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Abstract-This paper proposes an optimal detection and 

classification of inter-turn insulation faults in the 

induction motor (IM) using a hybrid optimization 

technique. The proposed hybrid optimization technique is 

the joined execution of both the Grey Wolf Optimization 

Algorithm (GWOA) and Radial Basis Function Neural 

Network (RBFNN) and in this way, it is named as GWO-

RBFNN technique. The required fault training dataset is 

gathered through the client characterized framework 

show through the proposed GWO algorithm. In the 

proposed approach, RBFNN is utilized in two phases with 

the end goal of detection of the inter-turn insulation 

faults. The ordinary RBFNN first phase is utilized to 

recognize the motors healthy or unhealthy condition 

under various situations. The second phase of the RBFNN 

is playing out the classification of the unhealthy condition 

of motors to distinguish the correct inter-turn faults for 

protection. Here, the second phase RBFNN learning 

procedure is enhanced by using the GWOA in perspective 

of the minimum error objective function. The proposed 

GWO-RBFNN method plays an evaluation process to 

protect the induction machine and detect the fault in the 

IM at the inception stage. The proposed GWO-RBFNN 

technique guarantees the system with lessens complexity 

for the detection and classification of the inter-turn 

insulation fault and hence the accuracy of the system is 

raised. The proposed model is executed in 

MATLAB/Simulink working stage and the execution is 

assessed with the current procedures. 
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Grey wolf optimization algorithm, Radial basis function 
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1. Introduction 
These days, for the protected and proficient running of 

mechanical plants and procedures, the electric motors 

assume a significant job [1]. The costly failures in the 

motors are kept away from by the early discovery of 

variations from the norm [2]. The greater parts of the 

studies are utilized to find the failure in squirrel-cage 

motors, bearing-and stator-winding-related 

inadequacies. Additionally, it shows that most of stator 

winding failures of motor result from turn-to-turn 

insulation breakdown [3]. In spite of the fact that, to 

show the time delay between inter-turn and ground 

wall insulation failures there is no exploratory 

information is utilized, it is plausible that the progress 

between the two states isn't immediate. To neighboring 

the coils and the stator core, decreasing fix cost and 

motor blackout time, early identification of inter-turn 

shorts amid motor activity would dispose of ensuing 

harm [4]. The nearness of a shorted turn is shown by 

the presently existed instrumentation, yet just with the 

motor expelled from the administration. In the event 

that these faults are left undetected, they will inevitably 

deteriorate into a machine failure [5]. At the point when 

the failure of machine happens, it might be harmed by 

close personnel. Additionally, there is a generous cost 

related to vacation and fizzled machine fix. As such, at 

the beginning stage, it is always appealing to blame 

recognizes [6]. To distinguish the bearing, stator, and 

eccentricity-related deficiencies, an explicit 

mathematical model is used by the model-based fault 

detection and diagnosis strategies [7]. The vast 

majority of the examination broke down the different 

FAULT location techniques, for example, Motor 

Current Signature Analysis (MCSA), Axial Flux-

Based Methods, Vibration Analysis, and so on.  

In the IM, asymmetry in the machine impedance is 

happened by both Modeling and Experimentation that 

the winding insulation faults to draw unbalanced phase 

currents [8]. Because of this unbalance, the negative 

sequence currents streaming in the line. Be that as it 

may, voltage unbalance, machine saturation, and so on 

is caused the negative sequence currents [9]. A number 

of time-frequency domain systems have been proposed 

including Short-Time Fourier Transform (STFT), 

Wigner Ville Distribution (WVD), and Wavelet 

Transform (WT) in the ongoing writing. To identify 

bearing deformities, the greater part of the scientists 

used the stator current by means of wavelet packet 

decomposition [10-12]. The recently referenced 

frequency-domain approaches require the bearing 

defect frequencies to be known or pre-assessed. The 

other insufficiency is the extending inconvenience in 

researching the vibration spectrum when the signal-to-
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noise ratio is low. If the vibration spectrum has an 

expansive number of frequency segments it results in 

the multifaceted nature of the system [13-16]. Using a 

reasonable, solid, and non-obtrusive system Artificial 

Neural Network (ANN) has the limit of grasping the 

motor checking and fault identification issue. In any 

case, the fault discovery process does not give heuristic 

thinking [17-19]. On the other hand, fuzzy logic can 

give heuristic thinking, yet difficult to give precise 

solutions [20]. 

In the paper, a combined strategy of GWO-RBFNN for 

detection and classification of inter-turn insulation 

fault in IM is proposed. The motivation behind the 

proposed technique is to detect and classify the inter-

turn insulation fault exhibited in the IM under healthy 

and unhealthy conditions. The remaining section of the 

paper is organized as follows. Section 2 delineates the 

recent research works about the inter-turn faults in the 

IM. Section 3 includes the analytic modeling of an 

induction motor under stator inter-turn fault; section 4 

delineates the proposed inter-turn insulation faults 

diagnosis method in induction motor; section 5 and 6 

includes the simulation analysis and conclusions   

2. Recent Research Works: A Brief Review 
Numerous research works have previously existed in the 

literature which was based on the detection of inter-turn 

faults in the IM using various techniques and various 

aspects. Some of the works are reviewed here. 

