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Abstract: Independent Component Analysis (ICA) and its 
variants were proposed for Blind Source Separation 
(BSS) wherein most of the algorithms assumed that the 
sources are independent, non-negative and well-
grounded. Some variants of ICA made the independence 
assumption unnecessary by utilizing information from 
theoretically based metrics; however, these methods are 
very slow in the process. In this paper an efficient 
Clustering of Mutual Information based least dependent 
Component Analysis (CMILCA) is proposed to cluster 
based least dependent components in a computationally 
efficient way by utilizing a squared-loss variant of mutual 
information. However, CMILCA provides better 
results just for a less number of sources and observations. 
In order to overcome this, Clustering in Conjugate 
Gradients of Mutual Information based least dependent 
Component Analysis in Riemannian manifold 
(CCGMILCA) is proposed to achieve convergence faster. 
The Riemannian directional derivative is used for local 
minimum efficiency, which results in the estimation of a 
weight matrix by giving independent components 
corresponding to various sources of mixture signals. The 
results of our experiments show that proposed algorithms 
take less time and high signal to noise ratio than the 
existing Blind Source Separation techniques. 
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1. Introduction 

 Blind Source Separation (BSS) [1] is the method 
for separating a set of source signals from combined 
signals while not knowing any information 
concerning source signals or the mixing 
methodology. In the past 20 years, BSS has 
developed speedily and has found wide application 
in wireless communication, microwave radar signal 
process, image signal process, speech signal process, 
medicine signal process, unstable wave detection, 
etc. BSS is a much preferred analytical topic in the 
signal processing field. Earlier, several techniques 
were provided for separating time based signals like 
audio. Nowadays, BSS is developed for multi-
dimensional information like pictures and tensors 
which may not have time as one of the dimensions. 
In BSS, the mixtures are taken as linear mixtures of 

the sources with tiny mathematical noises, and also 
the task in BSS is reduced to solely approximating 
the source signals. Nonnegative matrix factorization 
(NMF) and independent component analysis (ICA) 
are two of the acquainting approaches for BSS. 
From the literature outlined, there is a tendency that 
once the quantity of sources increases, then the 
performances of ICA and its variants decline, and 
also the reconstructed images made by NMF 
algorithms are similar to the corresponding average 
images. The analyses of issues in ICA variants and 
proposing an approach to resolve these issues are the 
most significant objectives of this paper. 
 ICA locates the components which are 
statistically independent or as independent as 
possible which is an appropriate assumption for BSS 
[2][3]. Commonly, ICA algorithm is performed 
based on two principles such as measures of non-
Gaussianity of estimated components by utilizing 
some objective function and ICA estimation to find 
uncorrelated components [4]. FastICA and InfoMax 
[5] are well-liked approaches for minimizing mutual 
information and maximizing non-Gaussianity for 
generating independent components. In Non-
negative Independent Component Analysis 
(NICA)[6], sources are assumed as independent, 
nonnegative and well-grounded. These assumptions 
make NICA possible to have a global convergence 
guarantee. Hence InfoMax, FastICA and NICA are 
not fortifying to decompose least independent mixed 
components. MILCA [7] gets least independent 
components from mixed components by measuring 
the independency of components using Mutual 
information rather than assuming the components is 
independent. However, the convergence of MILCA 
algorithm is very slow. The BSS algorithm has to be 
competent to decompose a large number of least 
independent mixed components with very less time. 

 Information-minimization clustering is acquired 
in an unsupervised manner so that the mutual 
information between independent components in 
different cluster assignments is minimized. 
However, Mutual information based clustering still 
involves non-convex optimization problems, and 
therefore finding a good local optimal solution is not 
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a simple practice. The square loss variant of Mutual 
Information SMI [8] is convex under moderate 
conditions and as a result, it improves the non-
convexity of mutual knowledge regularization. The 
improvement of efficiency in the Clustering method 
of Mutual Information based least dependent 
Component Analysis (CMILCA) using SMI 
establishes an overall component dependent 
generalization error bound. The clustering 
effectively upgrades in MILCA lowering the 
processing time and develops the quality of BSS. 
However, the efficiency of CMILCA is affected 
when the number of sources and observations are 
increased. 

 Furthermore, the convergence issue due to a 
number of sources and observations in CMILCA is 
solved by utilizing a Riemannian conjugate gradient 
algorithm. The independent components of tangent 
space vectors are considered as Riemannian 
manifold, that is, to a smooth space. The 
minimization of mutual information between 
components is improved by the derivative of 
Riemannian gradient manifolds. A non-linear 
Conjugate Gradients (CG) method in a Riemannian 
manifold provides an alternative search direction to 
solve minimization of objective efficiently.  

 The remaining part of this paper is organized as 
follows: Section 2 is concerning literature review, 
Section 3 explains the concepts about the existing 
technique for blind source separation. Section 4 
presents completely on the proposed methods and 
newly framed algorithms and Section 5 is regarding 
the performance evaluation outcomes of the 
proposed method in comparison with other existing 
methods. Finally, Section 6 concludes with the 
future research work. 
 
