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Abstract: This paper presents a Sliding Mode Observer (SMO) 

design for quarter car model of an active suspension system. 

Sliding surface control law using the estimated states is applied 

to the quarter car model. Control using estimated states is 

shown to yield ride quality improvement. The performance of 

Sliding Mode Control (SMC) with SMO is compared to an 

optimal controller with Luenberger observer. Simulation results 

show the superiority of the sliding mode observer and control. 
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1.  Introduction 

Active suspension systems have been 

introduced in early 70’s to minimize the vertical 

forces transmitted to the passengers to enhance the 

ride comfort. The basic idea in active control of 

suspension is to use an active element (the actuator) 

to apply a desired force between the vehicle body 

and wheel axle. This desired force is computed by 

the vehicle control unit to achieve certain 

performance objectives under external disturbances, 

such as passenger’s comfort under road 

imperfections [1]. The main advantage of an active 

suspension is its adaptation potential where the 

suspension characteristics can be adjusted according 

to the profile of the road being traversed.  

 

Various control strategies such as optimal state-

feedback [2-4], back stepping method [5], fuzzy 

control [6-8], sliding mode control [9, 10] and fuzzy 

sliding mode control [11] have been proposed in the 

past to control the active suspension system. Sliding 

Mode Control (SMC) has been applied to non-linear 

systems and it is considered as an effective approach 

for the control of the systems with uncertainties[12].  
In SMC full state feedback control structure is used 

with an addition of a switching term that is aimed to 

cancel the effects of uncertainties [13]. The method 

of controlling a quarter-car hydraulic active 

suspension system using SMC technique that 

guarantees the stability of the existence of a sliding 

mode and also the stability of the overall system has 

been developed [14].  Practical implementations 

require controllers that are robust to uncertainties 

and disturbances. High order sliding mode observer 

to estimate the vertical force are presented  and  

tested on a test bench which is a static vehicle 
excited vertically by hydraulic jacks [15]. Dixit and 

Buckner presented a robust, nonlinear observation 

and control namely sliding mode observation and 

control to a semi active vehicle suspension using 

model reference approach [16].  

The objective of this paper is to use Sliding 

Mode Control law for an active suspension system 

which in turn requires the estimation of state 

variables by a suitable observer. Sliding mode 

observer design by Dixit and Buckner is used in this 

paper. Performance of active suspension system 

using combined Sliding Mode Observer and Control 

(SMOC) is compared with optimal controller with 

Luenberger observer. 

Simulation results show the effectiveness of the 

proposed control scheme in suppressing the 
undesirable effects of the suspension system. This 

paper is organized into the following sections. 

Quarter-car model with actuator dynamics is briefly 

explained in section 2. SMC design is briefed in 

section 3. SMO design is presented in section 4. 

Simulation results are discussed and presented in 

section 5. Finally, the last section concludes the 

paper. 

 
2. Active suspension model 
 
2.1 Quarter car model  
Quarter car models are very often used for 

suspension analysis and design, because they are 

simple yet capture many important characteristics of 

the full model [6]. A two degree of freedom 

“quarter-car” automotive suspension system is shown  



 

 

 
 Fig.1. Quarter car model 

 

in Figure 1. It represents the automotive system at 

each wheel i.e. the motion of the axle and of the 

vehicle body at any one of the four wheels of the 

vehicle. The suspension is shown to consist of a 

spring sk , a damper sb  and an active force actuator

aF . The active force can be set to zero in a passive 

suspension.  

The sprung mass ms 
represent the quarter car 

equivalent of the vehicle body mass. An unsprung 

mass mu represents the equivalent mass due to axle 

and tyre. The vertical stiffness of the tyre is 

represented by the spring
tk . The variables

sz , uz  

and rz  represent the vertical displacements from 

static equilibrium of the sprung mass, unsprung 

mass and the road respectively. Equations of motion 

of the two degree of freedom quarter car suspension 

is given by  

     �� ��� =  �� − 
���� − ��
 − ������ − ��� � 

    ����� =   
���� − ��
 + ������ − ��� � +                         
���� − ��
 − ��                            (1) 

