
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract- In this paper, a backstepping controller is 
designed to position the yaw and pitch angles of a Twin 
Rotor Multi-input Multi-output System (TRMS). With the 
coupling effects considered as the uncertainties, the highly 
coupled nonlinear TRMS is decomposed into a horizontal 
subsystem and a vertical subsystem. The reaching 
conditions and the stability of the TRMS with the 
proposed controller are guaranteed. Finally Simulation 
results are included to indicate that TRMS with the 
proposed controller can remain robust to the external 
disturbances.  
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I- INTRODUCTION 
 
 

Helicopters are one of the most manoeuvrable and 
versatile platforms. They can take-off and landing without a 
runway and can hover in place. These capabilities have 
brought about the use of autonomous miniature helicopters. 
For these reasons, there is currently great interest in using 
these platforms in a wide range of civil and military 
applications that include traffic surveillance, search and 
rescue, air pollution monitoring, area mapping, agriculture 
applications, bridge and building construction inspection. For 
performing safely many types of these tasks, high 
manoeuvrability and robustness of the controllers with respect 
to disturbances and modelling errors are required. This has 
generated considerable interest in the robust flight control 
design. The twin rotor multi-input multi-output system 
(TRMS) is an aero-dynamical system similar to a helicopter it 
is characterized by the complicated nonlinearity and the high 
coupling effect between two propellers [1],[2], many efforts 
have been made to control the TRMS and some strategies 
have been developed to solve the path following problems for 
this type of system. First of this works is in [3] the authors 
present a comparison of classical control and intelligent 
control based on fuzzy logic control and genetic algorithm 
applied to the TRMS system. In [4] presents the evolutionary  
computation based the genetic algorithm for the parameters 
optimization of the proportional-integral differential (PID) 
control to the TRMS system. The goals of control are to 
stabilize the TRMS in significant cross-couplings. In [5] the  
design procedures of the fuzzy takagi-sugeno model of TRMS 
are detailed. Based on the derived fuzzy takagi-sugeno model,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
parallel distributed fuzzy LQR controller are designed to 
control the position of the pitch and yaw angles in TRMS.   

In [6] a multivariable nonlinear ∞H controller is 

designed for the angle control of the TRMS. Since the rotor 
speeds are assumed to be constant, in [7] investigates the 
development of an adaptive dynamic nonlinear model 
inversion control law for a TRMS system utilizing artificial 
neural networks and genetic algorithms, In [8] a stable neural 
network based observer for TRMS system is proposed to 
approximate the nonlinearities of the system. A learning rule 
for neural network is given which guarantee robustness of the 
observer. In [9], fuzzy controllers are designed for the tracking 
of pitch and yaw angles of the TRMS system.  

 

On the other hand, the sliding mode control has been 
applied extensively to control the non linear system, The 
advantage of this approach is its insensitivity to the model 
errors, parametric uncertainties, ability to globally stabilize the 
system and other disturbances [10], [11]. In [12] a fuzzy sliding 
and fuzzy integral sliding controller is designed to position the yaw 
and pitch angles of a TRMS system using the linear surface. To 
simplify the design of an effective controller for the position 
control of the pitch and yaw angles, the TRMS is pseudo-
decomposed into the horizontal and vertical subsystems. Instead 
of ignoring the coupling effects between the horizontal and the 
vertical subsystems, the coupling effects are considered as the 
uncertainties in the horizontal and the vertical subsystems. 

 

The contribution of our work is used the 
backstepping control in order to ensuring the locally 
asymptotic stability and desired tracking trajectories. Unlike to 
However, Finally all the control laws synthesized are 
highlighted by simulations which gave results considered to be 
satisfactory. 

  

The remainder of this paper is organized as follows. 
The dynamics of the TRMS is described in Section II. In 
Section III, the decomposed model of the TRMS is introduced. 
Section IV present the backstepping designed and simulation 
results to demonstrate the effectiveness of our approach. 
Finally we arrive to the conclusion of the whole work in 
section V.  

