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Abstract- Power system performance is affected by
dynamic characteristics of hydraulic governor-
turbines during and following any disturbance,
such as occurrence of a fault, loss of a
transmission line or a rapid change of load.
Accurate mode l l ing of hydraulic Sy st em is
essential to characterize and diagnose the system
response. In this article the mathematical modeling 
of hydraulic turbine is presented. The model is 
capable to implement the digital systems for 
monitoring and control replacing the conventional 
control systems for power, frequency and voltage. 
This paper presents the possibilities of modeling and 
simulation of the hydro power plants and performs 
an analysis of different control structures and 
algorithms

I. INTRODUCTION
Different construction of hydropower systems and 
different operating principles of hydraulic turbines make 
difficult to develop mathematical models for dynamic 
regime, in order to design the automatic control systems. 
Also, there are major differences in the structure of these 
models. Moreover, there are major differences due to the 
storage capacity of the reservoir and the water supply 
system from the reservoir to the turbine (with or without 
surge chamber).The dynamic model of the plants with 
penstock and surge chamber is more complicated than 
the run-of-the-river plants, since the water feed system is 
a distributed parameters system. This paper will present 
several possibilities for the modeling of the hydraulic
systems and the design of the control system.

II. MODELING OF THE HYDRAULIC SYSTEM 
For run-of-the river types of hydropower plants have a 
low water storage capacity in the reservoir; therefore the 
plant operation requires a permanent balance between 
the water flow through turbines and the river 

Figure 1: Functional block diagram of hydraulic governor-turbine 
system interconnected with a power system network.

flow in order to maximize the water level in the reservoir 
for a maximum efficiency of water use. Next, we will 
determine the mathematical model for each component 
of the hydropower system.

A. Mathematical modeling of Hydraulic turbine
The hydraulic turbine can be considered as an element 
without memory since the time constants of the turbine 
are less smaller than the time constants of the reservoir, 
penstock, and surge chamber, if exists, which are series 
connected elements in the system. As parameters 
describing the mass transfer and energy transfer in the 
turbine we will consider the water flow through the 
turbine Q and the moment M generated by the turbine 
and that is transmitted to the electrical generator. These 
variables can be expressed as non-linear functions of the 
turbine rotational speed N, the turbine gate position Z, 
and the net head H of the hydro system.

Q = Q (H, N, Z) (1)
M = M (H, N, Z) (2)

Through linearization of the equations (1) and (2) around 
the steady state values, we obtain:

∆ܳ = డொ
డு ܪ∆ + డொ

డே ∆ܰ + డொ
డ௓ ∆ܼ (3)

q= a11 h+ a12 n+ a13 z

ܯ∆ = డெ
డு ܪ∆ + డெ

డே ∆ܰ + డெ
డ௓ ∆ܼ (4)

m= a21 h+ a22 n+ a23 z

Where the following notations were used:

ݍ = ∆ொ
ொబ , ݊ = ∆ே

ேబ , ݉ = ∆ெ
ெబ , ℎ = ∆ு

ுబ , ݖ = ∆௓
௓బ   

Which represent the non-dimensional variations of the 
parameters around the steady state values.

B. The hydraulic feed system
The hydraulic feed system has a complex geometrical 
configuration, consisting of pipes or canals with 
different shapes and cross-sections. Therefore, the feed 
system will be considered as a pipe with a constant 
cross-section and the length equal with real length of the 
studied system. In order to consider this, it is necessary 
that the real system and the equivalent system to contain 
the same water mass. Let consider m1, m2...mn the water 
masses in the pipe zones having the lengths l1,l2,...,ln and 



cross-sections A1, A2,...,An of the real feed system. The
equivalent system will have the length L=l1+l2+...+ln

and cross-section A, conveniently chosen. 
In this case, the mass conservation law in both systems 
will lead to the equation:

ܣ ∑  ݈௜௡௜ୀଵ = ∑ ݈௜. ௜௡௜ୀଵܣ   (5)

Since the water can be considered incompressible, the 
flow Qi through each pipe segment with cross-section Ai

is identical and equal with the flow Q through the 
equivalent pipe 

Q=v.A=Qi=vi.Ai for i=1, 2,..., n (6)

Where v is the water speed in the equivalent pipe, and vi

is the speed in each segment of the real pipe.
From the mass conservation law it results:

ݒ = ொ
஺ = ொ೔ ∑ ௟೔∑ ௟೔.஺೔  = ∑ ௟೔∑ ௟೔.஺೔  . ܳ (7)

The dynamic pressure loss can be computed considering 
the inertia force of the water exerted on the cross-section 
of the pipe:

௜ܨ  = − ݉. ܽ = .ܮ − .ܣ .ߩ ܽ = ܣ− ௅.ఊ
௚

ௗ௩
ௗ௧ (8)

