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Abstract — Economic load dispatch (ELD) is one of the 

main tools for optimal operation and planning of modern 

power systems. To solve effectively the ELD problem, most 

of the conventional calculus methods rely on the assumption 

that the fuel cost characteristic of a generating unit is a 

smooth and convex function, resulting in inaccurate 

dispatch. This paper explores the use of an enhanced 

particle swarm optimizer (EPSO) for the solution of the 

economic load dispatch problem by considering the valve-

point effect and multi-fuel options, making the modeling of 

the generation cost functions more practical. Modification 

in the design of the inertia weight parameter of the 

conventional PSO is suggested to enhance the global search 

capability and avoid local minima. Experimental results 

show that the proposed EPSO approach outperforms other 

heuristic techniques in terms of solution quality and 

robustness. 

Keywords–Nonconvex Economic Load Dispatch, Particle 

Swarm Optimization, Valve-Point Effect, Multi-fuel options. 

1. INTRODUCTION 

The conventional economic load dispatch (ELD) problem 

of power generation involves allocation of power generation 

to different thermal units to minimize the operating cost 

subject to diverse equality and inequality constraints of the 

power system. This makes the ELD problem a large-scale 

highly nonlinear constrained optimization problem. 

It is therefore of great importance to solve this problem as 

quickly and accurately as possible. The ELD problem has 

been solved via many traditional optimization methods, such 

as: Gradient-based techniques, Newton methods, linear 

programming, and quadratic programming.  Unfortunately, 

the input-output characteristics of modern units are 

inherently nonlinear and nonconvex because of valve-point 

loadings, prohibited operating zones and multiple fuels, and 

furthermore they may generate multiple local minimum 

points in the cost function. Conventional techniques offer 

good results, but when the search space is nonlinear and has 

discontinuities, these techniques become difficult to solve 

with a slow convergence ratio and not always seeking to the 

global optimal solution. New numerical methods are then 

needed to cope with these difficulties, specially, those with 

high speed search to the optimal and not being trapped in 

local minima.    

Several heuristic tools have evolved in the last decades 

that have facilitated solving the ELD problems with non-

smooth cost functions. These tools are mainly: genetic 

algorithms [1], evolutionary programming [2], neural 

networks [3], simulated annealing [4], tabu search [5] and 

particle swarm optimization [6].  

Particle swarm optimization (PSO) refers to a relatively 

new family of algorithms that may be used to find optimal 

or near optimal solutions to numerical and qualitative 

problems. PSO was introduced by Russell Ebehart and 

James Kennedy in 1995 [7], inspired by social behavior of 

bird flocking and fish schooling. PSO has proven to be both 

very fast and effective when applied to a diverse set of 

optimization problems.  

In the PSO algorithm, the most important control 

parameter is the inertia weight ω. The role of this control 

parameter is considered to be crucial for the convergence of 

PSO [8]. For that, a new design of the inertia weight 

parameter is proposed in this paper in order to improve the 

global search capability and avoid the premature 

convergence to local minima. 

In this work, a solution methodology based on the 

enhanced particle swarm optimization (EPSO) technique is 

developed and applied to solve the economic load dispatch 

problem in the presence of generating units with non-

smooth cost functions. Simulation results on three test 

systems: the 3-generators system, 13-generators system and 

10-generators systems are presented and compared to those 

given by other heuristic methods. Numerical results confirm 

that the proposed EPSO is superior to the other heuristic 

techniques in terms of solution quality and robustness. 



2. NONCONVEX ECONOMIC LOAD DISPATCH  

The classical economic dispatch problem is an 

optimization problem that determines the power output of 

each online generator that will result in a least cost system 

operating state. The ELD problem can then be written in the 

following form: 

                                 Minimize    f(x) (1) 

                                 Subject to:  g(x) = 0 (2) 

                                                    h(x)   0 (3) 

f(x) is the objective function, g(x) and h(x) are respectively 

the set of equality and inequality constraints. x is the vector 

of control and state variables.  

