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Abstract: In this article we present a simple 
algorithm that finds the minimum time path for a 
two-wheeled vehicle. The proposed algorithm takes 
into account constraints on angular velocities and 
accelerations, thus, enabling smooth optimal 
trajectories. The dynamical case is studied, as well. 
Simulations and results are presented. 
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1. Introduction 
         A major motivation using mobile robots is to 
increase productivity, since robots are often slower 
than what we expect. The present paper deals with 
minimum time trajectory generation for a moving 
vehicle from an initial configuration to a final 
strategy with free final orientation. Obviously, 
minimizing time process is equivalent to maximizing 
robot's velocity and therefore optimizing 
productivity. 
         The special kind of mobile robots of our 
interest is differential drive with bounded velocity, 
and bounded acceleration. 
         Two major goals are to be achieved, first to 
write the kinetic system as a set of difference 
equations, second to develop a control law that 
enables path following optimization.  
         In [4] only straight line and turning in place 
motions were generated, regardless of constraints 
that might exist during control process.  
         [5] and [6] however, considered steered 
vehicles which is a restricted case.  
 
2. Problem formulation 
         Let P a point with coordinates ( )yx,  in the 
fixed frame ( )yxo ,,  , and coordinates ( )MM yx ,  in 
the mobile frame ( )',',' yxo . Consider also ( )00 , yx   

coordinates of the mobile frame's origin with respect 
to the fixed frame (Fig. 1). The kinetic system is 
written in terms of the following system equations: 

                θcosvx =
•

 

                θsinvy =
•

                                                      (1) 
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Such that:      ( )lr wwrv +=
2

    and  ( )lr ww
L
r
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Where  rw   and  lw    are the right and left angular 
wheel speeds respectively. 
         It is easy to show the following: 
              0sin'cos' xyxx +−= θθ                               (2) 
              0cos'sin' yyxy ++= θθ                           (3)        

 
                      Fig1.  System kinematics   
 
Now suppose a displacement of the point P as shown 
on figure 2. We can, then, express the curvature 
radius  R  as.  
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In addition, we have: 
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                Fig2. Small angle variation 
 

( )θ∆= sin' Rx  
( )( )θ∆−= cos1' Ry  

 
Using equations (2), (3) we get: 
 

( ) ( )( ){ } 0sincos1sincos xttvx +∆−−∆= θψψθ
ψ

    (5) 

( ) ( )( ){ } 0coscos1sinsin yttvy +∆−+∆= θψψθ
ψ

   (6) 

0θψθ +∆= t                                                            (7) 
 
The goal is to solve system (1) (same as equations 
(5)-(7)) such that the following cost: 

                ∫=
ft

t
dtJ

0

  

is minimised, under the constraints: 
               rMAXr ww ≤  
               lMAXl ww ≤  
               MAXψψ ≤  

               MAXdt
d τψ

≤  

           
3. Pontryagin's maximum principle 
         The hamiltonian is: 

   ψλθλθλ 321 sincos1 +++= vvH                     (8) 
Where iλ   3,2,1=i  are Lagrange multipliers, which 
must satisfy the following: 
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                      (10) 

We must also have: 
                 0)( =ftH                                             (11) 
And the Hamiltonian must be minimal along an 
optimal path  [ ]fttt ,0∈∀  . 
Set of equations (9) give trivial solutions: 
                         1λ   and   2λ   constants, however,  

( )dtv
ft

t
∫ −=
0

cossin 213 θλθλλ  

One can study each case of the four possibilities: 
1:   rMAXr ww ±=   lMAXl ww ±=  
2:   rMAXr ww ±=   lMAXl ww ≤  
3:   rMAXr ww ≤     lMAXl ww ±=  

4:   rMAXr ww ≤     lMAXl ww ≤  
The first case is a degenerate one, in which the robot 
either follows a straight line or turns in place. 
 