 

II- MODEL DESCRIPTION OF THE TRMS 
 

Similar to most flight vehicles, the helicopter consists 
of several elastic parts such as rotor, engine and control 
surfaces. The nonlinear aerodynamic forces and gravity act on 
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the vehicle, and flexible structures increase complexity and 
make a realistic analysis difficult. For control purpose, it is 
necessary to find a representative model that shows the same 
dynamic characteristics as the real aircraft [8]. The behaviour 
of a nonlinear TRMS, (shown in Fig. 1), in certain aspects 
resembles that of a helicopter. It can be well perceived as a 
static test rig for an air vehicle with formidable control 
challenges. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Fig.1. The twin rotor multi-input multi-output system 
(TRMS) [13] 

 

 

This TRMS consists of a beam pivoted on its base in 
such a way that it can rotate freely in both its horizontal and 
vertical planes. There are two rotors (the main and tail rotors), 
driven by DC motors, at each end of the beam. If necessary, 
either or both axes of rotation can be locked by means of two 
locking screws provided for physically restricting the 
horizontal or vertical plane rotation. Thus, the system permits 
both 1 and 2 degree-of-freedom (DOF) experiments. The two 
rotors are controlled by variable speed electric motors 
enabling the helicopter to rotate in a vertical and horizontal 
plane (pitch and yaw). The tail rotor could be rotated in either 
direction, allowing the helicopter to yaw right or left. The 
motion of the helicopter was damped by a pendulum, which 
hung from a central pivot point. In a typical helicopter, the 
aerodynamic force is controlled by changing the angle of 
attack of the blades. The laboratory setup is constructed such 
that the angle of attack of the blades is fixed. The aerodynamic 
force is controlled by varying the speed of the motors. The 
mathematical model of the TRMS is developed under 
following assumptions. 
 

• The dynamics of the propeller subsystem can be 
described by first-order differential equations. 

 

• The friction in the system is of the viscous type. 
• The propeller – air subsystem could be described in                

accordance with the postulates of the flow theory. 
 

The mechanical system of TRMS is simplified using 
a four point-mass system shown in Fig. 2, includes main rotor, 
tail rotor, balance-weight and counter-weight. Based on 
Lagrange’s equations, we can classify the mechanical system 
into two parts, the forces around the horizontal axis and 
the forces around the vertical axis. 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.2. Simplified four point-mass system [13] 
 

The parameters in the simplified four point-mass 
system are 1vM  is the return torque corresponding to the force 

of gravity, 2vM is the moment of a aerodynamic force, 3vM  is 

the moment of a centrifugal forces, 4vM  is a Moment of 

friction, mrm  is the mass of the DC motor within the main 

rotor, mm  is the mass of the main part of the beam, trm  is the 

mass of the DC motor within tail rotor, tm  is the mass of the 

tail part of the beam, cbm  is the mass of the counter weight, 

bm is the mass of the counter-weight beam, msm is the mass of 

the main shield, tsm  is the mass of the tail shield, ml  is the 

length of the main part of the beam, tl  is the length of the tail 

part of the beam, bl  is the length of the counter-weight beam, 

cbl  is the distance between the counter-weight and joint, and g 

is the gravitational acceleration.  
 

Consider the rotation of the beam in the vertical plane (around 
the horizontal axis). The driving torqueses are produced by the 
propellers, and the rotation can be described in principle as the 
motion of a pendulum. We can write the equations describing 
this motion as follows.   
 

a) The main rotor model 
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The angular velocity mω of main propeller is a nonlinear 

function of a rotation angle of the DC motor describing by:   
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Also, the propulsive force vF  moving the joined beam in the 

vertical direction is describing by a nonlinear function of the 
angular velocity mω  
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The model of the motor-propeller dynamics is 
obtained by substituting the nonlinear system by a serial 
connection of a linear dynamics system. This can be expressed 
as:      

( )vvv
mr

vv uu
Tdt

du
+−= 1                                   (7) 

 

vu  is the input voltage of the DC motor,mrT  is the time 

constant of the main rotor andmrK  is the static gain DC 

motor.     
   