A. Objective function 

 The objective of the ELD is to minimize the total system 

cost by adjusting the power output of each of the generators 

connected to the grid. The total generation cost function f(x) 

is usually expressed as a quadratic polynomial: 
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where ng is the number of online thermal units, Pgi is the 

active power generation at unit i and ai, bi and ci are the cost 

coefficients of the i
th

 generator.  

Generally, large power generators have multiple steam 

admission valves that are used to control the power output 

of the unit. When a steam admission valve starts to open, a 

sharp increase in losses occurs, which results in ripples in 

the unit’s cost function [1]. Valve-point effects are usually 

modeled by adding a recurring rectified sinusoid to the basic 

quadratic cost curve [1]: 
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where di and ei are the coefficients of generator i reflecting 

valve point effects. min

gi
P is the minimum generation limit of 

unit i. 

 Moreover, there are many thermal generating units that 

can be supplied by multiple fuel sources [3]. In those cases, 

it is more appropriate to represent the unit’s fuel cost 

characteristic as a piecewise function, reflecting the effects 

of fuel type changes. To obtain an accurate and practical 

ELD solution, valve-point effects and multi-fuel options 

should be included in the cost function which is formulated 

as follows [9]:  
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where i and j denote the index of unit and index of fuel type, 

respectively; 
ij

a , 
ij

b ,
ij

c ,
ij

d and
ij

e  are the cost coefficients 

of the unit i for fuel type j; min

, ji
P and max

, ji
P are the minimum 

and maximum power output of unit i with fuel option j, 

respectively, and nf is the number of fuel types for each unit. 

B. Equality constraints 

 The equality constraint is represented by the power 

balance constraint that reduces the power system to a basic 

principle of equilibrium between total system generation 

and total system loads. Equilibrium is only met when the 

total system generation 


ng

i
giP

1

equals the total system load 

DP  plus system losses LP as it is shown in (7):   
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The exact value of the system losses can only be determined 

by means of a power flow solution. The most popular 

approach for finding an approximate value of the losses is 

by way of Kron’s loss formula (8), which approximates the 

losses as a function of the output level of the system 

generators.   
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where Bij, Bio and Boo are the loss coefficients. 

C. Inequality constraints 

Generating units have lower ( min

gi
P ) and upper ( max

gi
P ) 

production limits, which are directly related to the design of 

the machine. These bounds can be defined as a pair of 

inequality constraints, as follows:    

maxmin

gigigi
PPP   (9) 

3. OVERVIEW OF PARTICLE SWARM OPTIMIZATION 

(PSO) 

The PSO is a swarm intelligence method that differs from 

well-known evolutionary computation algorithms, such as 

genetic algorithms (GA), in that the population is not 

manipulated through operators inspired by the human DNA 

procedures. Instead, in PSO, the population dynamics 

simulate the behavior of a ―birds’ flock‖, where social 

sharing of information takes place and individuals profit 

from the discoveries and previous experience of all other 

companions during the search for food.   Thus, each 

companion, called particle, in the population, which is 

called swarm, is assumed to ―fly‖ over the search space 

looking for promising regions on the landscape. For a 

minimization case, such regions possess lower function 

values than others previously visited. In this context, each 

particle is treated as a point into the search space, which 

adjusts its own flying according to its flying experience as 

well as the flying experience of other particles. Therefore, 



each particle keeps track of its coordinates in the problem 

space which are associated with the best solution (fitness) 

that it has achieved so far. This implies that each particle has 

a memory, which allows it to remember the best position on 

the feasible search space that it has ever visited. This value 

is commonly called Pbest. Another best value that is tracked 

by the particle swarm optimizer is the best value obtained so 

far by any particle in the neighborhood of the particle. This 

location is commonly called Gbest. The basic idea behind 

the particle swarm optimization technique consists, at each 

iteration, updating the velocity and accelerating each 

particle towards Pbest and Gbest locations. 