For the fault diagnosis in the IM, practical machine 

learning based fault diagnosis strategy was proposed 

by M. Ali et al. [21]. For feature extraction, the authors 

have utilized the two signal processing techniques such 

as matching pursuit(MP) And discrete wavelet 

transform(DWT). For IM's fault diagnosis, three 

classification algorithms, support vector 

machine(SVM), K-nearest neighbors(KNN), and 

ensemble, with 17 different classifiers are utilized. To 

compute features for a specific fault a novel curve 

fitting procedure was created. For incipient fault 

diagnosis of the synchronous generator, a consolidated 

system of Moth– Flame Optimization (MFO) 

algorithm and Fuzzy Logic Controller(FLC) was 

displayed by V. Boorgula et al. [22]. The inspiration 

for their work was different fault location under healthy 

and unhealthy conditions. In their methodology, the 

MFO was utilized to gather the data-set from the input 

current signal. The FLC was utilized to diagnose the 

faults subject to the dataset. So as to assess the 

adequacy of the proposed technique, the incipient 

faults are dissected. 

For inverter-fed IM stator faults location under closed-

loop control, an efficient methodology was proposed 

by E. Elbouchikhi et al. [23]. The symmetrical 

components (SCS) of the stator currents were utilized 

to the proposed conclusion approach. The maximum 

likelihood estimator (MLE) was utilized to assess the 

supply fundamental frequency and the three-phase 

phasors. For unbalance fault detection, authors have 

utilized the Generalized Likelihood Ratio Test (GLRT) 

strategy. In three-phase IMs, the level of stator winding 

shorted turns was identified by neural networks as a 

productive diagnostic tool which was exhibited by L. 

Maraaba et al. [24]. For the plan and training of the 

neural network, the mean, variance, max, min, and 

F120 time dependent on factual and frequency-related 

highlights were observed to be exceptionally particular 

for connecting the caught electromechanical torque 

with its comparing level of shorted turns.  

To distinguish incipient stator winding inter-turn short-

circuits in IM, P. Rebouças Filho et al. [25] have 

contributed a solid methodology. Various sorts of 

short-circuit in the generator was distinguished 

utilizing a wind turbine test-bench. To fabricate a fault 

database, the electrical current was gained. Here, the 

utilization of four feature extraction systems with three 

classifiers was utilized. For IM fault recognition, a 

novel radial flux sensing technique was shown by G. 

Surya et al. [26]. Serious research endeavors in the past 

have been centered around the flux signature analysis 

as they have been increasingly proficient contrasted 

with classical motor current signature analysis 

(MCSA). 

2.1. Motivation for the Research Work 
The review of the ongoing research work shows that 

the detection of inter-turn insulation failure in the IM 

is a basic contributing part. In a mechanical plant, 

broad amounts of electrical drives are presented. Along 

these lines, in such an establishment the strength of 

individual motors detection is huge. Diagnostics of 

fault is basic for keeping up a key separation from the 

cataclysmic impacts, for instance, unexpected failure 

of electric drive systems. Thusly, in the recognition of 

variations from the norm in motor a precise 

demonstrating of motors is the underlying advance. In 

light of the composition, distinctive fault identification 

procedures, for instance, neural networks (NNS), 

Generalized Likelihood Ratio Test (GLRT), Fast 

Fourier Transform (FFT), ETC. ANN has the limit of 

disentangling the observing and fault recognition issue 

of the motor in any case in the fault identification 

process it doesn't give the heuristic method. 

Regardless, in veritable applications, the genuine 

weaknesses of artificial intelligence (AI) procedures 

are black-box data processing structure and high 

computational cost. Furthermore, for different state 

conditions, the underlying training stage is an issue 

since it requires an extensive arrangement of stator 

currents database. For optimal operation, this stage is 



essential and may be conveyed limited game plan of 

systems. Nevertheless, one of the issues with FFT 

analysis and other frequency-domain approaches 

require the frequencies of bearing deformity be known 

or pre-evaluated. The other deficiency when the signal-

to-noise ratio is low there is the extending 

inconvenience in separating the vibration spectrum and 

when the signal-to-noise ratio is high then the vibration 

spectrum has innumerable parts. Regardless of the way 

that the above techniques are used for foreseeing the 

inter-turn faults, the algorithm unpredictability is high 

a direct result of an extended number of tests required. 

To vanquish these troubles, an optimal detection, and 

classification of faults using trendsetting innovation. In 

related works, few control methods are shown to 

identify and classify the inter-turn faults; the recently 

referenced confinements have roused to do this 

examination work.      