 
 
 
 
 

Fig 3. The relationship between the input voltage and the       
propulsive force for the main rotor [13] 
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Where tω is the angular velocity of tail propeller, vS

the angular momentum in the vertical plane of the beam, vJ  

the sum of inertia moments in the horizontal plane, trJ  the 

moment of inertia in DC motor tail propeller subsystem, vK  

the Friction constant, and fS the balance scale. 
 

b) The tail rotor model 
 

Similarly, we can describe the motion of the beam in 
the horizontal plane (around the vertical axis) as shown in 
Fig.4. The driving torqueses are produces by the rotors and 
that the moment of inertia depends on the pitch angle of the 
beam. 

 
     

 
     
 
 
 
 
 
 

 
 
 
 
 

Fig 4. Torques around the vertical axis [13] 
 

The parameters in the torques around vertical axis are 1hM  is 

the moment of a aerodynamic force, 2hM  is a Moment of 

friction. 
 

( ) vthfth FSlM αω cos1 =                                                    (17) 
 

The angular velocity tω of tail propeller is a nonlinear function 
of a rotation angle of the DC motor describing by: 
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Also, the propulsive force hF  moving the joined beam in the 

Horizontal direction is describing by a nonlinear function of 
the angular velocity tω  
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The model of the motor-propeller dynamics is 
obtained by substituting the nonlinear system by a serial 
connection of a linear dynamics system. This can be expressed 
as:      

( )hhh
tr

hh uu
Tdt

du
+−= 1                                  (20) 

 

hu  is the input voltage of the DC motor, trT  is the time 

constant of the tail rotor and trK  is the static gain DC motor .    
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Fig 5. The relationship between the input voltage and the 
propulsive force for the tail rotor [13] 
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  Where hS the angular momentum in the horizontal 

plane of the beam, hJ  the sum of inertia moments in the 

vertical plane, mrJ  the moment of inertia in DC motor main 

propeller subsystem, hK  the Friction constant, and fS the 

balance scale. 
 

The dynamics of the TRMS system are described as follows  
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The model developed in (26) can be rewritten in the 
state-space form: 

 

( ) ( )UXgxfX ,+=ɺ  and TxxX ],...,[ 61= is the state 

vector of the system such as: 
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Y = [ ]hv αα ,                 (29) 
 

From (26), (28) and (29) we obtain the following state 
representation:  
 

( )

( )( ) ( ) ( )( )

( ) ( )

( )
( )

( ) ( )

( )































+−=



























++
+−

++
=

++
+=

+−=











































++
+−

−−+








+−

=

+=

htr
tr

mmr
hvthft

mmr

vmr
mr

mmr

t
v

tr
vmvfm

v

t
v

tr

uKx
T

x

FxExD

xxJ
xKFSl

FxExD
x

FxExD

xxJ
xx

uKx
T

x

xxH
FxExD

xxJ
x

xCxBAgx
J

J
xKxFSl

J
x

x
J

J
xx

66

1
2

1
2

13
5

1
2

1
25

1
2

1
2

13
54

33

11

2

1
2

1
2

13
5

11623

2

621

1

sincos

cos
cos

sincos

1

sincos

cos

1

cossin
sincos

cos

sincos

1

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

ω
αω

ω

ω

ωω

ω

 (30) 

 
III. DECOUPLED MODELS OF THE TRMS SYSTEM 

 

Since the characteristic of TRMS is very complex in 
the nature, it would be convenient to design a controller for 
TRMS with the TRMS decoupled into horizontal and vertical 
subsystems by fixing the horizontal angle hα  and posing

0=hu , from Eq. (30), it is easy to see that state equations 

with the state vector vX  for the vertical subsystem of the 

TRMS could be defined as: 
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Where vu  is a control action of the vertical subsystem 

Likewise, we have the horizontal subsystem by posing 
( ) 00 vvv ααα ==  and 0=vu      
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IV. BACKSTEPPING CONTROLLER DESIGN  
 

The backstepping approach as a recursive algorithm 
for the control-low synthesis, we all the stages of calculation 
concerning the tracking errors and lyapunov function. From 
(32) we obtain the following state representation of the 
vertical subsystem     
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The first error considered in designing the backstepping  
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Lyapunov theory is used while using the Lyapunov function 

vz1 as a positive definite and its time derivative as a negative 

semi definite, 
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There is no control input in (38). By letting 2x  be the virtual 

control, the desired virtual control is defined as: 
 

( ) dvvd xzx 1112 ɺ+−= α      01 >vα       
 

Where v1α  is a positive constant for increasing the 

convergence speed of the vertical angle tracking loop.    
 