Where L is the length of the penstock or the feed canal, 
A is the cross-section of the penstock,  is the specific 
gravity of water (1000Kgf/m3), a is the water 
acceleration in the equivalent pipe, and g=9.81 m/s2 is 
the gravitational acceleration. The dynamic pressure loss 
can be expressed as:

ௗܪ = ி೔஺ = − ఊ.௅
௚ . ௗ௩

ௗ௧ = − ఊ.௅
௚

∑ ௟೔∑ ௟೔.஺೔
ௗொ
ௗ௧     (9)

Using non-dimensional variations, from (9) it results:

∆ு೏ு೏బ = ொబு೏బ . ఘ௅.∑ ௟೔∑ ௟೔.஺೔ . ௗቀ∆ೂೂబቁ
ௗ௧ (10)

Or in non-dimensional form:

ℎௗ = − ௪ܶ ௗ௤
ௗ௧ (11)

Where TW is the integration constant of the hydropower 
system and the variables have the following meaning:

ℎௗ = ∆ு೏ு೏బ , ݍ =  ∆ொ
ொబ , ௪ܶ = ொబு೏బ

ఘ௅.∑ ௟௜
∑ ௟௜஺௜ [ݏ] (12)

It must be noted that this is a simplified method to 
compute the hydraulic pressure loss, which can be used 
for run-of-the river hydropower plants, with small water 
head. If an exact value of the dynamic pressure is 
required, then the formulas presented in [8], sub-chapter 
8.4 “The calculation of hydro energy potential” shall be 
used.
Using the Laplace transform in relation (11), it results:

ℎௗ(ݏ) = ݏ− ௪ܶ. ,(ݏ)ݍ (ݏ)ݍ ݀݊ܽ = − ଵ
௦்ೢ ℎௗ(ݏ)       (13)

Replacing (13) in (3) and (4) and doing some simple
calculations, we obtain:

(ݏ)ݍ = ௔భమଵା௔భభ்ೢ ௦ (ݏ)݊ + ௔భయଵା௔భభ்ೢ ௦ (ݏ)ݖ         (14)

ℎௗ(ݏ) = − ௔భమ்ೢ ௦
ଵା௔భభ்ೢ ௦ (ݏ)݊ − ௔భయ்ೢ ௦

ଵା௔భభ்ೢ ௦ (ݏ)ݖ         (15)

(ݏ)݉ = ൬ܽ21 − ൰ݏݓ11ܶܽ+1ݏݓ12ܶܽ (ݏ)݊ + ൬ܽ23 − ൰ݏݓ11ܶܽ+1ݏݓ13ܶܽ (ݏ)ݖ   (16)

The mechanical power generated by the turbine can be 
calculated with the relation P=ߟ..Q.H, which can be 
used to obtain the linearized relations for variations of 
these values around the steady state values:

݌ = g.Ho.q            (17).ߟ +g.  ܳ଴.h.ߟ

Where ߟ  is the turbine efficiency, and , Q, and H were 
defined previously.
On the other hand, the mechanical power can be 
determined using the relation P=Mω=2ߨM.N, which can 
be used to obtain the linearized relations for variations of 
these values around the steady state values:

݊ = ଶగேబ௉బ ݌ − (ଶగேబ)మ
௉బ m            (18)

Where ଴ܲ .଴ܯ=  ଴ is the steady state power generated byݓ
the turbine for a given steady state flow Q0 and a steady 
state head H0, and N0 is the steady state rotational speed. 
Using these relations, the block diagram of the hydraulic
turbine, for small variation operation around the steady 
state point, can be determined and is presented in Figure 
2, where the transfer functions for different modules are 
given by the following relation:

(ݏ)௤௡ܪ = ܽଵଶ1 + ܽଵଵ ௪ܶݏ , (ݏ)௤௭ܪ = ܽଵଷ1 + ܽଵଵ ௪ܶݏ , (ݏ)௛௡ܪ = ܽଵଶ ௪ܶ1ݏ + ܽଵଵ ௪ܶݏ,
(ݏ)௛௭ܪ = ௔భయଵା௔భభ்ೢ ௦ , (ݏ)௠௡ܪ = ܽଶଵ − ቀ ௔భమ்ೢ ௦

ଵା௔భభ்ೢ ௦ቁ , (ݏ)௠௭ܪ = ܽଶଷ −
ቀ ௔భయ்ೢ ௦

ଵା௔భభ்ೢ ௦ቁ (19)

For an ideal turbine, without losses, the coefficients aij 

resulted from the partial derivatives in equations (12 -
16) have the following values: a11=0.5; a12=a13=1; 
a21=1.5; a23=1. In this case, the transfer functions in the 
block diagram are given by the following relation:

(ݏ)௤௡ܪ = ଵ
ଵା଴.ହ.்ೢ ௦ , (ݏ)௤௭ܪ = ଵ

ଵା଴.ହ.்ೢ ௦ , (ݏ)௛௡ܪ = − ்ೢ ௦
ଵା଴.ହ.்ೢ ௦  (20)

(ݏ)௛௭ܪ = ்ೢ ௦
ଵା଴.ହ.்ೢ ௦,   ܪ௠௡(ݏ) = ቀ1,5 − ்ೢ ௦

ଵା଴.ହ ்ೢ ௦ቁ         (21)

(ݏ)௠௭ܪ = ቀ1 − ்ೢ ௦
ଵା଴.ହ ்ೢ ௦ቁ = ଵି଴.ହ.்ೢ  ௦ଵା଴.ହ.்ೢ  ௦        (22)

III. SIMULATION RESULTS

Example.  Let consider a hydroelectric power system 
with the following parameters:



-Water flow (turbines): QN=725 m3/s;
-Water level in the reservoir: HN=30 m;
-The equivalent cross-section of the penstock A=60m2;
-Nominal power of the turbine PN=178MW;
-Turbine efficiency η=0.94;
-Nominal rotational speed of the turbine=

N=71.43 rot/min;
-The length of the penstock l=Σli=20m;

Fig. 2. The block diagram of the hydraulic turbine.

It shall be determined the variation of the time constant 
TW for the hydro power system.
For the nominal regime, using relation (12), where ߑli=20m, the time constant of the system is:

௪ܶ = ଻ଶହ 
ଷ଴ . ଶ଴

ଽ,଼ଵ.଺଴ = ݏ0,82 (23)

Next we will study the variation of the time constant due 
to the variation of the water flow through the turbine for 
a constant water level in the reservoir, H=30m, as well 
as the variation due to the variable water level in the 
reservoir for a constant flow Q=725 m3/s. 

In table I, column 3 and figure 3 a) are presented the 
values and the graphical variation of the time constant 
TW for the variation of the water flow between 500 m3/s 
and 110 m3/s, for a constant water level in the reservoir, 
H=30m. In table 1. column 4 and figure 3 b) are 
presented the values and the graphical variation of the 
time constant TW for the variation of the water level in 

Table I. Variations of the time constant of the hydro 
system

the reservoir, for a constant water flow, Q=725m3/s. 

Figure 3. Variation of the integral time constant TW: a) 
by the flow Q, b) by the water level H

It can be seen from the table or from the graphs that the 
time constant changes more than 50% for the entire 
operational range of the water flow through the turbine 
or if the water level in the reservoir varies. These 
variations will create huge problems during the design of 
the control system for the turbine, and robust control 
algorithms are recommended.

In figure 4 the block diagram of the turbine’s power 
control system, is presented using a secondary feedback 
from the rotational speed of the turbine. It can be seen 
from this figure that a dead-zone element was inserted in 
series with the rotational speed sensor in order to 
eliminate the feedback for  ±0.5% variation of the 
rotational speed around the synchronous value. This 
oscillation has no significant influence on the 
performance of the system but would have lead to 
permanent perturbation of the command sent to the 
turbine gate.



Figure 4. Block Diagram of the control system for hydraulic turbines

The constants of the transfer functions had been 
computed for a nominal regime TW=0.8s. The optimal 
parameters for a PI controller are: KR=10, TI=0.02s. 
The results of the turbine simulation for different 
operational regimes are presented in figure 5, for a 
control system using feedbacks from the turbine power 
and rotational speed, with a dead-zone on the rotational 
speed channel for ±0.5% variation of the rotational 
speed around the synchronous value (a) Power variation 
with 10% around nominal value, b) Rotational speed 
variation for power control).

Figure 5 Control structure with feedbacks from turbine
power and rotational speed:

In figure 6 the variations of the turbine power (graph a) 
and rotational speed (graph b) for the control system a 
feedback from the turbine power but no feedback from 
the rotational speed are presented.

Figure 6 Control structure with only power feedback
a) Power variation with 10% around nominal value
b) Rotational speed variation for power control

I. CONCLUSIONS

The detailed mathematical modelling of hydraulic 
turbine is vital to capture essential system dynamic
behavior .The possibility of implementation of digital 
systems for monitoring and control for power, 
frequency and voltage in the cascade hydro power plant 
was discussed. The simplified mathematical models, 
capable to accurately describe dynamic and stationary 
behavior of the hydro units a developed and simulated. 
These aspects are compared with experimental results. 
Finally, a practical example was used to illustrate the 
design of controller and to study the system stability.
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