 
It is assumed that the suspension spring stiffness and 

tyre stiffness are linear in their operating ranges and 

that tyre does not leave the ground. It is convenient 

to define the state vector as follows when writing 

these equations in state space   

 

[��,, ��, ��, ��]   =  [��� − ��
  ,  ��� ,   �� − �� ,  �� � ] 

 

where �� is suspension deflection, ��  is the sprung 

mass velocity, ��  is tyre deflection and ��  is the 

unsprung mass velocity. The state space model of 

the quarter car active automotive suspension system 
can be written as  

X� �t
 = Ax�t
 + Bu�t
 + Gw�t
 

             Y = Cx�t
         (2) 
 

where the state  matrix A, control vector B ,  

disturbance input vector G and the output matrix C  
are given as  
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 & = '1 0    0 0] 

 

with � being the system state, * being the system 

input, +�,
 is the road disturbance. Equation (2) 

shows that the disturbance input is not in phase with 

the system input, i.e. rank [B] ≠ rank [B, G], 

therefore the system suffers from mismatched 
condition. Hence, the controller must be robust 

enough to overcome the mismatched condition so 

that the disturbance would not have significant effect 

on the performance of the system. Hence equation 

(1) can be written as  

              X� �t
 = Ax�t
 + Bu�t
 + f�x, t
           (3)    

                                                   

 where  f�x, t
 are the uncertainties with mismatched 

condition. 

The following assumptions are taken as standard 

Assumption 1. 

The state vector ��,
 is fully observable. 

Assumption 2. 

There exists a known positive constant . such that ‖f�x, t
‖ ≤ .  where ‖•‖  denotes the standard 

Euclidean norm. 

Assumption 3. 

The pair (A, B) is controllable and the input matrix 

B has full rank.          



 

3.  Controller Design  

High-performance control of the vehicle 

suspensions is complicated by nonlinearities and 

uncertainties in the system dynamics and by the 

need for accurate state information. For these 

reasons, practical implementations require nonlinear 
controllers and observers that are robust to 

uncertainties and disturbances. In this section, 

sliding mode controller is developed for the 

nonlinear, active suspension system. Ideally, this 

controller will be robust to parameter variations and 

unmodelled dynamics. SMC requires accurate 

knowledge of the states that are not readily 
measurable. In this paper, a robust observer is 

developed to provide state estimation using only 

measured suspension deflection as an input. To 

prove the effectiveness of sliding mode observer and 

control the performance of the active suspension of 

quarter car model is compared with LQR control and 

Luenberger observer. 

3.1  LQR controller 

As an optimal controller, the Linear 

Quadratic Regulator (LQR) is used to find the 

actuator force, which minimizes a Performance 

Index that includes the acceleration of the body, 

suspension deflection and tyre deflection. To design 
a state feedback controller, the Performance Index is 

defined as 

          2 = �
� 3�4564 + 7587
 9,                        (4)                                             

where the matrix Q is symmetric positive semi-

definite and R is symmetric positive definite. Then 

the optimal linear feedback control law is obtained 

as  

                    
                                           (5)   

                           

where K=[K1, K2, K3, K4] is the Kalman gain and P 

is given by the solution of algebraic Riccati equation  

           −: =  ;5: + :; − :<8=�<5: + 6       (6)          

 

 The optimal actuator force represented as a function 

of states 

                            (7)                                                              

Obviously, when the system state is not directly 

measured, it is reconstructed via an asymptotic 

observer, and the above control law is replaced by 

              * = −>�?                 (8)                                                                 

where �?  is the state estimate. 

 

3.2  Sliding Mode Control 

SMC technique is designed to drive the state 

trajectory towards the sliding surface. Sliding mode  

controller design starts with the design of the sliding 

surface that ensures the stability of the system. It is 

proved mathematically that the reachability 

condition of the proposed controller is achieved if 

the proposed theorem is satisfied to ensure that the 

state trajectory slides onto the sliding surface and 

remains thereafter.  

The first step in SMC is to design sliding surface. 