2. Literature Review 

 Zibulevsky, M., et al [4] presented multi-node 
sparse representation for blind source separation 
technique. In their paper the main issue of blind 
source separation is regarded from a set of 
instantaneous linear combinations, with the 
unknown mixing matrix. The proposed system in 
their paper improves the separation through 
utilization of the structure of signals where a number 
of subsets of the wavelet packet coefficients have 
better sparsity and separability than others. The best 
subset consistent with global distortion is chosen to 
restore the mixing matrix with the aid of the 
Infomax algorithm or clustering. 

 Plumbley, M. D., [24] proposed algorithms for 
non-negative independent component analysis. The 
nonnegative ICA approach illustrated in their paper 
depends vigorously on the protection of the zero 
estimation of the information and source signals. If a 
bias has been additional throughout the information 
generation method, or the mean value has been 

subtracted throughout the observation method, this 
might cause failure of the algorithmic program, with 
either “slack” within the resolution (a set of potential 
rotations all with nonnegative reconstruction error), 
or no rotation abilities to produce zero 
reconstruction error. One potential approach to beat 
this drawback may well be incorporated with an 
adaptable offset within the nonnegative ICA 
analysis, modifying the algorithmic program to 
optimize a weighted sum of the initial error. The 
mean square error of ICA is minimized by using the 
axis pair rotation and geodesic algorithm. 
Additionally, the various geometry concerns are 
derived via geodesic search technique. 

 Vigliano, D., & Uncini, A., [31] presented a 
versatile ICA resolution for nonlinear blind source 
separation. In their paper, a novel learning method 
and structure is projected for decisive non-linear 
problem in blind source separation. For this reason, 
Combination of knowledge theory and adaptive 
neural network are taken into account. This mixing 
model is assumed as post nonlinear block followed 
by convolutive mixing channel. The flexibleness of 
this methodology is generated by means of spline-
SG neurons achieving an online computation for 
score functions. 

 Szu, H., & Kopriva, I., [30] considered a 
deterministic method to blind source separation of 
the space variant imaging system. In their paper, the 
positivity constraints in blind source separation are 
recovered through the probabilistic method by 
considering independence among sources with 
utilization of the entire pixel information. In 
addition, this method is accomplished for resolving 
the space variant issues by means of reducing the 
second law of thermodynamics based contrast 
function. However, the estimated error is high. 
Bronstein, A. M., et al [4] provided the sparse ICA 
method for achieving the blind separation of 
broadcast and reflected images. In their paper, the 
sparse ICA method is extended for concerning the 
issue of separating the image not including any prior 
information regarding its structure. The modern 
approaches in sparse ICA are investigated. This 
technique mostly utilized different combinations of 
source images which is complicated. 

 Zhu, X. L., et al [35] proposed adaptive nonlinear 
PCA procedures for blind source separation without 
including pre-whitening. In their paper, modified 
nonlinear principal component analysis is described. 
In addition, least mean square algorithm and 
recursive least squares algorithm are presented. This 
method can achieve online blind source separation 
by means of directing the un-whitened annotations. 
However, this technique is not useful for whitened 
signals. Saruwatari, H., et al [27] proposed fast 
convergence process based on the combination of 
ICA and beam forming for blind source separation. 



 

In their paper, frequency domain ICA and null beam 
forming including direction-of-arrival (DOA) 
evaluation are proposed. Also, the combination of 
ICA and null beam forming with DOA is explained 
based on the diversity algorithm to improve the 
convergence. This method is used for rapid and huge 
in conventional K-means clustering method. This 
weighted K-means clustering method provides rapid 
and precise convergence optimization which is 
offline. Qingming, Y., [25] proposed weighted K-
means clustering for blind source separation. In their 
paper, the weighted K-means clustering is developed 
to avoid the accuracy problem estimations which are 
not suitable for noisy images. 

 Chan, T. H., et al [5] described convex analysis 
structure for blind source separation of non-negative 
source signals. The convex analysis structure is 
deterministic which requires no independent source 
postulation. This convex framework is developed 
based on the local dominance and various standard 
statements. Extreme-point finding method is 
explained for satisfying convex analysis of mixtures 
of non-negative sources derived by using either 
linear programming or simplex geometry. This 
method has high effectiveness to solve the 
optimization problem, but the degradation in 
accuracy is high. Ozerov, A., & Fevotte, C., [22] 
described multi-channel nonnegative matrix 
factorization in convolutive combinations for audio 
source separation. In their paper, the estimation of 
the mixing and source factors is addressed based on 
two methods. The first method called expectation 
maximization method is proposed for increasing the 
precise mutual likelihood of the multi-channel 
information. The second method, named 
multiplicative method from NMF technique is 
proposed to increase the amount of individual 
likelihoods of entire channels. However, signal-to-
distortion ratio for this method is high. 

