

1

DESIGN AND IMPLEMENTATION OF COMPUTATIONALLY EFFICIENT

ARITHMETIC UNIT

A.Azhagu Jaisudhan Pazhani,

Assistant Professor,

Ramco Institute of Technology, Rajapalayam.

alagujaisudhan@gmail.com

Dr.C.Vasanthanayaki,

Associate Professor,

Government College of Technology, Coimbatore.

vasanthi@gct.ac.in

Abstract— Approximate circuit designs empower us

to swap over computation quality, for instance, exactness

and computational attempt by abusing the characteristic

oversight adaptability of various applications. As the

computation excellence need of an application typically

varies at runtime, it is attractive over to include the ability to

reconfigure approximate circuits to satisfy such prerequisites

and extra worthless computational attempt. These fresh

structures are well-organized as far as area, speed, and

power utilization concerning their exact adversaries.

Multiplier and adder play a vital part in the present signal

handling and different applications. With progresses in

innovation, numerous specialists have attempted and are

endeavoring to plan adder and multipliers which offer either

of the following design targets – high speed, low power

consumption, regularity of layout for VLSI implementation.

In this paper approximate adders and splitting based

multipliers are designed and the adder produce erroneous

result. On the other hand, it generates erroneous outcomes,

deterministically, in favor of a little portion of input

combinations. In view of the fact that mistakes happen with

enormously low likelihood, this new sort of adder and

splitting based multiplier is significantly faster than state-of-

the-art adders and multipliers at the point when the general

latency is found the middle value of over numerous

additions.

Index Terms— Approximate computing, Carry look-

Ahead Adder, Reconfigurable adder and multiplier, splitting

concept

I. INTRODUCTION

Power exploitation and performance are fundamental

parameters in the arrangement of electronic circuit. Because of

advanced handling frameworks, inferable from confined

power spending designs and steadfastness concerns, achieving

a desired execution level can be troublesome. Adders are the

significant building blocks in Arithmetic and logic units

(ALUs). Adders are utilized for expansion as well as for

different tasks like subtraction, multiplication and division.

Adders within arithmetic units are the most power devouring

segments in the processor and are frequently hot-spot areas

[1]. Decreasing the postponement and power exploitation of

these blocks is an imperative and demanding task.

To enhance the exactness, Ripple Carry Adder

(RCA) is utilized as a part of which the carry will get spread

from the earlier stage to the following stage. In spite of the

fact that it has more exactness than different adders, its

postponement is expanded directly with expanding stages.

With a specific end goal to lessen delay, Carry Select Adder

(CSA) is utilized which is the cascaded form of Ripple Carry

Adder. CSA prompts higher power exploitation than RCA. To

meet up the area, power and speed design necessities, a variety

of procedures at different arrangement reflection levels have

been prescribed.

Approximate computing which is a rising model

oversees request execution and power efficiency restrictions in

favor of adders at the cost of diminishing the computational

accuracy of the result [2]. This kind of design is especially

sensible for applications where the suitable reaction is not

noteworthy and an arrangement of genuinely exact answers

are satisfactory. These applications consolidate multimedia

processing, machine learning, signal processing, and other

error adaptable computations [2]. Approximate arithmetic

units are on a very basic level in light of the unraveling of the

arithmetic unit circuits. Unmistakable structures for

approximate adders have been anticipated in [3], [5]. In

approximate arithmetic units however the outcome is not

equivalent to correct value, it has low power exploitation and

fast constrains (i.e.) minor delay which is considered as the

primary necessity in the present electronics.

In Reconfigurable Error Tolerant Carry Look-Ahead

Adder (RET-CLA) where the LSB part of the adder is

composed in an approach to deliver rough outcome. The

structure of the snake, which relies upon the traditional CLA,

does not require an external amendment unit for the right

include process. In this kind of adder having a goal that the

deferral and power usage are should be extensively lighter.

This is in light of the fact that, in the approximate made by

abusing the power gating framework, the power usage is

essentially decreased.