Let the time varying switching surface, @��, ,
 = 0  
in the state space:  

                       @��, ,
 = A�                            (9)  
                                                                                      

where  A = 'B�, B�, ⋯ BD=�, 1]  is a strictly positive 

real constant and  

                

 @ = B����,
 + B����,
 + ⋯ + BD=��D=��,
                 +  �D�,
 = 0                     (10)
    

                                                                      
To evaluate stability, the Lyapunov function is taken 

as  

                   E = �
� @��,
                                       (11) 

                                                

The existence condition for the sliding mode is 

satisfied if  

                  E� = @@� < 0                                       (12)         

                                             
The necessary condition for the state trajectory to 

stay on the sliding surface is  

                
 @ � ��, ,
 = 0                                         (13)                                                                   

and the equivalent control �*GH
  is obtained from 

(12)    

 

      @���, ,
 = A�� = 0              (14)                                                                                                                         *GH = −�A<
=�'A;��,
 + AI��, ,
]         (15)

                                                                                         

Substituting (15) in (3) give the equivalent dynamics 

equation of the system in sliding mode as follows 

 4� �,
 = ;��,
 − <��A<
=�'A;��,
 + AI��, ,
]
+ I��, ,
 

 

   4��,
 = '; − <�A<
=�A;]��,
 + 

                                    'JD −  <�A<
=�A]I��, ,
   (16)                   

 

During sliding mode, system with uncertainties and 
mismatched condition is stable provided following 

theorem is satisfied [17]. 

 

Theorem 1 

The uncertain system described in (3) is bounded 

stable on the sliding surface, @��, ,
 = 0  if 

Kxu −=
PBRK T1−=

44332211 xKxKxKxKu −−−−=



 

 

       K� L  �,
 K ≤ .� =  ‖JD − <�A<
=�A‖.       (17)   

                                     

Proof :           

                Let ;M = '; − <�A<
=�A;]    

      

                �N�,
 =  'JD − <�A<
=�A]I��, ,
       
    

and (16) is rewritten as  

                             4��,
 = ;M��,
 + �N�,
             (18)

                                   

Lyapunov function for the system is chosen as  

                  E�,
 = �5�,
:��,
                          (19)

                      

Taking derivative of   E�,
 and substituting (16) 

E�  = �5�,
';M5: + :;]O��,
 + �N5�,
:��,
+ �5�,
:�N�,
 

             = −�5�,
6��,
 + �N5�,
:��,
 

                    + �5�,
:�N�,
                            (20) 

                           

where P is the solution of  ;M5: + :;M = −6  for a 

given positive definite symmetric matrix Q. 

Equation (20) is reduced to   

      

    E�  = −PQRD�6
‖��,
‖� +  2.�‖:‖‖��,
‖     (21)                         
 

Since  PQRD�6
 > 0 ,  E� �,
 < 0   for all , and  � ∈ <V�W
 , where  <V�W
  is the complement of the 

closed ball  <�W
,  

centered at � = 0, radius W = �XY‖Z‖
[\]^�_
 . 

Hence the system is bounded stable.  

Theorem 1 shows if the condition (17) is satisfied, 

the system is bounded stable in the presence of 

mismatched conditions. 

 

Control law 

 

The objective is to design a control scheme 

that drives the state trajectories of the system 
defined in (3) towards the sliding surface and 

remains in the stable manifold thereafter. The 

control law that satisfies the sliding mode condition 

for the system (3) is given as [11]  

      
  * = −�A<
=�'A;��,
 + AI��, ,
] 

                 −`�A<
=� σ�a

‖σ�a
‖bΦ

                             (22)  

                                               

where   Φ is the boundary layer thickness that is 

introduced to avoid chattering effect and ‘`’ is a 

constant representing the maximum controller output 
which is specified by the designer. 

                         

                 

Theorem 2 

 

The reaching condition of the sliding surface (9) is 

satisfied if 

  ‖; − <�A<
=�A;‖‖��,
‖ ≥ ‖I�,
‖        (23)
                             

Proof: 

 Reaching condition is evaluated as follows: 

       @@��,
=@�,
dA�;��,
 + <*�,
 + I��, ,
�e 
                = @�,
 d�A;��,
 + A<*�,
 + AI��, ,
�e 
 

Substituting u (t) using (22), 

        @@��,
 = @�,
 f−` σ�a

‖σ�a
‖bΦ

g             (24) 

                         

The sliding condition is established if ` > 0. The 

theorem ensures that the proposed control law drives 

the system state trajectory onto the sliding surface 

and remains on it thereafter. However removal of 

chattering in SMC has been addressed in  

literatures [11]. 