 Hsieh, H. L., & Chien, J. T., [9] investigated the 
non-negative matrix factorization for independent 
component analysis, which is used for blind source 
separation. In this method, the sources are converted 
through their cumulative distribution functions and 
nonparametric quantization is achieved for 
generating the nonnegative matrix. This method is 
used to separate music and speech signals 
effectively. Mustafi, A., & Ghorai, S. K., [20] 
proposed blind source separation method by means 
of fractional Fourier transform for de-noising 
medical images. Their method gave improved visual 
transparency to experts for utilizing the images 
during diagnosis. This method is also used for 
eliminating the most important component of 
additive or multiplicative noise from obtaining the 
image. De-noising the images without the 
knowledge about noise PDF is performed by using 
genetic algorithm and Gaussian filtering method. 
This method has better performance but the 

observation in time domain is very complex. Chien, 
J. T., & Hsieh, H. L., [6] described convex 
divergence independent component analysis for 
blind source separation. In their paper, convex 
divergence is achieved through applying the convex 
functions to Jensen’s inequality. Here, the convex 
divergence ICA is generated and nonparametric C-
ICA procedure is derived, including different 
convexity factors wherein the non-Gaussian source 
signals are categorized by means of the Parzen 
window based allocation. The speed of convergence 
is increased through the scaled natural gradient 
process. However, the degradation accuracy was 
more. 

 Bobin, J., et al [3] presented about sparsity and 
Adaptivity for blind source separation of partially 
correlated sources. In their paper, sparsity enforcing 
blind source separation technique coined adaptive 
morphological component analysis was proposed for 
retrieving sparse and partially correlated sources. 
This method provided an adaptive re-weighting 
technique for favouring samples according to their 
rank of correlation. Their method was highly robust 
to the inequitable correlation of sources, but the 
signal-to-distortion ratio for this method was high. 
Benahmed, A., et al [2] presented the estimation of 
direction of arrival (DOA) based blind source 
separation for smart antenna. This method is used to 
direct the antenna radiation pattern towards the 
required radio frequency emitter. The different 
antenna patterns are observed and separated by using 
discrete Fourier transform model. ICA based 
separation is provided to extract the independent 
components and mixing matrix. This method will 
not be effective in the presence of co-channel 
interference. Meganem, I., et al [19] proposed a 
linear quadratic method for blind source separation 
based on the nonnegative matrix factorization. In 
their paper, the spectral unmixing for urban hyper-
spectral images is specifically concerned. Different 
linear quadratic models based on NMF are 
developed and the performances are evaluated. 
However, convergence problems were occurring. 
Hattay, J., et al [11] described non-negative matrix 
factorization based on wavelet transform for blind 
source separation. This method utilized an adaptive 
quincunx lifting scheme, according to the wavelet 
decomposition for pre-processing the input 
information followed by NMF. The unmixed images 
are restructured by means of inverse adaptive 
quincunx lifting scheme. However, peak signal-to-
noise ratio of this method was high. 

 Wang, X., et al [33] provided fast nonlinear 
principal component analysis technique which is 
utilized for blind source separation. This new 
method is explored by means of mixing the most 
favorable step size including the most favorable 
energy factors which are obtained through the 
decrement of the cost function of nonlinear principal 



 

component analysis method. The convergence speed 
of this method is high, but the distance index is low. 
Guo, X., et al [8] proposed linear predictive coding 
error clustering criterion for nonnegative matrix 
factorization based blind source separation. In their 
paper, the clustering algorithm is developed by 
mixing the frequency and time activation of NMF to 
improve the accuracy of clustering. This improved 
clustering algorithm was based on the linear 
predictive coding error and the factors of NMF. 
However, this method may fail for percussive 
sources. 

3. Existing Methods. 

An Efficient Clustering Of Mutual Information 

Based Least Dependent Component Analysis 

(MILCA) 

 In MILCA method, K-nearest neighbor technique 
is used to estimate   dependencies among randomly 
generated independent components from mixed 
signals. A hierarchical clustering algorithm is used 
to cluster the output based on component 
interdependencies. 

 Let X and Y are continuous random variables 
with joint density f(x, y).  