In this paper [7] they had used the basic array tree for

the multiplication of two numbers. This architecture is simple

so that the cost of the multiplier is reduced [7]. Wallace

algorithm [8] is used to design Modified Wallace Multiplier to

reduce the number of adders which reduces the complexity of

the multiplier. The modified Wallace reduction reduces the

number of half adders required by at least 80 percent

compared to the conventional Wallace reduction with only a

very slight increase in number of full adders. Both the

conventional Wallace multiplier and modified Wallace

multiplier have the same number of stages and consequently

the delay is expected to be the same. The partial product

reduction concept for integer multiplication is used in [9]. In

this paper[10] High Performance splitting based Multiplier

has been designed which has the ease of layout of a simple

carry save reduction array, but in case of a high speed low

power Dadda-style tree it has worst delay which depends on

the logarithm of the word length N. The energy assignment of

mailto:alagujaisudhan@gmail.com
mailto:vasanthi@gct.ac.in

2

probabilistic (array) multipliers is studied in [10]. In

particular, they had devised an energy assignment scheme that

aims at minimizing the computational error caused by

probabilistic multipliers. Low power and high performance

multiplier [11] proposed different signed 16 x 16 bit

approximate radix-8 Booth Multiplier and employed 2-bit

adder to implement the lower part of an approximate recoding

adder to overcome the issue commonly found in a radix-8

scheme. Further a truncated technique has been employed to

save power and time.

Array based approximate computing [12] has

designed a 16-bit fixed width Booth Multiplier based on the

conventional array multiplier which consumes less energy

and area than the conventional Booth Multiplier. Parallel

reduced area multiplier [13] had used partial product reduction

scheme to design a high speed, parallel multiplier which offer

a modest speed advantage over Dadda and Wallace Multiplier

because they employ a smaller carry-propagate adder.

This paper is organized as follows. Section II

describes the introduction about arithmetic unit. Section III &

IV explains the design of the proposed approximate arithmetic

unit which includes reconfigurable error tolerant adder and

splitting based multiplier. Section V & VI describes the

implementation and performance analysis of the splitting

based multiplier and proposed RET adder in terms of power,

area and delay. Finally the work is concluded in section VII.

II. INTRODUCTION TO ARITHMETIC LOGIC UNIT

 The arithmetic logic unit (ALU) is the core of a

processor. In computing, an arithmetic and logic unit (ALU) is

a digital circuit that

performs integer arithmetic and logical operations. The

processors found inside modern CPUs and graphics

processing units (GPUs) accommodate very powerful and

very complex ALUs; a single component may contain a

number of ALUs. ALUs are designed to

perform integer calculations.

ALUs often handle the multiplication of two integers,

since the result is also an integer. However, ALUs typically do

not perform division operations, since the result may be a

fraction, or a "floating point" number. Instead, division

operations are usually handled by the floating-point unit

(FPU), which also performs other non-integer calculations.

Fig.1. Arithmetic logic unit

The external control unit tells the ALU what

operation to perform on that data, and then the ALU stores its

result into an output register. The control unit is responsible

for moving the processed data between these registers, ALU

and memory. The inputs to the ALU are the data to be

operated on (called operands) and a code from the control

unit indicating which operation to perform.

The adder cell is the important functional unit of a

multiplier. The constraints of the adder have to satisfy are

area, power and speed requirements. A portion of the ordinary

adders are ripple-carry adder, carry look ahead adder, carry-

skip adder and Manchester carry chain adder. The delay in an

adder is dominated by the carry propagation. Carry

propagation analysis must consider transistor count and path

delay. Partial products of multiplier are added with the help of

adders which decides the area, delay and power consumption

of the multiplier unit. Error tolerant systems play a very

prominent role in many digital systems. Error tolerance will

also be necessary in image and speech processing

applications. Error tolerant arithmetic logic circuits play a

vital role in all digital signal processing systems.

III. PROPOSED APPROXIMATE RET ADDER UNIT

In ordinary digital VLSI plan, one for the most part

accepts that a usable circuit/framework ought to dependably

give positive and exact outcomes. Be that as it may, truth be

told, such impeccable tasks are rarely required in our non-

computerized common encounters. In numerous applications,

for example, a communication structure, the analog signal

beginning from the external world should first be analyzed

preceding being changed over to cutting edge data. The

automated data are then arranged and transmitted in a

hysterical channel ahead of altering back to a analog signal. In

the midst of this technique, blunders may take place wherever.