4. Path following 
         Intuitively, the robot should be heading towards 
the target in order to guarantee optimality, if we let:   

( ) ( ) ( )ttt T θθθ −=∆  be the instantaneous error angle, 
i.e., difference between target angle and actual angle, 

whereas,      )()(
x
yarctgtT ∆

∆
=θ         such that   

iT yyy −=∆   and  iT xxx −=∆   , ( )ii yx ,  are actual 
coordinates of the center of mass of the robot and 
( )TT yx ,  are target coordinates. 
Therefore, one can propose the following control: 

     θθψ IP K
t

K +
∆
∆

=                                           (13) 

PK  and  IK   are regulating gains. 
 
5. Robot dynamics 
          Let ߬௥ and ߬௟ be the right and left torques 
applied on the right and left wheels respectively, 
therefore, the equations of motion are: 
 

ሶݒ݉    ൌ െܨ௩ݒ ൅ ሺ߬௥ ൅ ߬௟ሻ
ൗݎ                               (14-1) 

ܬ    ሶ߰ ൌ െܨట߰ ൅ ሺ߬௥ܮ െ ߬௟ሻ
ൗݎ                            (14-2) 
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Where ݉ is the mass of the robot, ܬ the moment of 
inertia, ܨ௩ and ܨట are the viscous and rotational 
friction coefficients respectively. 
Now, let us consider the following state  vector:  

જ ൌ ሺݔ ݕ ߠ ݒ ߰ሻ் 
And the input vector:   ࢛ ൌ ሺ߬௥ ߬௟ሻ் 
In such a way that: 
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On a given path trajectory ݏ, by using the curvature 
radius ܴሺݏሻ and combining  equations (14-1) and 
(14-2) we get: 
 
ሶݏ    ൌ  (1-16)                                                               ݒ
ሶݒ    ൌ ܽ଴ሺݏ, ሻݒ ൅ ܽଵሺݏሻ߬௥                                  (16-2) 
 
   ܾሺݏሻ ൌ ܴሺݏሻ൫ܬ ൅  ሻ൯ݏሺܴܮ݉

ܽ଴ሺݏ, ሻݒ ൌ
ଶݒሻݏᇱሺܴܬ െ ܴሺݏሻ ቀܨట ൅ ሻቁݏሺܴܮ௩ܨ ݒ

ܾሺݏሻ  

   ܽଵሺݏሻ ൌ ሻݏଶሺܴܮ2
ሻ൘ݏሺܾݎ   

6. Motion generation 
          The aim goal of this section is to design the 
minimum time trajectory under torque limitations. 
We can, therefore, state the following problem: 
Minimize    ׬ ௧೑ݐ݀

଴  
Under the constraints: 
   System (16),  
   ߬௥ ൑ ߬௠             ߬௟ ൑ ߬௠                                   (17) 
Where assuming identical wheel characteristics. 
According to [7], constraints on the applied torques 
can be transformed into constraints on acceleration in 
the phase plane ሺݏ,  :ሻ such thatݒ
ሷ௠௜௡ݏ    ൑ ሷݏ ൑  ሷ௠௔௫ݏ
Where: 

ሷ௠௜௡ݏ ൌ ൜െܽଵሺݏሻ߬௠ ൅ ܽ଴ሺݏ, ሻݏሻ     ݂݅   ܽଵሺݒ ൐ 0 
ܽଵሺݏሻ߬௠ ൅ ܽ଴ሺݏ, ሻݏሻ        ݂݅   ܽଵሺݒ ൏ 0  

 

ሷ௠௔௫ݏ ൌ ൜ ܽଵሺݏሻ߬௠ ൅ ܽ଴ሺݏ, ሻݏሻ     ݂݅   ܽଵሺݒ ൐ 0
െܽଵሺݏሻ߬௠ ൅ ܽ଴ሺݏ, ሻݏሻ     ݂݅   ܽଵሺݒ ൏ 0 

And the maximum velocity occurs when: 
ሷ௠௜௡ݏ    ൌ  . ሷ௠௔௫ݏ
Once the maximum velocity is found, forward and 
backward integration of system (16) is performed 
until matching is found, exactly, that will be the 
switching point. We should notice that, we are 
dealing with a non-singular case, that is, the resulting 
optimal controls are of bang-bang type.  
In the left hand side of equation (16-2), while taking 
the discrete time version, the following 
approximation is considered: 