 Marginal densities fx (x) = ∫ dy f (x, y)  and fy 
(y) = ∫ dx f (x, y) 

MI is I(X, Y) = ∬ 𝑑𝑥 𝑑𝑦f(x,y) log
𝑓 (𝑥,𝑦) 

𝑓𝑥(𝑥)𝑓𝑦 (𝑦)  
          (1) 

Mutual information is measured in terms of 

entropies. The entropies are represented as follows: 

H(X) =− ∫ dx fx(x) log fx(x)                       (2) 

H(Y) = − ∫ dy fy(y) log fy(y)                (3) 

H(X,Y) = ∬ dx dyf(x,y) log f(x,y)               (4) 

It can be written as  

H(X,Y)= H(X)+H(Y)- H(X,Y)                  (5) 

 A pre-whitening using principle component 
transformation and rescaling procedures is applied 
on mixture signals to make the covariance matrix as 
isotropic. The minimization of mutual information 
contrast function in MILCA is done by a pure 
rotation function. For any number M of random 
variables, the MI is defined as 

I(X1,X2,X3,…XM)  =  ∑ H(XM) −M
m=1

H(X1, X2, X3, … XM)                              (6)    

The grouping property of M dimensional MI is 

defined as  

I(X,Y,Z) = I((X,Y),Z)+I(X,Y)                         (7) 

 Here, I ((X, Y ),Z) is the MI between the two 
variables Z and (X, Y). 

 For any set of random variables and any 
hierarchical clustering of this set into disjoint 
groups, the complete MI may also be hierarchically 
decomposed into MIs between groups and MIs 
inside each group. 

 The Kozachenko-Leonenko estimate for Shannon 
entropy, 

Ĥ(X)=−ψ(k)  +  ψ(N) +  log cd  +
d

N
∑ log ε(i)                                                       N

i=1         (8) 

 Where ψ(x) is the digamma function, ε(i) is 
twice the distance from xi to its k-th neighbor, d is 
the dimension of x and cd is the volume of the d-
dimensional unit ball. 

The estimate for MI is, 

I (X,Y) = −ψ(k) −
1

k
− 〈ψ(nx) + ψ(ny)〉 + ψ(N)                                              

       (9) 

The MI estimation for m random variables is, 

I(X1,X2,...Xm) = −ψ(k) − (m − 1)
1

k
 + (m −

1)ψ(N) − 〈ψ(nx) + ψ(ny) + ⋯ ψ(nm)〉              (10) 

 In a simple representation of ICA, one observes 
m random variables x1(t), x2(t), . . . ,xm(t)  which 
are assumed to be linear mixtures of n unknown 
independent components  s1(t), s2(t), … , sn(t). 

s(t) = (s1(t), s2(t), … , sn(t))                                 (11) 

𝑥(𝑡) =[x1(t), x2(t), . . . ,xm(t)]T                                    (12) 

𝑥(𝑡) = 𝐴𝑠(𝑡), 𝑡 = 1, … . , 𝑇                                      (13) 

 In Equation (13), A denotes the n × n non 
singular mixing matrix in which the quantity of 
sources is identical with the quantity of measured 
components. The decomposition into independent 
components by means of inverse transformation is 
defined as follows: 

�̂�(𝑡) = 𝑊 𝑥(𝑡)  𝑤ℎ𝑒𝑟𝑒 𝑊 = 𝐴−1                          (14) 

 The matrix W is decomposed into two elements 
as follows: 

W = RV                                                                        (15) 

 In the above Equation (15), pre-whitening matrix 
V converts the covariance matrix into C′ = VCVT =
1 and R refers the pure rotation, which means 
orthogonal transformation for achieving non-
Gaussianity. The aim of ICA is now to minimize 
I(X1 . . .Xm) under a pure rotation R. Any rotation R 
is denoted as follows: 

R = ∏ Ri,j(∅)                                    

i,j

             (16) 



 

Ri,j(∅)(x1 … xi … xj … xn)

= (x1 … xi
′ … xj

′ … xn)                                     (17) 

xi
′ = cos ∅ xi + sin ∅ xj & xj

′ = sin ∅ xi +  cos∅ xj                                                        
(18) 

 For this orthogonal rotation or orthogonal 
transformation Mutual Information (MI) is 
expressed as follows: 

I(Ri,j(∅)X) − I(X) = I(Xi
′, Xj

′) − I(Xi, Xj)           (19) 

 The optimal angle ∅  for equation (19) is 
computed using Equation 

Îij(∅) = Î(Xi
′, Xj

′)                                                       (20) 

 The optimal angle ∅ which minimizes Equation 
(19) is found and estimates Si from X′. 

 However, MILCA approaches nonetheless 
contain non-convex optimization problems, and for 
this reason discovering a just right local optimum 
resolution isn't easy to observe. So alternative 
squared-loss variant mutual information [30] is 
utilized in CMILCA. Squared-loss mutual 
information based on marginal probability between 
two continuous random variables a and b for BSS is 
described as: 

SMI(X,Y) = 
1

2
∬ f(x)f(y) 

(
f (x,y)

fx(x)fy (y) 
− 1)

2

 dx dy                                          (21) 

 Equation (21) is the marginal density based 
square loss variant of mutual information. 