Truncation and round off mistakes in adders has turned out to

be inevitable in present day VLSI technology. Another sort of

adder i.e. error tolerant adder (ETA) is executed to persevere

through those botches and to accomplish little power

utilization and rapid execution in DSP frameworks. In

ordinary adder circuit, delay is in a general sense attested to

the carry proliferation chain along the fundamental route, from

the LSB to MSB. On the off chance that the carry propagation

can be removed by the procedure projected in this thesis, an

awesome change in speed execution and power utilization is

accomplished. The objective of this project is to design an

Error tolerant ‘n’ bit adder using approximation logic and

improved approximation logic. The Error Tolerant Adder can

be used in the applications where there is no need to produce

exactly correct numerical outputs like multimedia

applications.

 In the proposed adder, error

tolerance is obtained by approximation logic in order to

reduce the complexity at the gate level hence low power will

be achieved. The error tolerant adder is outlined utilizing

approximate full adder cells with decreased unpredictability at

the door level. 16 bit traditional Ripple Carry Adder (RCA)

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Arithmetic
http://en.wikipedia.org/wiki/Logical
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Control_unit
http://en.wikipedia.org/wiki/Operand
http://en.wikipedia.org/wiki/Control_unit
http://en.wikipedia.org/wiki/Control_unit

3

and planned 16 bit Error Tolerant Adder utilizing

approximation logic is actualized utilizing Xilinx 14.7. For

each of the 216 input mixes, examination is made amongst

traditional and planned adders and the average error is

calculated. The average error of the Error Tolerant Adder can

be further reduced by using Improved Approximation Logic.

In approximation logic, error tolerance is applied to whole

data and in improved approximation logic, error tolerance is

applied to the least significant part of input data and hence the

average error will be reduced.

In the ordinary CLA, the carry outcome of the ith

stage is resolved from:

Here Cin is the input carry and Pi and Gi are the

propagate (𝐴𝑖⊕𝐵𝑖) and generate (𝐴𝑖. 𝐵𝑖) signals of the ith

phase, respectively. By expanding the width of CLA, the

delay, area usage and power exploitation of the carry

generator units increment. Here, we intend to utilize a window

whose size is W, the smallest significant bit utilizes

approximate adders whose output carry can be composed as,

Here, Cin is the input carry and Ai, Bi are the relating

inputs specified and Ci+1 is the output carry at all stage. The

outcome of (2) is known as the approximate value whose carry

is provided as the contribution to the following stage which is

carry look ahead adder. Obviously processing uncertain Ci+1 is

speedier and expends less power contrasted with computing

Ci+1 decisively. In this manner, when contrasted with the

approximate estimated carry look ahead adder the

postponement is decreased and furthermore area and power

utilization are additionally diminished.

Fig.2 Approximate adder part of RET-CLA.

Fig.2 is the minimum noteworthy piece of

reconfigurable error tolerant adder when the window

dimension is four. The acquired carry C4 is then provided to

the following stage whose expansion is finished utilizing carry

look ahead adder. In reconfigurable error tolerant adder since

the slightest considerable part is altered the region is lessened

fundamentally, thus power utilization is additionally

decreased.

In the past adders anticipated, each piece has

numerous quantities of stages to create carry Ci which expands

region however in the planned paper the slightest noteworthy

bits just uses 4 logic gates which need little zone. For instance

if a 8 bit inputs are included by utilizing window dimension 4

then the slightest 4 bits utilizes Fig.3 and the most noteworthy

bits utilizes carry look ahead adder. Also, if two 16 bit inputs

are included utilizing window dimension 4 then slightest 4 bits

utilizes Fig.2 and for the following three four bits the carry

look ahead adder gets rehashed so the deferral will get

extensively decreased.

Fig.3. RET CLA block diagram

In this area, initially the error metric utilized to revise

the precision of the approximate squares is error significance.