3. Analytic Modeling of Induction Motor under 

Stator Inter-Turn Fault 

3.1. Operating Principles of Induction Motor  
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Figure 1: Operating Principles of Induction Motor 

The IMs involves the most significant spot in the 

protected and effective running of industrial plants and 

processes. In this motor, a rotating magnetic field is 

rendered by a three-phase power supply. The magnetic 

field offered in the IM is generated by the AC power 

provided to the stator of the motor that rotates in time 

with the AC oscillations. A rotor of the IM pivots at a 

slower speed than the stator field while synchronous 

rotor of the motor turns at a similar rate as the stator 

field. Hence, the magnetic field of the stator in the IM 

is changing or rotating with respect to the rotor. This 

invigorates the inverse current in the rotor of the IM; 

accordingly, the secondary winding of the motor is 

short-circuited or shut through outside impedance. The 

currents in the windings of the rotor actuated by the 

rotating magnetic flux and the currents incited in 

secondary windings of the transformer both are 

comparative. In the rotor, the magnetic fields are made 

by the currents in the rotor windings which respond 

against the stator field. The rotating stator magnetic 

field because of the reason for induced current in the 

rotor windings inverse the change in currents of the 

rotor-windings; the rotor will begin to rotate toward the 

rotating stator magnetic field [27]. The rotor will 

accelerate until the connected load is adjusted by the 

magnitude of induced rotor current and torque. The 

operation of the IM is slower than synchronous speed 

because of the nonappearance of induced rotor current 

since the rotation at synchronous speed. Subsequently, 

the mathematical formulation of the IM is depicted in 

the accompanying section.                          

3.1.1 Mathematical Modeling of Induction Motor 
The mathematical model of the IM is formulated 

through the equivalent circuit developing of the IM. 

The equivalent circuit is modeled subject to the 

integrated structure of the stator and rotor circuit 

model. The stator circuit model is illustrated in figure 

2(a), a flux ∅𝑚 is step up when a voltage 𝑉1 is applied 

to stator terminals. Along these lines, the 

electromagnetic flux (e.m.f) in the stator winding is 

induced by this flux. In the stator winding, the voltage 

drops 𝐼1𝑟1 and 𝐼1𝑥1 caused by the flow of current 𝐼1. The 

motor equation is estimated subject to the 𝐸1, 𝑉1, 

𝐼1𝑟1and 𝐼1𝑥1. The rotor circuit models are illustrated in 

figure 2 (b and c). In this rotor circuit, an e.m.f 𝑠𝐸2 and 

flow of current 𝐼2 both are actuated by the mutual flux 

∅𝑚. The rotor resistance and leakage reactance both are 

represented as 𝑟2 and 𝑥2 at standstill (i.e.  

s =1). The leakage inductance 𝑠𝑥2 is generated when 

the motor is operating at slip s which is shown in figure 

2(b). Though, the elective rotor circuit model with 

mechanical load is illustrated in figure 2(c) and the line 

frequency current in this model is represented as 𝐼2 

[28].    

The input 3-phase power supplied to an IM is estimated 

as follows, 

 111 cos3 IVPi =     (1) 

Where the per phase value of the stator voltage is 

denoted as 𝑉1, as well as per phase values of the current 

and stator power are represented as I1 and cos  
respectively. A portion of this power is involved in 

stator core losses and stator copper losses.       

Stator copper losses is given by 
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Figure 2: Development of equivalent circuit of 3-phase 

IM (a) stator circuit model (b) and (c) rotor models  

(d) complete equivalent circuit model 

 

Where the power transferred across the air gap to the 

rotor is represented as 𝑃𝑔. Here, the mechanical power 

is developed and 𝑃𝑚 is obtained after rotor copper 

losses are subtracted from 𝑃𝑔. A part from 𝑃𝑚 of power 

output 𝑃𝑜is consumed as friction and windage and stray 

losses and the remainder is the power output 𝑃𝑜. 

s

rI
IEPg

2

2

2
222

3
cos3 == 

    
(4)

 
Also,  

s

rI
IEPg

'

2

2'

2
2

'

22

3
cos3 == 

   
(5)

 
The rotor copper-loss is estimated as follows, 
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The Rotor Copper-loss = s𝑃𝑔 is estimated from the 

equations (4) and (6),  

)1( sPcopperlossRotorPP ggm −=−=
  

(7) 

)1(, sPlossesstrayandwindageFrictionPP gmo −=−= (8) 

The frequency of rotor current is low. In this manner, 

power loss is very small and thus negligible. In the 

motor, the electromechanical power conversion 

process developed the mechanical power which is used 

to generate the torque T.   

Thus, 
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In the above equation,  )1( snn s −=  

The torque developed is proportional to the air gap 

power 𝑃𝑔. The torque estimated in synchronous watts 

is known as the air gap power 𝑃𝑔. The torque 

developed is acquired from this, if this power is 

partitioned by synchronous angular velocity 2𝜋𝑛𝑠. It 

very well may be determined from the following 

equation, 
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Substitute equation (10) in equation (11),  
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3.2. Formulation of Induction Motor with Stator 

Inter-Turn Insulation Faults 
In the IM, the stator inter-turn insulation fault is 

considered as one of the possible frequently happened 

causes among the types of faults in the stator. This type 

of stator defect is causes during the gathering of stator 

coils in the assembling process which causes the low 

quality of the material or errors, due to these errors the 

faults occurred in the inter-turn insulation. Besides, 

when the motor is inactivity or maintenance is 

available, there might be a defect happened in inter-

turn insulation. The inter-turn insulation faults can 

begin imperceptible, nonetheless, during the motor life 

expectancy; this can build up a short among a few turns 

of a similar phase or even extraordinary phases. The 

decision might be probably not going to be 

conceivable, for example lack of phase; short circuit 

between phases; short circuit involving earth [25]. In 

this section, the mathematical model used for 

simulating IMs under stator inter-turn insulation faults 

is presented. The fault occurred in phase-a as illustrated 

in figure 3 is considered to derive the model.   
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Figure 3: Induction Motor with Inter-Turns Circuit 

Diagram 
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In the above equation, the number of turns per phase of 

the stator and rotor is represented as sN and rN . The 

number of shorted and un-shorted turns is represented 

as shortN and shortunN − . Here, as the coil’s resistance is 

directly proportional to the number of turns in the coil. 