 The equation can be written as 

SMI(X,Y)=
1

2
∬ f(x) f(y)(

f (x,y)

fx(x)fy(y)
)

2

dx dy −

1

2
∬ f(x) f(y)

f (x,y)

fx(x)fby (y)
 dx dy+

1

2
                (22) 

 Equation (22) is again rewritten as, 

SMI(X,Y) =
1

2
∬ f (

y

x
)  f(x)

f (
y

x
)

fx(x)fy (y)
dx dy − 

1

2
     (23) 

 Let us approximate the posterior probability f (
x

y
) 

by the following kernel model. 

f(y|x; α) ∶= ∑ αyiK(x, x′)

n

i=1

                                     (24) 

 where α = (α1,1, . . . , αc,ni)T s the parameter 
vector,  ( )T denotes the transpose, and K(x, x′) 
denotes a kernel function [31] with a kernel 
parameter 

K(xi, xj) =

{
exp (−

‖xi−xj‖
2

2σiσj
)  if xi ∈ Nt(xj)or xj ∈ Nt(xi),

0             Otherwise,
  (25) 

 where Nt(x) is the set of t nearest neighbors for xi 
which t is the kernel parameter, σi is the local 
scaling factor defined as, 

 σi= ∥ xi−x(t)i ∥ , and x(t)i is the tth nearest 
neighbor of xi. 

 The SMI approximation is as follows: 

SMI ̂ ≔  
1

2n
∑

1

πy
αy

TK2αy −
1

2
c
y=1 ,                            (26) 

SMI(Ri,j(∅)X) − SMI(X) = SMI(Xi
′, Xj

′) −

SMI(Xi, Xj)                                                                  (27) 

SMÎ
ij(∅) =  SMÎ          (Xi

′, Xj
′)                               (28) 

 The optimal angle ∅ which minimizes Equation 
(27) is found and estimate si from X′. 

 
4. Proposed Methods 

Proposed Algorithm 1: Clustering of Mutual 
Information based least dependent Component 
Analysis (CMILCA) 

Input: Mixture images or signals of n independent 
sources  

Output: n independent sources  

1. Denoising and whitening of input images or 

signals  

2. For each pair of randomly generated variables 

find the angle ∅which minimizes 

3.   𝑆𝑀�̂�𝑖𝑗(∅) = 𝑆𝑀�̂�(𝑋𝑖
′, 𝑋𝑗

′) 

4. Until    𝑆𝑀�̂�(𝑋𝑖
′, 𝑋𝑗

′) is not converged repeat Step 

2. 

5. �̂�𝑖= 𝑋𝑖
′are the estimates for the sources 

 CMILCA algorithm gives better results than 
MILCA in terms of convergence rate. However the 
algorithm’s performance is to be increased when the 
number of sources and observations are more. So the 
conjugate gradient on Riemannian manifold is 
further included in CMILCA which in the name of 
conjugate gradient based MILCA technique is 
discussed as follows: 
 
Proposed Algorithm 2: Clustering in Conjugate 
Gradients of Mutual Information based least 
dependent Component Analysis (CCGMILCA) 

 The convergence of CMILCA is further improved 
for a larger number of sources and observations by 
using a conjugate gradient algorithm. Consider 
random vector z which refers to the whitened linear 
mixture independent component of sources 



 

(s1(t), s2(t), … , sn(t)) and the permutation of 
sources is defined as y = Wx, where W is 
constrained to the square orthogonal matrix. The 
gradient algorithm with constrained convergence is 
obtained as follows: 

 Since W constructed from Equation (15) is 
orthogonal, the cost function is denoted as, 

J(w1, … , wn)

= ∑ E{min(0, yi)
2}

n

i=1

, yiwi
Tx                                    (29) 

 In the above Equation (29), wi
T denotes the rows 

of matrix W. 

 Unlike classical ICA algorithms employing 
optimization methods on the Riemannian manifold 
which implies the orthogonality constraint on the 
independent components (ICs), the present approach 
relies on the unit-norm constraint on the ICs, i.e., the 
constraint surface is the Riemannian manifold. 

 In this paper, W in Equation (15) is obtained by 
solving Equation (27) with searching on minimal  ∅ 
value. However, to increase convergence for 
obtaining optimal W, explicit derivative information, 
the discriminancy property of the contrast function is 
to be solved on manifold fields. Absil et al. [32] 
defined Riemannian manifold based derivatives to 
solve optimization problems. 

 Riemannian Manifolds are sets which can be 

manipulated with patches of ℝn. These 

manipulations are called as charts. A set of 

compatible charts which covers the complete set is 

called as atlas for that particular set. The set and the 

atlas jointly constitute a manifold. Let ℳ be a set. A 

chart of ℳ is a pair (U,φ) where U ∈ ℳ and φ is a 

bisection between U and an open set of Rn. Uis the 

chart's domain and n is the chart's dimension. Given 

p ∈ U, the elements of φ(p) = (x1,……,xn) are 

called the coordinates of p in the chart(U, φ). 

 A set A = {(Ui, φi), i ∈  I} of pairwise smoothly 
compatible charts such that ∪i∈I Ui = ℳ is a smooth 
atlas of ℳ. A smooth manifold is a pair ℳ = 
(ℳ,A+), where ℳ refers a set and A+ is a maximal 
atlas of ℳ. 