The velocity of each particle can be modified by using the 

following equation [6, 7]: 
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where, 
k

iV        velocity of particle i at iteration k, 

k
iX       position of particle i at iteration k 

k
iPbest  best position of particle i,  

kGbest best position of the group,  

ω          inertia weight parameter,  

c1, c2       positive constants, 

r1, r2     random numbers within the range [0, 1]. 

The position of each particle is updated by the following 

equation [6, 7]: 
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The positive constants c1, c2 provide the correct balance 

between exploration and exploitation, and are called the 

cognitive parameter and the social parameter, respectively. 

The random numbers provide a stochastic characteristic for 

the particles velocities in order to simulate the real behavior 

of the birds in a flock.  

The weight parameter ω is a control parameter which is 

used to control the impact of the previous history of 

velocities on the current velocity of each particle. Hence, the 

parameter ω regulates the trade-off between global and local 

exploration ability of the swarm [10]. The recommended 

value of the inertia weight ω is to set it to a large value for 

the initial stages, in order to enhance the global exploration 

of the search space, and gradually decrease it to get more 

refined solutions facilitating the local exploration in the last 

stages.  In general, the inertia weight factor is set according 

to the following equation [6]:   
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where, 

ωmin, ωmax  initial and final weights, 

itermax        maximum number of iterations, 

iter            current iteration number. 

The velocity of each particle is limited by a maximum 

value max
iV  which facilitates local exploration of the 

problem space and it realistically simulates the incremental 

changes of human learning. This limit is given by: 
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where min
iX and max

iX are the minimum and maximum 

position limits of the particle i. N is a defined number of 

intervals. 

4. ENHANCED PARTICLE SWARM OPTIMIZATION 

(EPSO) 

The inertia weight parameter ω is generally the key factor 

affecting the PSO’s convergence. This parameter plays the 

role of balancing the global search and local search 

capability of PSO. It can be a positive constant or even a 

positive linear or non linear function of time. Usually, the 

inertia weight parameter is linear decreasing during the 

iterations according to (12). 

Improvements in original PSO can be powerful to escape 

more easily from local minima. In this context, the enhanced 

PSO (EPSO) proposed in this paper uses a new inertia 

weight parameter ' given by (14) which is based on 

sinusoidal and exponential functions. 

) cos( ) exp( ' iteriter    (14) 

where α, β and γ are positive constants. 

While the conventional inertia factor   decreases 

linearly from ωmin, ωmax, the suggested new weight 

decreases while oscillating during the iterations as shown in 

Fig. 1 for itermax = 150,     ωmin = 0.4, ωmax = 0.9,   α = 1.5, β 

= 0.02 and γ = 10.  

5. ENHANCED PSO (EPSO) ALGORITHM 

The enhanced PSO algorithm (EPSO) applied in this 

study for ELD problem can be described as follows: 

Step 1:  

 

Generate randomly the particles between the 

maximum and minimum operating limits of the 

generating units. 

Step 2: Generate the particle velocities randomly. 

Step 3: Evaluate the fitness function of each particle. Pbest 

is set to the initial positions of step 1. 

Step 4: Search for Gbest among Pbest using the evaluated 

fitness functions.  

Step 5: Compute the particle velocities using (10) and (14). 

Step 6: Update the particle positions using (11). 

Step 7: Evaluate the new fitness functions for the updated 

particle positions. For each particle i, if the new 

fitness value is better than the one associated with 

Pbesti, than the new position is set to Pbesti. If one 

of the stopping criteria is met, than stop and the 

actual particle positions represent the optimal 

solution. Otherwise, the procedure is repeated from 

step 4.  



The stopping criteria are the conditions under which the 

search process will stop. In this work, the search procedure 

will terminate whenever the predetermined maximum 

number of iterations itermax is reached, or whenever the 

global best solution does not improve over a predetermined 

number of iterations. 