The resistance of the shorted and un-shorted parts of 

the phases in the stator is estimated using the following 

equation,  

ss

short
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Where the percentage of shorted turns is represented as

 , the stator resistance per phase is denoted as sr . 

Besides, since the relation between the inductance and 

the number of turns is squared, motor inductance needs 

to be modified. The mathematical equations for the 

inductance motor under stator inter-turn insulation 

fault are given in the following section. 
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where the stator qd0 voltages are denoted as 
s

qV , 
s

dV  

and 
s

oV  respectively; the shorted winding voltage is 

represented as 
short

qV ; the stator qd0 currents are 

denoted as 
s

qI , 
s

dI  and 
s

oI  respectively;  
r

qI , 
r

dI  and 

r

oI are stator qd0 current referring to the stator side, 

respectively; the equivalent rotor resistance per phase 

is denoted as rr ; the stator qd linkage fluxes are 

expressed as 
s

q and 
s

d  respectively; 
r

q and 
r

d are 

rotor qd linkage fluxes; the linkage flux for the shorted 

turns is denoted as 
short

q ; ωr is the rotor speed; and 

rsqd0 is the stator resistance matrix in the qd0 frame. In 

the qd0 frame, the flux current is formulated using the 

following equation,  
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Where, 
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Where Lm is the mutual inductance; Lσs is the stator 

leakage inductance per phase; Lσr is the rotor leakage 

inductance per phase; Lrd is the rotor d-axis inductance 

and Lrq is the rotor q-axis inductance. The mechanical 

speed and electromagnetic torque are expressed in 

Equation (27): 
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Where Tem is the electromagnetic torque; Tmech is the 

load torque; Tdamp is the damping torque; J is the motor 

inertia; and ωr(t) is the rotor speed. 

 

4. Proposed Inter-Turn Insulation Faults 

Diagnosis Method in Induction Motor  
The proposed method for detection and diagnosis of 

inter-turn insulation fault in the IM is illustrated in 

figure 1. The main goal of the proposed approach is to 

detect and diagnose the inter-turn insulation fault in the 

IM while the variety of electrical characteristics, for 

example, voltage, current, torque, and speed. In this 

paper, the proposed approach is the combined 

execution of both the GWO and RBFNN; due to this 

combination, the proposed approach is called a GWO-

RBFNN technique. Here, the proposed method has two 

stages, for detecting and diagnosing inter-turn 

insulation fault in the IM. In the initial stage, the 

required fault training dataset gathered by the GWO 

algorithm as well as the first phase of the RBFNN is 

used to detect and recognize the healthy and unhealthy 

motors under various conditions whereas the second 

phase of the RBFNN is used to detect the correct inter-

turn faults for protection. The proposed GWO-RBFNN 

method plays an evaluation process to protect the IM 

and detect the fault in the IM at the inception stage. The 



proposed GWO-RBFNN technique guarantees the 

system with lessens complexity for the detection and 

classification of the inter-turn insulation fault and 

hence the accuracy of the system is raised. The detailed 

description of the proposed GWO-RBFNN approach is 

delineated in the following section.  

4.1. GWO Algorithm for Fault Dataset Generation 
The GWO algorithm is one of the latest bio-inspired 

algorithms which mimics the leadership hierarchy and 

hunting mechanism of grey wolves in nature is 

proposed in [29]. The grey wolf behavior is stimulated 

to live in a pack which is the main concept of this 

algorithm. They have a serious social dominant 

hierarchy. The leadership hierarchy is stimulated by the 

four types of grey wolves’ alpha (α), beta (β), delta (δ), 

and omega (ω). The fittest solution of α is used to 

design the mathematical formulation of the social 

hierarchy of wolves while designing GWO. 

Consequently, the β and δ are considered to determine 

the second and third best solutions respectively. The 

rest of the candidate solutions are assumed to be omega 

(ω) [30]. Figure 5 shows the hunting behavior of grey 

GWO algorithm. In the proposed approach, the GWO 

algorithm is used to generate the datasets of fault 

signals to identify healthy and unhealthy motors. The 

step by step process of the GWO algorithm is 

delineated in the following section.   

Step by step process of GWO  

Step 1: Initialization and Random generation 

(Encircling prey) 
In the initialization process, the Grey wolves are 

encircling the prey during the hunting process. In the 

proposed approach, the power values and the system 

constraints such as voltage speed and torque are 

initialized [31]. The following equations are 

formulated in order to randomly generate the initialized 

parameters (encircling behavior).  

DAtPtP p


.)()1( −=+

   (29) 

)()(. tPtPCD p


−=

   (30) 

Where t is the iteration number, P


 is the random 

generation of power with respect to time during the 

occurrence of the fault. The vectors A


 and C


 are 

computed by the following equation, 

aRaA −= 1..2


    (31) 

22RC


=     (32) 

Where the randomly generated vectors 1R


 and 2R


are 

generated between the range of [0, 1] and in the 

overall iterations, the value is decreased from 2 to 0. 