 Tangent spaces for manifolds embedded in ℝn. 
Let ℳ ∈  ℝn be a smooth manifold. The tangent 
space at x ∈ ℳ, noted Tx ℳ, is the linear subspace 
of ℝn defined by: 

Tx ℳ={
v ∈ ℝn, v = c ′(0)for a smooth c:

ℝ → ℳ  such that c(0) = x 
} 

 The dimension of Tx ℳ is the dimension of a 
chart of ℳ containing x. 

 The tangent space to ℳat p, noted Tp ℳ, is the 
quotient space 

Tp ℳ= Cp/~ f[c] = {[c]: c ∈ Cp}                         (30) 

 Given c  ∈Cp, the equivalence class [c] is an 
element of Tp ℳ called a tangent vector ℳ at p. 

 The derivative of a scalar field f on ℳ at p ∈ ℳ  
in the direction ξ= [c] ∈ Tp ℳ  is the scalar 

D f[p][ ξ]:=
d

dt
 f(c(t))|t=0=(f ∘  c′) (0)               (31) 

 The equivalence relation over Cp is specifically 
derived such that this definition does not rely on the 
selection of c, the representative of the equivalence 
class ξ. In the above notation, the brackets around 
ξ are a convenient way of denoting that ξ is the 
direction. They do not mean that some sort of 
equivalence class of ξ is being considered. 

 Riemannian manifold is a pair (ℳ, g), in 
whichℳ refers to the smooth manifold and g refers 
to the Riemannian metric. A Riemannian metric is a 
smoothly varying inner product defined  on the 
tangent spaces of ℳ, that is, for each p ϵ ℳ, gp(.,.) 
=  〈. , . 〉p is an inner product on Tp ℳ. 

 Let f be a scalar field on a Riemannian 
manifold  ℳ. The gradient of f at p, denoted by grad 
 f(p), is defined as theunique element of Tp ℳ 
satisfying: 

D f [p][ ξ]=〈grad f(p), ξ〉p ,∀ ξ ∈ Tp ℳ                 (32) 

 Thus, grad f : ℳ → T ℳ is a vector field on M. 

 The gradient depends on the Riemannian metric 

but directional derivatives fail. For a scalar field  f in 

a Euclidean space, grad f is the usual gradient, which 

is noted ∇f. Remarkably Similar to the Euclidean 

case, the gradient narrated above is the steepest-

ascent vector field and the norm ‖ grad f(p) ‖p is 

the steepest slope of f at p. More precisely, 

‖ grad f(p) ‖p   = max
ξ∈ Tp ℳ

D f [p][ ξ]              (33) 

 A retraction in a manifold M is a smooth 

mapping R from the tangent bundle Tℳ onto 

ℳ with the following properties. 

 For all x in ℳ, let Rx denote the restriction of R 

to Tx ℳ. Then, Rx(0) = x, where 0 is the zero 

element of Tx ℳ, and The differential (DRx)0 : 

T0(Tx ℳ) ≡Txℳ →Txℳis the identity map on 

Tx ℳ, that is, (DRx)0 = Id (local rigidity). Vector 

transport in a manifold ℳ is a smooth mapping 

Transp: Tℳ ⊕ Tℳ ⟶ Tℳ: (η,ξ ) Transp(η ⟼
ξ)                                                               (34) 

 A candidate demixing matrix, Xk ϵ ℳ, of order 



 

D×D is constructed by normalizing the columns of a 
constructed matrix W, which can be written as 

 Xk =W× ddiag(WTW) -1/2 at iteration k = 
0,1,..n. the contrast (objective) function value f and 
the conjugate gradient  ∇f(Xk) are evaluated at Xk 
using  (27). Since this algorithm evolves on the 
Riemannian feasible set ℳ, ∇f(X0) ought to be 
projected onto the tangent space,TXk

ℳ to obtain the 
respective Riemannian gradient 

gradf(Xk) := ∇f(Xk) – Xk ddiag ( Xk
T∇f(Xk))    (35)                                                                                                                                                     

min
x∈ℝn

f(x)                                                   (36) 

 Such that f is continuously differentiable and 
Steepest descent (SD) or gradient descent method is 
arguably one of the unique and most well-known 
algorithms available. Given an initial guess or initial 
iterate x0 ∈ ℝn, it attempts to develop its 
predicament by following the most promising 
direction iteratively. Now elegantly, it generates a 
sequence of iterates: 

 x0, x1,……..∈  ℝn according to the update 
equation 

xk+1 = xk +αkdk                                       (37) 

 A sophistication layer is added to this simple 
algorithm by constructing an alternative search 
direction dk which is a carefully derived linear 
combination of both ∇f(Xk) and the previous search 
direction dk−1 based on the non-linear conjugate 
gradients (CG) method. Thus incorporating a form 
of inertia in the search procedure is: 

dk  = − ∇f(Xk) +  dk−1                                           (38) 

 From the update Equation (37) and the search 
direction Equation (38), it is obvious that the CG 
method relies on the vector space structure of ℝn, by 
composing points and vectors using linear 
combinations. Though this dependency is not 
fundamental, where both equations can be altered so 
that they will make the optimization problems which 
are of the form (36) where the search space ℳ is a 
Riemannian manifold. The Riemannian structure is 
not needed to have a notion of gradient. 