In the fitness evaluation, penalty functions can be used 

whenever there are violations to some equality and/or 

inequality constraints [11]. Basically, the objective function 

f(x) is substituted by a fitness function )(' xf that penalizes 

the fitness whenever the solution contains parameters that 

violate the problem constraints, 

)()()(' xPenaltyxfxf   (15) 

 

Figure 1. Comparison of inertia weight parameter 
 

In this paper, the exterior penalty function method is 

applied to the equality constraints [11].  The new objective 

function is than given by: 
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where Ki is a positive constant. To satisfy the i
th

 constraint, 

we increase Ki from zero to infinity to give more and more 

weightings. The specification of these weighting factors 

depends on how strongly we feel about satisfying the 

constraints. 

6. SIMULATION RESULTS 

The feasibility of the proposed EPSO approach was tested 

on three different test systems: 3, 13 and 10 generating units 

which are described in [2] and [9]. Simulations were carried 

out using MATLAB computational environment, on a 

personal computer with Intel Pentium IV 3.0 GHz processor 

and 512 MB total memory. 

Case 1. 

This case consisted of 3 generating units, of which the 

input data are tabulated in Table 1. The total load demand of 

the system is 850 MW [2].  The system is considered as 

lossless and only the generation capacity constraints are 

considered. The control parameter settings of EPSO are 

given in Table 2. The best solution obtained using EPSO is 

given in Table 3 which is compared with the best results 

found by genetic algorithm (GA) [1], evolutionary 

programming (EP) [12] and particle swarm optimization 

(PSO) [6]. As it can be observed, the results are identical to 

those found by EP and PSO techniques, showing that EPSO 

is capable of solving efficiently problems featuring valve 

point effects.  

The variation of the total generation cost of the best 

solution during the optimization process is shown in Fig. 2. 

The convergence of this last solution was obtained after 

0.020 seconds and 100 iterations. 

 

TABLE 1. UNITS DATA FOR TEST CASE 1  

Gen. 
Pgmax 

(MW) 

Pgmin 

(MW) 
a b c d e 

1 100 600 561 7.92 0.001562 300 0.0315 

2 100 400 310 7.85 0.001940 200 0.0420 

3 50 200 78 7.97 0.004820 150 0.0630 

TABLE 2. EPSO CONTROL PARAMETER SETTINGS (CASE 1) 

Parameter Setting 

Number of particles 20 

Maximum number of iterations 500 

Inertia weight constants (α, β, γ) (1.5, 0.02, 10.0) 

Acceleration factors (c1, c2 ) (2.0, 2.0) 

Number of intervals (N) 10 

Penalty factor (K) 150 

TABLE 3. COMPARISON OF THE BEST RESULTS FOR CASE 1  

Power 
GA 

[1] 

EP 

[12] 

PSO 

[6] 
EPSO 

Pg 1 300.00 300.26 300.27 300.27 

Pg 2 400.00 400.00 400.00 400.00 

Pg 3 150.00 149.74 149.73 149.73 

Total power (MW) 850.00 850.00 850.00 850.00 

Total fuel cost ($/h) 8237.60 8234.07 8234.07 8234.07 

 

Figure 2. Convergence of the best solution (case 1) 



Case 2. 

This case consisted of 13 generating units. The cost 

coefficients of the generators are listed in Table 4. The 

demanded load is 1800 MW. In this case the solution space 

is highly nonlinear and contains more local minima 

compared to that of case 1. In order to illustrate the 

efficiency and robustness of the proposed algorithm, 50 

independent runs were performed using the adapted control 

parameter settings listed in Table 5. The obtained results are 

summarized in Table 6, and compared to those found by 

improved fast evolutionary programming (IFEP) [2], PSO 

and personal best oriented PSO (PPSO) [13], Hybrid PSO–

SQP [14], hybrid differential evolution algorithm (HDE) 

[15] and hybrid multi-agent based PSO (HMAPSO) [16]. 