Error significance is the arithmetical complexity among right

and yield results; this assesses the measure of error. The

precisions of the approximate adder of this effort alongside

some different adders are looked at. To put side by side the

precision of the proposed adder with those of the modern past

works, the parameters talked about in the past subsection are

measured. The similar examination incorporates the planned

reconfigurable error tolerant adder and the already proposed

reconfigurable approximate adder (RAP-CLA) [6] with the

regular carry look ahead adder. Here the error measurements

are contemplated on account of an 8-bit adder. The table I

comprises of a portion of the example values for which the

outcomes of approximate adder and error tolerant adder are

contrasted with the yield of carry look ahead adder and the

error percentage of both approximate adder and the projected

adder are computed.

Table I Sample Inputs and Outputs of RET CLA

4

From this it can be recognized that the error

percentage of approximate adder differs from 0– 12% while in

error tolerant adder it changes from 0-6% as it were. On

observing the normal error percentage, already anticipated

adder has 2.805% and the reconfigurable error tolerant adder

has 1.375% which implies that the error rate lessens to half of

the beforehand anticipated adder.

Table II Sample Inputs and Outputs of RET CLA

Fig.4.Graph plotted between number of samples and

sum

value for CLA, RAPCLA and RETCLA for 8 bit inputs.

The graph shown in Fig.4 illustrates the correlation of

results between traditional carry look ahead adder,

reconfigurable approximate adder and reconfigurable error

tolerant adder. The graph is plotted among numbers of test

values to the total values. It can be recognized from the graph

that both the outcomes of carry look ahead adder and error

tolerant adder overlaps with each other which implies that the

in spite of the fact that error tolerant adder is an approximate

one, its outcome is equivalent to the exact value (i.e.) outcome

of carry look ahead adder. The approximate adder marginally

changes from the carry look ahead adder and the error level of

approximate adder is elevated when contrasted with

reconfigurable error tolerant adder.

Fig. 5 Error analysis plot between CLA, RAPCLA

and RETCLA.

The error analysis graph is exposed in Fig.5. It is

plotted between the number of tests to the error percentage

taken for those tests. At this point, carry look ahead adder

which is the ordinary one has zero error percentage. The

reconfigurable approximate adder has high error percentage

(12%) when contrasted with every one of the adders taken

here. As examined before the error percentage of

reconfigurable error tolerant carry look ahead adder (6%) is

definitely diminished when contrasted with every one of the

adders talked about here. It can be noted down that after a

maximum value the error percentage of error tolerant adder is

diminished to zero.

IV. PROPOSED SPLITTING BASED MULTIPLIER

The traditional method for multiplication is done by

using array multiplier. Array multiplier is popular due to its

regular structure. It is based on add and shift algorithm. In

parallel multiplication operation, number of partial products to

be added is the main parameter that determines the execution

of the multiplier. Every fractional item is produced by the

duplication of the multiplicand with one multiplier bit. The

limited products are then shifted according to their bit order

and then added. Steps involved in the proposed multiplier:

1. Partitioning the Multiplicands

2. Splitting the Multiplicand

3. Computing the Products

4. Addition the partial products using carry

skip adder

A. Partitioning the Multiplicands

Let A and B be numbers of b bits such that

multiplication of the inputs A and B gives the 2b bits product.

Here A and B are split into t numbers as A0, A1, A2,….,At-1

andB0, B1, B2,…., Bt-1 each consisting of r bits where

 t = b/r (1)

Consider the value of b = 8, r =2

Then

5

 t=4 (2)

A and B can therefore be expressed as

 A = A020+A122+A224+A326 (3)

 B = B020+B122+B224+B326 (4)

A. Splitting the Multiplicand

Now, let A be split into even and odd partitions Ae and Ao,
with the end goal that

Ae = A020+A224 (5)

Ao = A122+A326 (6)

In this manner, Ae consists of the constant partitions of A with

the unusual partitions supplanted by zeros. It is clear that

 AB = AeB+AoB (7)

B. Computing the Products

 The products AeB and AoB are formed by partitioning and

adding the zeros which is shown in Fig.6 and by concatenating

we avoid carries between the partitions. Here the computation

is done in parallel to reduce delay.

