0.739 

0.992 
0.964 
0.936 
0.909 
0.882 

0.76 
0.77 
0.78 
0.79 
0.80 

0.105 
0.079 
0.052 
0.026 
0.000 

0.131 
0.105 
0.078 
0.052 
0.026 

0.157 
0.131 
0.104 
0.078 
0.052 

0.183 
0.157 
0.130 
0.104 
0.078  

0.209 
0.183 
0.156 
0.130 
0.104 

0.235 
0.209 
0.182 
0.156 
0.130 

0.262 
0.236 
0.209 
0.183 
0.157 

0.288 
0.262 
0.235 
0.209 
0.183 

0.315 
0.289 
0.262 
0.236 
0.210 

0.343 
0.317 
0.290 
0.264 
0.238 

0.371 
0.345 
0.318 
0.292 
0.266 

0.399 
0.373 
0.345 
0.320 
0.294 

0.429 
0.403 
0.376 
0.360 
0.324 

0.460 
0.434 
0.407 
0.381 
0.355 

0.492 
0.466 
0.439 
0.413 
0.387 

0.526 
0.500 
0.473 
0.447 
0.421 

0.563 
0.537 
0.510 
0.484 
0.458 

0.604 
0.578 
0.551 
0.525 
0.499 

0.652 
0.626 
0.599 
0.573 
0.547 

0.712 
0.685 
0.659 
0.633 
0.609 

0.855 
0.829 
0.802 
0.776 
0.750 

0.81 
0.82 
0.83 
0.84 
0.85 

 0.000 0.026 
0.000 

0.052 
0.026 
0.000 

0.078 
0.052 
0.026 
0.000 

0.104 
0.078 
0.052 
0.026 
0.000 

0.131 
0.105 
0.079 
0.053 
0.027 

0.157 
0.131 
0.105 
0.079 
0.053 

0.184 
0.158 
0.132 
0.106 
0.080 

0.212 
0.186 
0.160 
0.134 
0.108 

0.240 
0.214 
0.188 
0.162 
0.136 

0.268 
0.242 
0.216 
0.190 
0.164 

0.298 
0.272 
0.246 
0.220 
0.194 

0.329 
0.303 
0.277 
0.251 
0.225 

0.361 
0.335 
0.309 
0.283 
0.257 

0.395 
0.369 
0.343 
0.317 
0.291 

0.432 
0.406 
0.380 
0.354 
0.328 

0.473 
0.447 
0.421 
0.395 
0.369 

0.521 
0.495 
0.469 
0.443 
0.417 

0.581 
0.555 
0.529 
0.503 
0.477 

0.724 
0.698 
0.672 
0.646 
0.620 

0.86       0.000 0.026 0.053 0.081 0.109 0.137 0.167 0.198 0.230 0.264 0.301 0.342 0.390 0.450 0.593 



 
 
 

0.87 
0.88 
0.89 
0.90 

0.000 0.027 
0.000 

0.055 
0.028 
0.000 

0.083 
0.056 
0.028 
0.000 

0.111 
0.064 
0.056 
0.028 

0.141 
0.114 
0.086 
0.058 

0.172 
0.145 
0.117 
0.089 

0.204 
0.177 
0.149 
0.121 

0.238 
0.211 
0.183 
0.155 

0.275 
0.248 
0.220 
0.192 

0.316 
0.289 
0.261 
0.233 

0.364 
0.337 
0.309 
0.281 

0.424 
0.397 
0.369 
0.341 

0.567 
0.540 
0.512 
0.484 

0.91 
0.92 
0.93 
0.94 
0.95 

           0.000 0.030 
0.000 

0.061 
0.031 
0.000 

0.093 
0.063 
0.032 
0.000 

0.127 
0.097 
0.066 
0.034 
0.000 

0.164 
0.134 
0.103 
0.071 
0.037 

0.205 
0.175 
0.144 
0.112 
0.079 

0.253 
0.223 
0.192 
0.160 
0.126 

0.313 
0.283 
0.252 
0.220 
0.186 

0.456 
0.426 
0.395 
0.363 
0.329 

0.96 
0.97 
0.98 
0.99 
1.00 

                0.000 0.041 
0.000 

0.089 
0.048 
0.000 

0.149 
0.108 
0.060 
0.000 

0.292 
0.251 
0.203 
0.143 
0.00 