௞ାଵݒ   
ଶ െ ௞ݒ

ଶ

2∆ൗ  ;         ∆ൌ ௞ାଵݏ െ  ௞ݏ

For instance, if we neglect viscous and friction 
coefficients we get the following recursive formula: 
 

௞ାଵݒ
ଶ ൌ

∆ܴଶሺݏሻ
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∆ܴଶሺݏሻ ௞ݒ

ଶቋ 

 
 
7. Simulations 
          First, we study the kinetic case:     
Example 1:  In this case, no constraint is considered. 
The wheel radius is taken mr 1.=   and the linear 
velocity is supposed to be constant such that 

smv /1=   initial position is defined as 00 =x  and 
00 =y   00 =θ  meanwhile the final position is 
mx f 1=  and  my f 1= with free final orientation. 

         Gain constants are chosen 2.=PK  and  
2.=IK , the stepwise is st 05.=∆ . 

The final time is found to be st f 35.1= , the  

resulting trajectory is shown in figure 3. 

 
             Fig.3. Phase plane with zero initial angle 
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         At the same time the angular position and 
velocity are shown in figures 4 and 5. 
 

 
              Fig.4. Robot orientation as a function of time. 
 

 
                   Fig.5. Robot's angular velocity.  
 
Right and left wheel's angular velocities are plotted 
in figures 6 and 7 respectively. 

 
                Fig. 6. Right wheel angular velocity.  
 

 
                 Fig. 7. Left wheel angular velocity. 

Example 2:  The same last values are considered 
again, additionally we take srdMAX /1=ψ . 

Consequently, the final time is found to be st f 5.1= , 

and the resulting phase trajectory is sketched in 
figure 8.  

  
                 Fig.8. Constrained trajectory. 
 
         In addition, right and left wheel velocities are 
presented in figures 9 and 10 respectively. 
 

 
                    Fig.9. Right wheel velocity. 
 
 

 
                Fig. 10. Left wheel velocity. 
 
The cart experimentally used to test the mobile robot 
performances, and which the physical characteristics 
are employed in the following simulations is a two 
wheeled differentially driven robot with a free wheel 
(caster). Each driven wheel is connected to a DC 
motor controlled by a pulse width modulation servo-
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controller. The whole system is powered with a 
simple 2X12V set of batteries. The sampling rate is 
20ms. In the following we consider the dynamics of 
the robot with the following data:  

݉ ൌ ܬ     ,݃݇ 27 ൌ .݃ܭ 1.43 ݉, 
ܮ                   ൌ .23݉,        ߬௠ ൌ 5.9 ܰ. ݉, 
 
 
Example 3:   Let the path be a unit circle, which 
means that ܴሺݏሻ ൌ 1, by applying the results found 
in the last section we find that the switching point 
occurs at ݏ ൌ 2݉ as shown in figure 11. 
 
 

 
 
 
 
 
We can also show the optimal torque ߬௥ variations in 
figure 12. 
 
 

 
 
 
 
 
Where, the trajectory variations are sketched in 
figure 13. 
 
 
 

 
 
 
 
 
We can also show the path trajectory with respect to 
time. 
 

 
 
 
 
 
 
8. Conclusions 
         We developed a simple algorithm that founds 
minimum time trajectory for a differential drive robot 
taking into account constraints on angular velocity 
and/or acceleration. The actual algorithm may be 
extended to the general dynamic case, which will be 
the main scope of our future research, besides, the 
possibility of static obstacles existing in   work space 
of the robot. 
         Another future perspective would be the 
situations, in which final orientation of the robot is 
specified.  
         For practical reasons, one could use the 
resulting optimal solutions as model references to 
real robot plant, in such a way that real time optimal 
path following can be achieved.  
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Fig.11. Velocity profile.   

Fig.12.Optimal right torque. 

Fig. 13.  Position trajectory           

Fig. 14. Time variation of path trajectory. 
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