The product AB is obtained by summing the AeB and AoB

which is given by

 AeB = Ae B020+ Ae B122+ Ae B224+ Ae B326 (8)

AoB = A0B022+ Ao B124+ Ao B226+ Ao B328 (9)

Fig. 6. Partitioning and adding zeros in the multiplicand

FORMATION OF PRODUCTS

 The product AeB is framed by including every summands

from (8), and the item AoB is framed by including each of the

summands from (9). The final product AB can be obtained by

adding AeB and AoB.

A. Formation of AeB

 The Least Significant Bit (LSB) of the even partition of A

is multiplied with LSB of B and the product is concatenated

with the product formed by the multiplication of Most

Significant Bit (MSB) of the even partition of A and LSB of

B. The above step is repeated for the subsequent significant of

B and the each pair is added in parallel to get AeB. The

addition tree can be given by

B. Formation of AeB

 The Least Significant Bit (LSB) of the even partition of A

is multiplied with LSB of B and the product is concatenated

with the product formed by the multiplication of Most

Significant Bit (MSB) of the even partition of A and LSB of

B. The above step is repeated for the subsequent significant

of B and the each pair is added in parallel to get AoB. The

addition tree can be given by

Illustration of proposed splitting based multiplier

Let us consider an example for a manual calculation of the

modified multiplier. The steps for the multiplication area as

follows: Let A be the multiplicand and B be the multiplier.

A. Step 1 (Partitioning)

6

 Let the values of A and B be

 A -> 0 1 0 1 1 0 1 1

B -> 1 0 0 1 0 1 0 1

Here the input A is splitted into odd(Ao) and

even(Ae) partitions which is given by

Ae-> 0 0 0 1 0 0 1 1

 A2 A0

Ao-> 0 1 0 0 1 0 0 0

 A3 A1

B -> 1 0 0 1 0 1 0 1

B3 B2 B1 B0

B. Step 2 (Multiplication)

The splitted partitions are increased as given below

A0B0 -> 0 0 1 1

A2B0 -> 0 0 0 1

A0B1 -> 0 0 1 1

A2B1 -> 0 0 0 1

C. Step 3 (Concatenation)

The multiplied partitions are connected as beneath

A0B0&A2B0 ->0 0 0 1 0 0 1 1

A0B1&A2B1 ->0 0 0 1 0 0 1 1

A0B2&A2B2 -> 0 0 0 1 0 0 1 1

A0B3&A2B3 -> 0 0 1 0 0 1 1 0

A1B0&A3B0 ->0 0 0 1 0 0 1 0

A1B1&A3B1 ->0 0 0 1 0 0 1 0

 A1B2&A3B2-> 0 0 0 1 0 0 1 0

A1B3&A3B3 -> 0 0 1 0 0 1 0 0

D. Step 4 (Shifting)

Subsequent to the connection, answers are left moved in

relation to the architecture to shape the beneath result

A0B0&A2B0<<0 -> 0 0 0 1 0 0 1 1

A0B1& A2B1<<2 -> 0 0 0 1 0 0 1 1 0 0

A0B2& A2B2<<4 -> 0 0 0 1 0 0 1 1 0 0 0 0

 A0B3 & A2B3<<6 -> 0 0 1 0 0 1 1 0 0 0 0 0 0 0

 A1B0&A3B0<<2 0 0 0 1 0 0 1 0 0

0

A1B1& A3B1<<4 -> 0 0 0 1 0 0 1 0 0 0 0 0

A1B2& A3B2<<6 -> 0 0 0 1 0 0 1 0 0 0 0 0 0 0

A1B3 & A3B3<<8 -> 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Step 5(Addition)

Finally the shifted answers are added to

give the final result.