 The update Equation (37) produces xk+1, a new 
point on the search space, by moving away from xk 
along the direction αkdk. The notion of retraction 
embodies this very same idea and suggests the more 
general update formula: 

xk+1 = Rxk (αkdk)                                                  (39) 

 where dk ∈ Txk ℳis a tangent vector at xk+1. 
Similarly, the search direction Equation (38) 
produces the tangent vector  dk by combining two 
vectors:-grad f(xk+1) and dk−1, where the former is 
the Riemannian gradient of f at xk. Those are 
respectively, tangent vectors at xk and xk−1. As a 

result, they cannot be combined directly and do not 
belong to the same subspace. This issue can be 
solved by transportingdk−1 to xkusing a vector 
transport: 

 dk−1
+   = Trans pxk  ←  xk−1  

(dk−1)                          (40) 

 The search direction equation then becomes: 

𝑑𝑘 = - grad (𝑓(xk)) +𝛽𝑘−1𝑑𝑘−1
+                       (41) 

 A standard trick to accelerate the CG algorithm is 
to precondition the iterations by operating a change 
of variables on the tangent spaces xk ℳ as 
mentioned by Hager.,et al [33]. This change of 
variable should be chosen so such that to reduce the 
condition number of the cost function. 

 Normally, this is achieved by change of variables 
closely related to the inverse of the Hessian nearby 
or at a critical point. Certainly a change of variables 
on Txk ℳ amounts to a change of Riemannian 
metric  gxk

, so that it is theoretically adequate to 
describe a CG method on Riemannian manifolds 
without explicitly allowing for preconditioning. In 
practice though, it is convenient to separate the work 
of describing manifolds (giving them a Riemannian 
structure, defining retractions, geodesics, projectors, 
etc.) and that of describing a cost function. Since the 
pre-conditioner depends on the cost function, 
explicit preconditioning of the Riemannian CG 
method is allowed for, with the following pre-
conditioner: 

Precon f(x) ∶ Txℳ ⟶ Txℳ                             (42) 

 The linear operator Precon f(x) must be 
symmetric w.r.t. the Riemannianmetric, positive 
definite and, ideally be some kind of cheap 
approximation of (Hess f(x))-1. The search direction 
equation now reads: 

dk = -Preconf(xk) [grad f(xk)] + βk−1dk−1  
+     (43) 

 Notice that if Precon f(x) = (Hess f(x))-1 and 
βk−1 = 0, this is a Newtonstep. When no pre-
condition is available or necessary, it is replaced by 
the identity operator. The step size αk is chosen by a 
line search algorithm which approximately solves 
the one-dimensional optimization problem: 

min
α>0

ϕ(α) ≔ f( Rxk(αdk )                                (44) 

 If dk is a descent direction for f (which is 
typically enforced), then ϕ′(0)<0and it is 
necessarily possible to decrease ϕ′ (and hence f) 
with a positive stepsize. It does not matter whether 
(44) is solved exactly or not. Typically, it is 
sufficient to compute a large enough step size such 
that a sufficient decrement is obtained according to 
the Armijo criterion: 

f(xk+1)= ϕ(αk) ≤  ϕ(0)+cdecrease  αk ϕ′(0)= f(xk)   



 

+ cdecrease  .D f(xk) [αkdk
]                (45) 

 The constant 0 < cdecrease < 1 is the sufficient 
decrease parameter. The simple backtracking line 
search in the above methods guarantees that this 
condition is satisfied. 

Proposed Algorithm 2:  

//Conjugate gradient based MILCA method 

1. Perform steps 1 to 3 in algorithm 1 

2. If W is orthogonal matrix  

3. Compute the minimum cost function by 

using equation (35 and 36) 

4. Compute the gradient with respect to f(xk) 

and update W for eqn(29) 

5. Until  SMÎ(Xi
′ , Xj

′ )not converged step 2. 

6. Estimate ŝi= Xi
′  for the sources 

 
5. Results and Performance Comparison 

 The performances of Fast ICA, NICA, MILCA 
and CCGMILCA are evaluated and compared by 
selecting audio files and images from McGill 
Calibrated Color Image Database [34] and Centre 
for speech technology research (CSTR) database 
[35]. Sources are selected from databases and 
mixtures (observations) are generated by mixing 
sources with the linear mixing model. To generate 
mixture matrix A, vectorized sources are appended 
into the column of matrix W.  Nonnegative mixing 
matrix H is generated randomly with normalized 
columns.  The result of multiplying W with H is 
mixture matrix. Hence H is a normalized column 
matrix, so that each column of A contains a linear 
mixing of all the sources. 