Now, the virtual control is 2x  where the second error tracking 

is defined by: 
 

   ( ) dvvdv xzxxxz 1112222 ɺ−+=−= α   

The augmented Lyapunov function for the second step is 
given by  
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The derivative of (53) is given by:  
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By putting vz2ɺ  in (40), the following can be obtained      
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surface is defined in the third step by: 
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The augmented Lyapunov function for the third step is given 
by  

Fig.6. Block diagram of TRMS system [13] 
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The derivative of (45) is given by:  
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By putting vz3ɺ  in (46), the following can be obtained 
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As for the backstepping approach, the control input vu   is 

extracted:  
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Likewise From (34) we obtain the following state 
representation of the horizontal subsystem   
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The first error considered in designing the backstepping  
 

dh xxz 441 −= = hdh αα −  
 

Lyapunov theory is used while using the Lyapunov function 

hz1 as a positive definite and its time derivative as a negative 

semi definite, 

2
11 2

1
hh zV =  

Its derivative is given by  
 

( )dhhhh xxzzzV 451111 ɺɺ −==                    (51) 
 

There is no control input in (50). By letting 5x  be the virtual 

control, the desired virtual control is defined as: 
 

( ) dhhd xzx 4115 ɺ+−= α      01 >hα                                 (52) 
 

Where 1hα  is a positive constant for increasing the 

convergence speed of the vertical angle tracking loop.    
 
Now, the virtual control is 5x  where the second error tracking 

is defined by: 

   ( ) dhhdh xzxxxz 4115552 ɺ−+=−= α   
 

The augmented Lyapunov function for the second step is 
given by  
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The derivative of (53) is given by:  
 

hhhhh zzzzV 22112 ɺɺɺ +=               (54) 
 

By putting hz2ɺ  in (54), the following can be obtained      
 

 ( ) ( )( )ddhhhhhhh xxxxbxfzzzV 4441562112 ɺɺɺɺɺ −−−−+= α           (55) 
 

By letting ( )6xfh  be the virtual control, the desired virtual 

control in the second step is defined as: 
 

( )( ) ( ) ddhhvhdh xxxxbzxf 44415226 ɺɺ−−++−= αα            (56) 
 

Now, the virtual control is ( )6xfh  where the sliding surface is 
defined in the third step by: 
 

( ) ( )( )dhhhh xfxfSz 663 −==                                               (57) 
       
               ( ) ( ) 54514226 xbxxxzxf hdhdhhh −−−−+= ɺɺɺ αα          (58)   
 

The augmented Lyapunov function for the third step is given 
by:  
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The derivative of (59) is given by:  
 

hhhhhhh zzzzzzV 3322113 ɺɺɺɺ ++=                (60) 

By putting hz3ɺ in (60), the following can be obtained      
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As for the backstepping approach, the control input hu  is 
extracted:  
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V. SIMULATION RESULTS 

 

To show the performance of the proposed approach, 
the corresponding algorithm is implemented in simulation to 
the TRMS model as shown in fig.6. The results obtained for 
the vertical and horizontal subsystems are given in the Fig.7, 
and Fig.8. One can see that, the backstepping controller 
ensures a good tracking. To show the robustness of the TRMS 
with the backstepping controller, an external disturbance is 
added to each of the vertical and horizontal angle at t=10 sec. 
From the performance of the TRMS in Fig.9, it can be seen 
that the TRMS with the backstepping controller is robust to 
the external disturbances. 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSION 
 

In this paper, we presented stabilizing control laws 
synthesis by backstepping technique. Firstly, we start by the 
development of the dynamic model of the TRMS taking into 
account the different physics phenomena. A highly coupled 
nonlinear TRMS is decomposed into a set of horizontal and 
vertical subsystems with the coupling effect considered as the 
uncertainties. Simulation results also validate that the 
presented backstepping has a satisfactory tracking 
performance. 
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Fig.9. Step responses of the TRMS with the backstepping 
subject to the external disturbance 
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Fig.8. Sine wave responses of the TRMS with 
Backstepping control 
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Fig.7. square wave responses of the TRMS with 
Backstepping control 
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