A0B0&A2B0<<0 -> 0 0 0 1 0

0 1 1

A0B1& A2B1<<2 -> 0 0 0 1 0 0 1

1 0 0

A0B2& A2B2<<4 -> 0 0 0 1 0 0 1 1 0

0 0 0

A0B3 & A2B3<<6 -> 0 0 1 0 0 1 1 0 0 0 0

0 0 0

 0 0 1 0 1 1 0 0 0

0 1 1 11

A1B0&A3B0<<2 -> 0 0 0 1 0 0 1 0 0 0

A1B1& A3B1<<4 -> 0 0 0 1 0 0 1 0 0 0 0 0

A1B2& A3B2<<6 -> 0 0 0 1 0 0 1 0 0 0 0 0 0 0

A1B3 & A3B3<<8 -> 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0

In the proposed splitting based multiplier for the

multiplication of each component the existing multiplier

circuits such as traditional array multipliers, or even higher

performance multipliers can be used, in order to trade off

performance and area. It is also possible to use smaller

splitting based multiplier to compound the speed

improvements.Similarly, for the addition the existing adders

such as ripple carry adder, carry save adder,prefix adder can

be used. The repeated utilization of the splitting based

multiplier likely be much more profitable at higher numbers of

bits.

Multiplication Algorithm of RoBA Multiplier:

A Rounding-Based Approximate Multiplier designed

for High-Speed however Energy-Efficient Digital Signal

Processing and splitting based multiplier have been presented

here. In RoBA multiplier, the operands are rounded to the

nearest exponent of two. In splitting based multiplier the

inputs are riving into odd and even partitions and adding the

zeros in odd positions of the even partition and in even

positions of the odd partition.

The operation of the approximate multiplier is first

round off the values of inputs of A and B by Ar and Br,

respectively. The multiplication of A by B may be rewritten as

 A×B = (Ar −A) × (Br −B) + (Ar × B) + (Br ×A) –

(Ar × Br)

The multiplications of Ar × Br, Ar × B , and Br ×A is

implemented just by the shift operation

(Ar−A) × (Br−B)  The hardware implementation is

complex.

7

This term in the final result, depends on differences

of the exact numbers from their rounded ones, is typically

small. Hence, we omit this part from the above equation and

simplify the multiplication operation. To perform the

multiplication process, the following expression is used:

A×B ∼= (Ar × B) + (Br ×A) – (Ar × Br)

Thus, the multiplication operation can be performed

using three shift and two addition/subtraction operation. Here

the nearest values for A and B in the form of 2n should be

determined. When the value of A (or B) is equal to the 3 × 2p-2

(where p is an arbitrary positive integer larger than one), it has

two nearest values in the form of 2n with equal absolute

differences that are 2p and 2p-1. While both values lead to the

same effect on the accuracy of the modified multiplier,

selecting the larger one (except for the case of p= 2) leads to a

smaller hardware implementation for determining the nearest

rounded value, and hence, it is considered in this paper.

 It originates from the fact that the numbers in the

form of 3 × 2p-2 are considered as do not care in both rounding

up and down simplifying the process, and smaller logic

expressions may be achieved if they are used in the rounding

up. Finally, it should be noted the advantage of the RoBA

multiplier exists only for positive inputs because in the two’s

complement representation, the rounded values of negative

inputs are not in the form of 2n. Hence, we suggest that,

before the multiplication operation starts, the absolute values

of both inputs and the output sign of the multiplication result

based on the inputs signs be determined and then the operation

be performed for unsigned numbers and, at the last stage, the

proper sign be applied to the unsigned result. But in the case

of splitting based multiplier produces accurate result when

compared to RoBA and it take less time when compared to

array and RoBA multiplier.

V. IMPLEMENTATION OF SPLITTING BASED

MULTIPLIER

 The Interlaced Partition multiplier was implemented

for several values of b on Xilinx 14.7. The maximum

combinational path delay in the design was compared to the

delay of a typical array multiplier and RoBA implemented on

the same process for each value of b. Additionally, the total

transistor count in each design is used to quantify the area

consumption of each multiplier. Each implemented multiplier

has been extensively simulated with multiple input patterns to

verify proper operation. The recreation outcome which has

been taken by providing a quantity of the sample inputs to

array multiplier, RoBA multiplier and splitting based

multiplier.

TABLE III Analysis and Comparison of Delay Area

of array, RoBA and Splitting based Multiplier

Table IV consists of two inputs whose lengths are 16-

bits.The exact result is calculated using array, approximate

output of RoBA multiplier and splitting based multiplier has

been calculated and compared with the results of modified

multiplier. The simulation result of Splitting based Multiplier

is shown in the Fig.7.