The vectorC


is generated between the ranges of [0, 

2]. These ranges are used to compute the fitness 

solution.  

Step 2: Fitness function Evaluation (Hunting) 

The possible fitness solutions (possible location of 

prey) are mathematically obtained by the alpha (α), 

beta (β), and delta (δ). 
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Figure 4: Proposed method for inter-turn faults diagnosis in induction motor 
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Figure 5: Hunting behaviour of grey wolves 

 

According to the best solution, the initial three 

solutions are obtained so far and force the other search 

agents to update the best solution [32]. The objective 

function of the proposed approach is given as follows, 

3
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Where, ( )tPtar
 and ( )tP are the target and the actual 

power signal of IM,
 

)(tVabi is the voltage at three-

phase fault at the time t , ( )t denotes the speed of the 

IM at time t  and torque produced at a time t  is 

represented as ( )tT .  

Step 3: Updating 
The final best solution a  is updated in this step. The 

tradeoff between exploration and exploitation are 

controlled by the parameter a , that is linearly updated 

to range from 2 to 0 in each iteration which is estimated 

using the following equation [33],  

iterMax
ta

2
2−=     (36) 

Where t is the iteration number and Max iter is the total 

number of iteration.  

Step 3: Termination 
After completing the process of the GWO technique, 

the dataset is determined. Once the process is 

completed, the healthy and unhealthy motors are 

identified subject to these datasets using the RBFNN 

technique. The detailed description of the RBFNN is 

delineated in the following section.  

4.2. Detection of the healthy and unhealthy motor 

using RBFNN 
The RBFNN is an artificial neural network that uses 

radial basis functions as activation functions. The 

RBFNN basically have three layers such as an input 

layer, a hidden layer with a radial basis function (RBF) 

activation function and an output layer. A vector of real 

numbers is considered as the input of RBFNN. The 

inputs of RBF and neuron parameters are linearly 

combined to form the output of the network. RBFNN 

have many uses, including function approximation, 

time series prediction, classification, and system 

control [34]. In the proposed approach, the RBFNN is 

used to generate the diagnosis of the performance of 

the IM. Figure 6 shows the structure of the RBFNN. 



The step by step process of the RBFNN is delineated 

in the following section.        
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Figure 6: Structure of RBFNN 

Step by step process of RBFNN 
Step 1: In this step, the weights of all the neurons are 

initialized; (i.e) squared error (SE), and the deviation 

of error DSE(t).  

Step 2: The accompanying formulation is used to 

determine the backpropagation error (BPR) of the 

target. 

)()( outNtarNSE kkk

BP −=   
(37) 

Where, )(tarN k  is the network target of the k-th node 

and )(outN k  is the current output of the k-th node 

Step 3: The current output of the network is computed 

in this step using the following equation [35],   
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The bias function of the radial bias function is 

computed as follows, 
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The k-th neuron of the hidden layer is computed as 

follows, 
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Where,
 

)(nN k
 is the bias function of the node k, knw  

is the weight of the k-th neuron, ( )( ))(nNfH k

k
 is the 

response of the k-th neuron of the hidden layer, 
pC  is 

the center value of the p-th neuron, pr  is the scalar 

factor [36]. 

Step 4: This step computes the new best solution for all 

the neurons which given as follows, 

WWW oldnew +=
   

(42) 

In the above equation,
k

BP

k SEnNW )(=  , oldW
 is 

the earlier weight, W  is the difference in weight, 
k

BP

k SEnN )(  is the Learning rate.  
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 Figure 7: Flowchart of the proposed GWO-RBFNN approach 
Step 5: This step used to minimize the BPR by 

reiterating the process from Step 2 until the smallest 

error value is reached [37]. 

110 k

BPSE     
(43) 

Once the above-formulated steps are successfully 

completed, the RBFNN is ready to diagnose the 

healthy and unhealthy signals of the motor based on the 

error value. Finally, by utilizing the proposed 

optimization strategy, it can provide the optimal 

control of IM. 

5. Simulation Results and Discussions 
In this section, the effectiveness and the performance 

of the proposed method are described subject to the 

inter-turn insulation fault detection and diagnosis using 

the GWO-RBFNN technique. In this paper, the 

generation of fault datasets and the diagnosis of inter-

turn insulation fault are done by the proposed GWO 

and the RBFNN technique. The developed model of 

the IM is simulated under the healthy and unhealthy 

(inter-turn insulation fault) conditions (10% shorted 

turns) with a balanced three-phase power supply. The 



simulation results obtained from the proposed 

approach are compared with the existing techniques 

such as combined strategy of salp swarm optimization 

and recurrent neural network (CSSRN), Adaptive 

Neuro-Fuzzy Interference System (ANFIS) [38, 39], 

Recurrent Neural Network (RNN) [40, 41, 42], and 

Salp Swarm Algorithm with Artificial Neural Network 

(SSAANN) strategies. The proposed GWO-RBFNN 

technique is executed in the MATLAB/Simulink 

working platform. The proposed work is carried out on 

an Intel Core2 Quad CPU Q6600 at 2.40 GHz 

computer with 2 GB random access memory. The test 

experiments are analyzed by using the MATLAB 

R2013a (8.1.0.604) 32-bit and Version 3.7.2. 