The best economic dispatch solution obtained with EPSO is 

shown in Table 7. The convergence of the algorithm for the 

trial run that generated the minimum cost was achieved after 

0.26 seconds and 800 iterations as shown in Fig. 2.  

From Table 6, it is clear that EPSO is superior to the other 

heuristic techniques and gives the best cost values, in a very 

short time. Among the 50 trial runs, 47 were under 18100.00 

$/h (94%), with the minimum cost of 17963.85 $/h and a 

standard deviation of 66.50 $/h, indicating a good 

convergence characteristic (see Fig. 4). It can be concluded 

that EPSO algorithm is more robust and computationally 

effective in solving the ELD problem considering valve-

point loading effects. 

 
Figure 3. Convergence of the best solution for case 2 

TABLE 4. UNITS DATA OF THE 13 GENERATING UNITS 

Gen. 
Pgmax 

(MW) 

Pgmin 

(MW) 
a b c d e 

1 0 680 550 8.10 0.00028 300 0.035 

2 0 360 309 8.10 0.00056 200 0.042 

3 0 360 307 8.10 0.00056 200 0.042 

4 60 180 240 7.74 0.00324 150 0.063 

5 60 180 240 7.74 0.00324 150 0.063 

6 60 180 240 7.74 0.00324 150 0.063 

7 60 180 240 7.74 0.00324 150 0.063 

8 60 180 240 7.74 0.00324 150 0.063 

9 60 180 240 7.74 0.00324 150 0.063 

10 40 120 126 8.60 0.00284 100 0.084 

11 40 120 126 8.60 0.00284 100 0.084 

12 55 120 126 8.60 0.00284 100 0.084 

13 55 120 126 8.60 0.00284 100 0.084 

TABLE 5. EPSO CONTROL PARAMETER SETTINGS (CASE 2) 

Parameter Setting 

Number of particles 50 

Maximum number of iterations 1000 

Inertia weight constants (α, β, γ) (1.6, 0.01, 10.0) 

Acceleration factors (c1, c2 ) (2.5, 1.4) 

Number of intervals (N) 10 

TABLE 6. COMPARISON OF RESULTS FOR CASE 2 

Method 
Min. cost 

($/h) 

Max. cost 

($/h) 

Mean cost 

($/h) 

Mean time 

(s) 

IFEP [2] 17994.07 18267.42 18127.06 157.43 

PSO [13] 18014.16 18249.89 18104.65 – 

PPSO [13] 17971.01 18246.70 18106.33 – 

PSO-SQP [14] 17969.93  – 18029.99  33.97 

HDE [15] 17975.73 – 18134.80 – 

HMAPSO [16] 17969.31 17969.31 17969.31 1.50 

EPSO 17963.85 18222.24 18030.32 0.32 

TABLE 7. THE BEST ECONOMIC DISPATCH SOLUTION OF 

EPSO FOR CASE 2 

Power EPSO 

Pg 1 628.32 

Pg 2 149.48 

Pg 3 222.88 

Pg 4 109.86 

Pg 5 109.87 

Pg 6 109.87 

Pg 7 60.00 

Pg 8 109.87 

Pg 9 109.87 

Pg 10 40.00 

Pg 11 40.00 

Pg 12 55.00 

Pg 13 55.00 

Total power (MW) 1800.00 

Total fuel cost ($/h) 17963.85 

 
Figure 4. Generation cost of the 50 trial runs for case 2 



Case 3. 