Table IV Sample Inputs and outputs for 16-bit Array,

RoBA and splitting based Multiplier

S

ample

input A

S

ample

input B

Arr

ay multiplier

R

oBA

multiplier

S

plitting

based

multiplier

2

56

3

33

852

48

75

392

85

248

3

12

4

00

124

800

65

536

12

4800

5

12

4

54

232

448

18

1760

23

2448

7

20

9

07

653

040

26

2144

65

3040

2

048

6

78

138

8544

12

18560

13

88544

5

55

1

112

617

160

52

4288

61

7160

M

ultipliers

B

it size

D

elay (ns)

N

o. of

LUTs

N

o. of

Latches

Ar

ray

4

 bit

3

.395

1

7
0

8

 bit

1

0.264

9

4
0

1

6 bit

7

3.349

3

27
0

Ro

BA

4

 bit

4

.133

4

8
7

8

 bit

6

.180

1

47

1

3

1

6 bit

1

0.737

3

32

2

2

Spl

itting based

Multiplier

4

 bit

7

.114

2

1
0

8

 bit

7

.967

9

1
0

1

6 bit

6

.838

3

35
0

8

Fig.7.Simulation Result of Splitting based Multiplier

VI. RESULTS AND DISCUSSION OF RET CLA

In this area the outline parameters of the projected 8

bit reconfigurable error tolerant adder will be considered and

the results of utilizing the projected adder in picture handling

applications are displayed. The results for the delay, area and

power of the 8-bit ordinary adder, approximate adder and error

tolerant adder have been accounted for in Table V.

TABLE V Analysis and Comparison of Delay Area and

Power of CLA, RAPCLA and RETCLA.

In Table V the postponement has expanded in view

of the approximate adder part (LSB part) of reconfigurable

error tolerant adder in which the carry gets spread from one

phase to other. In spite of the fact that it has higher deferral

than ordinary and approximate adders, the zone have been

diminished which thus lessens the power utilization of the

segments and the error of proposed adder has been decreased

incredibly. A standout amongst the most critical property of

the proposed adder (RET-CLA) is that it possesses less

measure of territory and furthermore delivers approximate

outcomes having fewer blunders than approximate adder

(RAP-CLA).

Table VI comprises of two data sources whose length

is 8 bits. The correct outcome is computed utilizing CLA

which has zero blunders and after that the approximate

outcome of RAP-CLA has been figured and contrasted and the

outcomes of RET-CLA. For various information tests the

carry esteem is changed to 1 and 0 and the simulated

outcomes are watched.

TABLE VI Sample Inputs and Corresponding

Outputs for CLA, RAPCLA and RETCLA

Fig.8 .Simulation result of RAPCLA

In Fig.8. The simulation outcomes of reconfigurable

approximate carry look ahead adder (RAP-CLA) is appeared.

A similar example esteems utilized for CLA are given to

approximate adder whose outcome gets stray for the greater

part of the qualities which produces error.

Fig.9.Simulation result of RETCLA.

The simulated outcome for reconfigurable error tolerant adder

(RET-CLA) is appeared in fig.9. The projected reconfigurable

error tolerant carry look ahead adder and multiplier are

actualized in Spartan 6 FPGA unit. The execution is improved

the situation 8 bit expansion

VII.CONCLUSION

 In this paper, a reconfigurable error tolerant carry

look-ahead adder and high speed multiplier was suggested.

The Splitting based multiplier indeed provides an effective

tradeoff between high speed. The domain in which it is a good

choice becomes more pronounced as the number of bits

increases. The Splitting based Multiplier has a place and

represents a unique tradeoff for 32 and 64 bit cases. By using

different component adders and multipliers, and through

recursive implementations at higher numbers of bits, the

9

Splitting based multiplier can be optimized for a given

application in terms of the trade-off between area and speed.

To survey the productivity of the projected design, its outline

parameters were appeared differently in relation to those of a

few proposed reconfigurable approximate adders and Splitting

based multipliers. The parameters which added area, power

and delay were assessed utilizing Xilinx 14.7 apparatus. The

outcomes showed up moderately high performance and

computationally efficient arithmetic unit. This proposed RET

Carry look ahead adder and Splitting based multiplier finds

application in image processing such as discrete cosine

transforms.