5.1. Simulation results for a healthy motor  
This section describes the simulation results of the IM 

with no inter-turn insulation fault (unshorted turns) 

which is illustrated in figure 8 and this figure 

consolidates the pu developed stator current, stator 

voltages, and torque. The subplot 8(a) illustrates the pu 

current of the stator which generates the maximum of 

1 A current between the time intervals 0-0.02 sec after 

that, the generated current is balanced till the end of the 

operation. The pu voltages of the stator in d-axis and q-

axis are shown in subplot 8(b-c) and the maximum 

generated stator voltages are greater than 0.05 Vin both 

the axis. The subplot 8(d) illustrates the pu developed 

torque which generates the maximum of 0.005 Te. All 

the above-mentioned current, voltages and the torque 

of the stator winding in IM is generated between the 

time intervals of 0-0.2 sec. In this normal condition, all 

the current, voltages and torque are balanced and unity. 

5.2. Simulation Results for an Unhealthy Motor 
This section describes the simulation results of the IM 

with inter-turn insulation fault (shorted turn) of phase 

‘A’, phase ‘B’, phase ‘c’, phase ‘AB’, phase ‘BC’ and 

phase ‘ABC’ of the stator winding. In the shorted turn 

faulty condition, the winding function of the injured 

phase is changed when an inter-turn short circuit arises. 

During the occurrence of an inter-turn insulation fault, 

the winding function of the injured phase ‘A’ is 

illustrated in figure 9 and this figure consolidates the 

pu developed stator current, stator voltages and torque 

of phase ‘A’ stator winding of IM. The subplot 9(a) 

illustrates the three-phase stator current under inter-

turn insulation fault. The same figure shows that the 

inter-turn fault is generated between the time intervals 

of 0.09-0.12 sec after that it remains balanced. In this 

plot, the maximum generated current is 0.5 A.  The 

subplot 9(b-c) illustrates the stator voltage in d-axis and 

q-axis under inter-turn insulation fault. As seen from 

this plot, the voltage signals are disturbed between the 

time intervals of 0.09-0.11 sec after that it remains 

balanced. The maximum voltages generated in the d 

and q-axis is greater than 0.05 V. The pu developed 

torque of the stator winding under faulty condition is 

shown in subplot 9(d). The winding function of the 

injured phase ‘B’ is illustrated in figure 10 and this 

figure consolidates the pu developed stator current, 

stator voltages, and torque of phase ‘B’ of the stator 

winding in IM. The subplot 10(a) illustrates the three-

phase stator current under inter-turn insulation fault. 

The same figure shows that the inter-turn fault is 

generated between the time intervals of 0.09-0.12 sec 

after that it remains balanced. In this plot, the 

maximum generated current is 1 A. The subplot 10(b-

c) illustrates the stator voltage in d-axis and q-axis 

under inter-turn insulation fault. As seen from this plot, 

the voltage signals are disturbed between the time 

intervals of 0.09-0.11 sec after that it remains balanced. 

The maximum voltages in d and q-axis are greater than 

0.05 V, both the voltage signals are balanced and unity 

after the particular time period. The pu developed 

torque of the stator winding under faulty condition is 

shown in subplot 10(d). Initially, the peak level of the 

torque is less than 0.01 Te after that it is reduced.   
The winding function of the injured phase ‘C’ during 
the inter-turn insulation fault is illustrated in figure 11 
which includes the pu developed stator current, stator 
voltages and torque of phase ‘C’ in the stator winding 
of IM. The subplot 11(a) illustrates the three-phase 
stator current phase ‘C’. Initially, the fault is generated 
between the time intervals of 0-0.03 sec after that it is 
balanced till 0.08 sec. Again the inter-turn fault is 
generated between the time intervals of 0.08-0.13 sec 
after that it remains balanced. In this plot, the 
maximum generated current is 1 A.  The subplot 11(b-
c) illustrates the stator voltage in d-axis and q-axis 
under inter-turn insulation fault. As seen from this plot, 
from the time period of 0-0.09 sec, the signal is 
balanced and unity after that the voltage signals are 
disturbed between the time intervals of 0.09-0.12 sec 
then it remains balanced till the end of the operation.  
The maximum voltages generated in the d and q-axis is 
greater than 0.05 V. The pu developed torque of the 
stator winding under faulty condition is shown in 
subplot 11(d). The winding function of the injured 
phase ‘AB’ is illustrated in figure 12 and this figure 
consolidates the pu developed stator current, stator 
voltages and torque of phase ‘AB’ in the stator winding 
of IM. The subplot 12(a) illustrates the three-phase 
stator current under shorted turn fault. This figure 
shows that the inter-turn fault is generated between the 
time intervals of 0.09-0.13 sec after that it remains 
balanced. In this plot, the maximum generated current 
is 1 A. The subplot 12(b-c) illustrates the stator voltage 
in d-axis and q-axis under inter-turn insulation fault. 
Initially, the voltage is balanced and unity till 0.09 sec 
after that it is disturbed up to 0.12 sec then the signal 
remains balanced and unity till the end of the operation. 