 To further investigate the performance of the proposed 

EPSO, experiments are performed on a more complex test 

system having ten generators, which considers valve-point 

loading effects and multi-fuel options [9]. The first 

generator of the system has two fuel options and the 

remaining generators have three fuel options each. The total 

system demand is 2700 MW and no transmission losses are 

considered. The input data and related constraints of the test 

system are described in [9]. Note that the unit curves of this 

system have non-differential points according to valve-point 

loading and multiple fuel changes. The control parameters 

of EPSO are the same as those used in case 2. The best 

solution produced in the 50 trials was 623.72 $/h. The worst 

solution obtained was 624.31 $/h with an average of 624.07 

$/h. The average execution time required for one complete 

solution was 0.42 s, which is very tolerable for ELD 

solutions. Also, it is important to point out that for all the 

trial runs, the convergence was reached without any 

violation of the generator capacity constraints. The global 

optimal dispatch solution given by EPSO is summarized in 

Table 8, which converged after 250 generations and 0.42 s. 

The convergence characteristic of the EPSO is depicted in 

Fig. 5. 

 The results of the proposed approach were compared in 

Table 9 to those reported using conventional GA with 

multiplier updating (CGA-MU) [9], improved GA with 

multiplier updating (IGA-MU) [9], new PSO with local 

random search (NPSO-LRS) [17], anti-predatory PSO 

(APSO1) [18], adaptive PSO (APSO2) [19], combined PSO 

with real-valued mutation (CBPSO-RVM) [20]. From this 

table, it can be seen that the results given by EPSO are 

better than those reported in the literature. 

 

TABLE 8.  BEST RESULTS OF EPSO FOR 10-UNIT SYSTEM 

(CASE 3)  

Unit 
min

i
P  max

i
P  

Fuel  

type 

Generation 

(MW) 

1 100 250 2 215.10 

2   50 230 1 212.46 

3 200 500 1 278.20 

4   99 265 3 265.00 

5 190 490 1 276.40 

6   85 265 3 240.73 

7 200 500 1 282.54 

8   99 265 3 240.79 

9 130 440 3 424.68 

10 200 490 1 264.07 

Total generation (MW)           2700.000 

Total fuel cost ($/h)             623.72 

TABLE 9. COMPARISON RESULTS FOR CASE 3 

Method 
Minimum  

cost ($/h) 

Maximum  

cost ($/h) 

Mean  

cost ($/h) 

CGA-MU [9] 624.72 633.87 627.61 

IGA-MU [9] 624.52 630.87 625.87 

NPSO-LRS [17]  624.13 627.00 625.00 

APSO1 [18] 624.01 627.30 624.82 

APSO2 [19] 623.91 NA 624.51 

CBPSO-RVM [20] 623.96 624.29 624.08 

Proposed EPSO 623.72 624.31 624.07 

NA: Not Available. 

 The statistical results of 50 runs by EPSO with 50 

different initial trial solutions are depicted in Fig. 6. From 

this figure, it is observed that the EPSO algorithm 

consistently produces solutions at or very near to the global 

optimum, indicating a good convergence characteristic. It 

can be concluded that EPSO algorithm is robust and 

effective in solving the ELD problem considering practical 

generator operation constraints, such us valve-point effects 

and multiple fuel changes. 

 

Figure 5. Convergence behavior of EPSO for case 3 

 

Figure 6. Fuel cost distribution obtained by EPSO (case 3) 



7. CONCLUSION 

 In this paper, a new approach based on the enhanced 

particle swarm optimization (EPSO) was developed and 

successfully applied to solve the nonsmooth and nonconvex 

economic load dispatch problem taking into account valve-

point loading effects and multi-fuel options. In order to 

improve the global and local search abilities of the proposed 

EPSO, a new inertia weight parameter has been suggested. 

The feasibility of the proposed EPSO was demonstrated 

on three test systems consisting of 3, 13 and 10 generating 

units. Simulation results have demonstrated that the 

proposed improvement was a powerful strategy to prevent 

premature convergence to local minima, providing high 

quality solutions. Also, simulation results confirm that the 

proposed EPSO is superior to the other heuristic techniques 

in terms of solution quality and robustness. 
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