REFERENCES
 [1] B. K. Mohanty and S. K. Patel, "Area–Delay - Power Efficient

Carry-Select Adder," IEEE Transactions on Circuits and Systems II:

ExpressBriefs, vol. 61, no. 6, pp. 418-422, June 2014.

[2] B. Shao and P. Li, "Array-Based Approximate Arithmetic

Computing: A General Model and Applications to Multiplier and

Squarer Design," IEEE Transactions on Circuits and Systems

I:Regular Papers,vol. 62, no. 4, pp. 1081-1090,April2015.

[3] A. Raha, H. Jayakumar, and V. Raghunathan,"Input- Based

Dynamic Reconfiguration of Approximate Arithmetic Units for

Video Encoding," IEEE Transactions on Very Large Scale

Integration(VLSI) Systems, vol. 24, no. 99,pp.1-1,May2015.

[4] M. S. Khairy, A. Khajeh, A. M. Eltawil and F. J.Kurdahi, "Equi-

Noise: A Statistical Model that Combines Embedded Memory

Failures and Channel Noise," IEEE Transactions on Circuits and

Systems I:Regular Papers, vol. 61, no. 2, pp. 407-419,Feb.2014.

[5] R. Ye, T. Wang, F. Yuan, R. Kumar and Q. Xu, "On

reconfiguration-oriented approximate adder design and its

application," Proceedings of IEEE/ACM International Conference

on Computer Aided Design (ICCAD),2013,pp.48-54.

 [6] OmidAkbari, Mehdi Kamal, Ali Afzali-Kusha and

MassoudPedram, “RAP-CLA: A Reconfigurable Approximate Carry

Look-Ahead Adder”, IEEE Transactions on Circuits and Systems II:

Express Briefs, 2016.

[7] C.S. Wallace,”A suggestion for a fast multiplier,”

IEEE Trans. Electron Comput., vol.EC-13, no.1, pp.14-

17,Feb. 1964.

[8] L.Dadda,”Some schemes for parallel

multipliers,” Alta Frequency, vol.34,pp.349-356,1965.

[9] R.Waters and E. Swartzlander,“A reduced

Complexity Wallace mutliplier reduction,”IEEE

Trans.Comput., vol.59, no. 8, pp. 1134–1137,Aug. 2010.

[10] M. Schulte and E. Swartzlander, “Parallel

reduced Area multipliers,”J.VLSI Signal Process.,vol.9,pp.

181–191, 1995.

[11]H.Eriksson,P.Larsson-

Edefors,M.Sheeran,M.Sjalander, D. Johansson, and M.

Scholin,“Multiplier reduction tree with logarithmic logic

depth and regular connectivity,”

 in Proc. IEEE Int.Symp. Circuits Syst.,2006, pp.4–8.

[12] MOSIS ON-Semiconductor (Formerly AMIS)

Process [Online]. semiconductor/c5, 2015.

[13] P. Kogge and H. Stone, “A parallel algorithm

for the efficient solution of a general class of recurrence

equations,” IEEE Trans. Comput., vol.C-22, no. 8, pp.783

791, Aug. 1973.

[14] W. J. Townsend, E. E. Swartzlander Jr., and J.

A. Abraham “A comparison of Dadda and Wallace

multiplier delays,” in Proc. SPIE, Adv. Signal

Process.Algorithms, vol. 5205, pp. 552–560, 2003.

[15] L.Dadda, “Some Schemes for Parallel

Multipliers,” Alta Frequenza, vol. 34, pp. 349-356, 1965.

 [16] K. C. Bickerstaff, M. J. Schulte, and E.E.

Swartzlander Jr.,“Parallel Reduced Area Multipliers,”J. VLSI

Signal Processing Systems, vol. 9, no. 3, pp. 181191,

Apr.1995.

[17] Shiang-RongKuang and Jiun-Ping Wang,

“Design of Power Efficient Configurable Booth Multiplier”,

2010.

[18] Li-Rong Wang, Shyh-JyeJou and Chung-Len

Lee,“A Well Structured Modified

BoothMultipierDesign”,2011.