The pu developed torque of the stator winding in phase 
‘AB’ is shown in subplot 12(d). Initially, the peak level 
of the torque is 0.005 Te after that it is reduced and 
remains constant till the end of the operation.  
The winding function of the injured phase ‘BC’ during 
the inter-turn insulation fault is illustrated in figure 13 
which includes the pu developed stator current, stator 
voltages and torque of phase ‘C’ in the stator winding 
of IM. The subplot 13(a) illustrates the three-phase 
stator current phase ‘BC’. Initially, the ‘BC’ phase fault 
is generated between the time intervals of 0-0.01 sec 
after that it is balanced till 0.08 sec. Again the fault is 
generated from 0.08-0.13 sec after that it remains 
balanced. In this plot, the maximum generated current 
is greater than 1 A.  The subplot 13(b-c) illustrates the 
stator voltage in d-axis and q-axis under inter-turn 
insulation fault. In this plot, the signal is balanced and 
unity between the time periods of 0-0.09 sec after that 

the voltage signals are disturbed till 0.12 sec then it 
remains balanced till the end of the operation.  The 
maximum voltages generated in the d and q-axis is 
greater than 0.05 V. The pu developed torque of the 
stator winding under the faulty condition in phase ‘BC’ 
is shown in subplot 13(d) and the maximum level of 
the torque is 0.005 Te. The winding function of the 
injured phase ‘ABC’ is illustrated in figure 14 and this 
figure consolidates the pu developed stator current, 
stator voltages and torque of phase ‘ABC’ in the stator 
winding of IM. In subplot 14(a), the stator fault is 
generated between the time intervals of 0.08-0.13 sec. 
In subplot 14(b) and 14(c), the fault is generated 
between the time intervals of 0.08-0.12 sec. The pu 
developed torque of the stator winding in phase ‘ABC’ 
is shown in subplot 14(d). The maximum torque level 
is 0.005 Te after that it is reduced and remains constant 
till the end of the operation. 

Figure 8: Simulation results of the IM with unshorted turns (a) Stator current (b) Stator voltage Vd (c) Stator voltage Vq (d) Torque

Figure 9: Simulation results of the IM with inter-turn insulation fault in phase ‘A’ (a) Stator current (b) Stator voltage Vd (c) Stator 

voltage Vq (d) Torque 



 
Figure 10: Simulation results of the IM with inter-turn insulation fault in phase ‘B’ (a) Stator current (b) Stator voltage Vd (c) Stator 

voltage Vq (d) Torque 

 
Figure 11: Simulation results of the IM with inter-turn insulation fault in phase ‘C’ (a) Stator current (b) Stator voltage Vd (c) Stator 

voltage Vq (d)  

 
Figure 12: Simulation results of the IM with inter-turn insulation fault in phase ‘AB’ (a) Stator current (b) Stator voltage 

Vd (c) Stator voltage Vq (d) Torque 



 
Figure 13: Simulation results of the IM with inter-turn insulation fault in phase ‘BC’ (a) Stator current (b) Stator voltage 

Vd (c) Stator voltage Vq (d) Torque 

 
Figure 14: Simulation results of the IM with inter-turn insulation fault in phase ‘ABC’ (a) Stator current (b) Stator 

voltage Vd (c) Stator voltage Vq (d) Torque 

5.3. Performance Analysis 
This section analyses the performances of the proposed 

GWO-RBFNN approach which is compared with the 

existing techniques such as CSSRN, ANFIS, RNN, and 

SSAANN approaches to analyze the effective 

approach. To analyze the performance, the 

classification process is done subject to the true 

positive (TP), true negative (TN), false positive (FP) 

and false negative (FN) classes. The correctly labeled 

positive signals are known as TP. The correctly labeled 

negative signals are known as TN. The incorrectly 

labeled negative signals are known as FP. The 

incorrectly labeled positive signals are known as FN. 

The performance measures are utilized to evaluate the 

diagnosis results and they are computed as follows, 
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In the above equation, if the sensitivity value is 

positive, (i.e.) true positive fraction, the inter-turn 

insulation fault occurs in the stator winding of the IM. 

If the specificity value is negative, (i.e.) true negative 

fraction that means the IM is in a healthy condition. 
 