 

4. OBSERVER DESIGN  

The control law discussed in the previous 

section requires the knowledge of the system state 

variables. Since all the state variables are not 

available for measurement except for suspension 

deflection an appropriate state observer is designed. 

Figure 2 shows the block diagram of the state 

feedback controller with observer. The observer is a 

subsystem to reconstruct the state vector of the plant. 

The mathematical model of the observer is same as 

that of the plant, except that an additional term that 

includes the estimation error to compensate for 

inaccuracies in matrices A and B and the lack of 

initial error. The estimation error is the difference 

between the measured output and the initial 
estimated state. Thus, the mathematical model of the 

observer is 

 

    xh� = �A − kjC
x? + Bu + kjy              (25)                

         

where  �? the estimated state and Cx? is estimated 

output. The inputs to the observer are the output y 

and the control input u. Matrix 
G  is the observer 

gain matrix and is a weighing matrix to the 

correction term involving the difference between the 

measured output y and the estimated output C�?. This 

term updates the model output and improves the 

performance of the observer. 

 



 

Plant (A,B,C)
State feedback

controller

Observer

Unmeasured

State variables

Measured output

variables

x(t)

y(t)

u(t)

Estimated state

variables

 
Fig 2. Block diagram of state feedback controller with 

observer 

 

4.1 Luenberger Observer 

Consider state model described by (2) where 

the matrices A, B and C are parameters of the state 

space model. The well-known Luenburger Observer 

is given as 

 �h� = ;�? + <* + l�m − &�?
                      
 (26) 

where �?  represents the estimated state vector, L is the 

Luenberger observer matrix. 

The estimation error is 

 n = � − �?                                              (27)   

The error dynamic equation is given by 

            n� = �; − l&
n                                       (28) 

The estimation error will converge to zero if ; − l&  

has all its eigen values in the left-half plane. The 

observer design refers to the selection of the gain 

matrix L, using the pole placement method. 

Conventional observer cannot guarantee global 

asymptotic stability, robustness or convergence in 

the presence of plant nonlinearities, parametric 

variations and disturbances. More over separation 

principle cannot be applied for nonlinear application 

and hence closed loop stability cannot be 

guaranteed.  

 

4.2 Sliding Mode Observer 

     

SMO enable robust, accurate estimation of 

system states for nonlinear, uncertain systems where 

conventional observers or Kalman filters perform 

poorly [18]. Since the sliding mode observer is not 

dependent on the plant and only the output y is 

needed and it is a model free observer. This section 

describes the design of a sliding mode observer,  

 
 

 

Fig. 3 Sliding mode observer structure 

which is based on a standard Luenberger observer 

but includes a discontinuous performance term for 

robustness. 

The structure of the SMO is illustrated in the Figure 

3. 

  �?� = ;�? + <* + l�m − &�?
 + >oBpq�m − &�?
 (29)              

             

where >o is the SMO switching gain matrix. 

 e = y − y? = C �x − x?
             (30) 

e� =  C �x� −   xh� � =  �A − LC
e + I��, ,
 − Kosgn�e
       

                                                      (31) 

Because AC is observable there exists L such that �A − LC
  is stable. Ko is obtained using LQ 

technique or Nyquist criteria approaches. To avoid 

chattering, the performance term >oBpq�m − &�?
 

can be constrained to be continuous as long as the 

system states lie within a boundary layer defined by 
error limits between the measured and estimated 

output states 

 

      �x = >oBy, fz={|?
Φ

g                                        (32)

             

 

where Φ  is the boundary layer width. When the 

observer error exceeds the boundary layer width, the 

performance term becomes discontinuous. The 

saturation term is defined to be 

 

                 

sat f~=~h
Φ

g =  � ~=~h
Φ

           for   |y − y?| ≤ Φ

sgn �y − y?
 for  |y − y?| > ��          (33) 

If f(x,t) is bounded and the observer gain satisfies      

the condition K0 > .,  error equation is 



 

 

asymptotically stable. i.e. lima→∞ e = 0 . 

However for an optimal and SMC, full state 

measurement is assumed instead of partial states.  

5. Simulation Results 

          The mathematical model defined in equation 

(2) and the sliding mode controller defined in 

equation (13) is simulated using Matlab and 
simulink. Bump input is considered as the 

disturbance to the system. Bump input has been used 

in the literature and is of the form [9]  

                 

r�t
= �y�1 − ��B�8Π,
�/2 �I 1.0 ≤ , ≤ 1.25 yq9 3.0 ≤ , ≤ 3.25
0 �,ℎn�+�Bn � 

                 (34)  

 

where a denotes the bump amplitude. The 

parameters of the quarter car model are listed as 

follows [6] 

 

 

 Sprung Mass ( sm )  -             240 kg 

Unsprung Mass ( um )  -           36 kg  

Damper coefficient (
sb )        -           980 Ns/m  

Suspension Stiffness ( sk ) -           16,000 N/m 

Tyre Stiffness ( tk )              -        160,000 N/m 

 
 
In the design of  LQR  controller, weighing matrices  

are selected as Q= diag (q1, q2, q3, q4) where 

q1=1000, q2=2*105, q3=1000, q4=1000 and  

R= [0.001].  Matrix K is calculated as [310 43850 -

178030   -610] Closed loop poles are given by -

2.0218, -0.1419+0.62351i, -0.1419-0.62351i and -

0.0037. Hence the system is stable. L matrix 

designed using pole placement Technique. Observer 

poles chosen as [-20 -15 -20 -15]; Ko = [20 20 15 

15];   Φ = 0.04. 

 

Figure 4a shows that SMO estimate of 

suspension deflection is nearly indistinguishable 
from the actual plant output.  Fig 4b shows the error 

convergence of the SMO.  

 

 

 

 
 

Fig. 4a Estimated suspension deflection 

 

 
 

         Fig. 4b Error convergence of SMO 

 

 

Figure 5a-d shows the simulation results for the 

passive, optimal controller and SMOC based active 

suspension system for the bump road input. Figure 

5a shows the sprung mass displacement very much 

reduced by the proposed control scheme and the 

maximum displacement is less than a cm. Figure 5b 
shows that the body acceleration is reduced by 50% 

compared to passive and 9% compared to optimal 

controller by the  proposed control scheme. Figure 

5c indicates that the suspension deflection controlled 

by SMOC is slightly more than the optimal 

controller. Figure 5d shows the tyre deflection is 

50% more for SMOC scheme. 
 

 

 

 

 

 

 



 

                                
(a) 

 

 
 

(b) 

 

 
     (c) 

 

 

 
(d) 

 

Fig.5. Sprung mass displacement (a), Body Acceleration (b), Suspension deflection(c) and Tyre deflection (d) for dual 

bump road profile 



 

 

Table 1 

 

The comparison of the controller 

performances  are presented in Table-1 which shows 

the Root Mean Squares (RMS) of the body 

acceleration, suspension deflection, body 

displacement and tyre deflection. The results show 

that proposed SMO and control scheme performs 

better in reducing the sprung mass displacement and 
acceleration thus providing the desired ride comfort. 

But due to chattering effect of the SMC road 

handling is best in the case of optimal controller 

compared to SMC. 

 

6. Conclusion 
  In this paper the performance of SMO and 

SMC has been investigated. It has been shown that 

the SMC with sliding mode observer improved the 

ride comfort of quarter car active suspension system 
compared to LQR controller with Luenburger 

observer control technique. It is also proved from the 

RMS values of suspension parameters that the 

SMOC based active suspension provided excellent 

ride characteristics when compared to existing 

passive and optimal controller. Road handling is 

better in optimal controller with conventional 

observer. In conclusion, the mismatched condition 

inherent in the system dynamics has been overcome 

by the proposed SMO and control.  
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Control 

scheme 

Sprung 

mass 

Displace-

ment 

10-3(m) 

Suspension 

deflection 

10-2(m) 

Body 

acceleration 

(m/s2) 

Tyre-

deflect

ion 

10-2 

(m) 

Passive 19.74 1.792 1.595 0.2696 

optimal 10.27 1.368 0.8734 0.233 

SMOC 0.4765 2.259 0.8037 0.388 