Table 1: Performance comparison of proposed with 

existing method during inter-turn insulation fault for 50 

and 100 number of trials 
Performanc

e Measures 

50 trials 

ANFI

S 

RN

N 

SSAAN

N 

CSSR

N 

Propose

d 

Accuracy 0.55 0.75 0.85 0.95 0.98 

Specificity 0.5 0.7 0.8 0.9 0.94 

Recall 0.6 0.8 0.9 1 1.53 

Precision 0.52 0.72 0.82 0.9 0.96 

 100 trials 

Accuracy 0.6 0.7 0.8 0.9 0.93 

Specificity 0.53 0.63 0.75 0.85 0.9 

Recall 0.57 0.6 0.85 0.8 0.85 

Precision 0.55 0.65 0.72 0.95 0.98 

The performance comparison of proposed with 

existing method during inter-turn insulation fault for 50 

and 100 number of trials are delineated in Table 1 

which includes the accuracy, specificity, recall, and 

precision. In 50 number of trials, the proposed method 

has the accuracy is 0.98, specificity is 0.94, recall is 

1.53 and the precision is 0.9. In the above mentioned 

existing method, the accuracy, specificity, recall and 

the precision ranges in ANFIS are 0.55, 0.5, 0.6 and 

0.52 respectively. In RNN, the ranges are 0.75, 0.7, 0.8 

and 0.82 respectively. In SSAANN, the ranges in 

accuracy, specificity, recall, and precision are 0.85, 0.8, 

0.9 and 0.82 respectively. In CSSRN, the ranges in 

accuracy, specificity, recall, and precision are 0.95, 0.9, 

0.1 and 0.9 respectively. In 100 number of trials, the 

proposed method has the accuracy is 0.93, specificity 

is 0.9, recall is 1.85 and the precision is 0.98. In the 

above mentioned existing method, the accuracy, 

specificity, recall and the precision ranges in ANFIS 

are 0.6, 0.53, 0.57 and 0.55 respectively. In RNN, the 

ranges are 0.7, 0.63, 0.6 and 0.65 respectively. In 

SSAANN, the ranges in accuracy, specificity, recall, 

and precision are 0.8, 0.75, 0.85 and 0.72 respectively. 

In CSSRN, the ranges in accuracy, specificity, recall, 

and precision are 0.9, 0.85, 0.8 and 0.95 respectively. 

Compared with the above mentioned existing method, 

the proposed method performs very precisely and 

accurately.  

5.4. Statistical Evaluation 
In order to evaluate the overall system performance the 

statistical measures such as (1) Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error 

(MAPE) and Mean Bias Error (MBE) are computed. 

The overall classification efficiency of the proposed 

method is estimated subject to the error metric RMSE. 

A large deviation occurs in the diagnosis from the 

target value when the RMSE value is large. Likewise, 

the MBE error computation is used to estimate the 

average deviation of the system. The diagnosis is under 

forecasted when the value of the MBE is negative. As 

well as, the accuracy of the overall system is computed 

subject to the MAPE value. These error metrics are 

computed as follows,       
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Where 

k

tarN  is represents the target value, 
k

outN
 

represents the detected value, a is represents a number 

of samples per leaf, Z  is the total number of samples. 
Table 2: Statistical comparison of proposed with existing 

method during turn insulation fault for 50 and 100 number of 

trials 

Metrics 50 trials 

ANFI

S 

RN

N 

SSAAN

N 

CSSR

N 

Propose

d 

RMSE 26.4 18.9 23.5 10.3 8.25 
MAPE 17.2 6.4 13.0 1 0.97 

MBE 7.1 2.9 5.1 2.7 1.37 

Consumptio
n time (s) 

7.8 6.5 8.0 5.2 2.96 

 100 trials 

RMSE 29.4 21.9 26.5 13.5 9.38 

MAPE 18.2 7.4 14.0 2 1.91 
MBE 10.1 5.9 8.1 5.7 3.87 

Consumptio

n time (s) 

8 7 8.3 6 2.98 

Table 2 shows the statistical analysis of the proposed 

method. Here, to evaluate the overall performance of 

the proposed method, the proposed GWO-RBFNN 

fault diagnosis approach is compared with the existing 

well-known classification approaches such as ANFIS, 

RNN, SSAANN, and CSSRN. In 50 number of trials, 

The RMSE, MAPE and the MBE range of the proposed 

method is 8.25 %, 0.97 %, 1.37 % and the time 

consumption of the proposed method are 2.96 (s). In 

100 number of trials, The RMSE, MAPE and the MBE 



range of the proposed method is 9.38 %, 1.91 %, 3.87 

% and the time consumption of the proposed method 

are 2.98 (s). Compared with the existing approaches the 

proposed method has less error and very less amount 

of consumption time. 

 
Figure 15: Fitness comparison of the proposed and the existing 

approaches  

Figure 15 shows the fitness of the proposed GWO-

RBFNN method which is compared with the existing 

technologies such as CSSRNN, SSAANN, RNN and 

ANFIS. The fitness is executed subject to the equation 

(34). Here, which technique has the minimum fitness is 

considered as the best technique. As per this, the 

proposed method has the minimum fitness (1.8) when 

compared with the other techniques. As seen from this, 

the proposed method performs very well to detect and 

classify the stator inter-turn insulation fault in the IM.       

6. Conclusions 
This paper presents a hybridized GWO-RBFNN based 

detection and diagnosis method for inter-turn 

insulation fault detection in the three-phase IM. In the 

proposed approach, the detection and classification of 

stator inter-turn insulation fault are the main two 

stages. The optimal dataset is generated by the GWO 

approach as well as the shorted and the unshorted turns 

are classified by the RBFNN technique. The simulation 

analysis of the proposed method is tested under the 

healthy and unhealthy conditions of the motor. 

Utilizing performance measures such as accuracy, 

precision, recall, specificity and the statistical 

measures such as RMSE, MAPE, MBE and 

consumption time, the execution of the proposed 

technique is authenticated and in addition, the proposed 

technique is compared with existing technologies such 

as ANFIS, RNN, CSSRN, and SSAANN techniques. 

The result obtained from the simulation analysis shows 

that the extreme occurrence of an inter-turn fault in the 

distribution system is detected accurately with the new 

optimal technique by utilizing the proposed 

methodology. Also, the proposed technique is effective 

to classify the inter-turn fault with less computation 

and reduces the complexity of the algorithm. 
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