 Signal-to-Noise Ratio (SNR), Structural 
Similarity Index (SSIM), Universal Image Quality 
Index (UIQI), and Computational time are used to 
evaluate to prove the better performance of the 
proposed blind source separation techniques on 
image dataset. Signal-to-Noise Ratio (SNR), Signal-
to-distortion ratio (SDR), signal-to-interference ratio 
(SIR), SAR (signal to artifacts ratio) and magnitude 
ignal-to-Error Ratio (mSER) are used to evaluate the 
strength of  the proposed blind source separation on 
Audio dataset. The experimental works were 
performed using Matlab ® R2015b on an Intel 
Pentium    i5 3.4 GHz processor with 8 GB memory.  

 Three source images are taken from McGill 
Calibrated Color Image Database as shown in the 
first row of Figure 1 (b). Figure 1 (a) shows four 
observed images generated by mixing three sources. 
The second, third ,fourth, fifth and sixth rows of 
Figure 1(b)  illustrate that the recovered images of 
BSS techniques  FastICA, NICA, MILCA, 

CMILCA and CCGMILCA respectively. The MSE 
(Mean Square Error) values between recovered 
images by BSS approaches and source images are 
compared; the MSE value for proposed two 
techniques CMILCA and CGMILCA are reduced 
considerably than the other classical BSS 
approaches. 

MSE = 1/MN‖X − X̂‖
F

2
                                            (46) 

 where X and X̂ are recovered and original image 
respectively. M, N is the width and height of image.  

 Three audio files are selected from Centre for 
Speech Technology Research (CSTR) database. Five 
mixture signals are generated by the following 
equation: 

xij (t) = aijsj(t)                                                           (47) 

 where sj(t) are source signals, aij   positive 
mixing matrix which is generated as like image 
mixture generation which is described in the earlier 
part of the Result and Discussion chapter. Figure 1 
(a) shows the generated six observed signals. The 
selected audio files from database are in .wav 
format. 

 Figure 1 (b) illustrates the recovered signals by 
using all BSS techniques FastICA, NICA, MILCA, 
CMILCA and CGMILCA. Spatial distortion and 
interference components are computed by least-
squares projection of the separated source signals 
onto the corresponding source signal subspaces [36]. 

e ij
spat

(t) = Pj
Lŝij (t) − sij (t)                                   (48) 

e ij
interf(t) = Pall

L ŝij (t) −Pj
L sij (t)                          (49) 

e ij
artif(t) = ŝij (t) −Pall

L  sij (t)                                 (50) 

 where Pj
L   is the least-squares projector onto the 

subspace spanned by skj (t-τ) ,1≤ k ≤ I, 0≤ τ ≤ L-

1, and Pall
L   is the least-squares projector onto the 

subspace spanned by skl (t-τ), 1≤ k ≤ I, 1≤ l ≤ j, 
0≤ τ ≤ L-1. The filter length L was set to 512 (32 
ms), which was the maximal tractable length. The 
performance metrics are derived by the Equations 
(48) to (50). 

 

               

 

Fig. 1(a).  Observed images 



 

   

       Source 1                    Source 2                Source 3 

Original Images 

  

Fig. 2(a). Observed Audio Signals 

 

 

  
     MSE=0.215            MSE=0.121          MSE=0.106 

Recovered images by FastICA 
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Recovered images by NICA 

 

 

 

 

 
       MSE=0.085          MSE=0.099          MSE=0.0740  

Recovered images by MILCA 

 

                MSE=0.083             MSE=0.071      MSE=0.091 

Recovered images by CMILCA 

 

 

 

 

 
           MSE=0.071        MSE=0.051         MSE=0.088 

     Recovered images by CCGMILCA 

Fig. 1(b). Original sources and separated sources using 

Fast ICA, NICA, MILCA, CMILCA and CCGMILCA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2(b). Original sources and separated sources 

using Fast ICA, MILCA, CMILCA and CCGMILCA 

 

 

 

Recovered Image :1 :CMILCA Algorithm Recovered Image :2 :CMILCA Algorithm
Recovered Image :3 :CMILCA Algorithm



 

5.1 Signal-to-Noise Ratio (SNR) 

Signal-to-Noise Ratio (SNR) is given as, 

SNR = −10 log10
‖W−B‖2

2

‖W‖2
2                                    (51) 

In the above equation, every column of W includes 
the original image or audio signal and every column 
of B includes the related reconstructed image or 
audio signal. The SNR value for all methods for 
images is shown in Fig 3. SNR value of 
CCGMILCA method is higher than all other 
methods regardless of the number of sources.  For a 
higher number of sources i.e. for 10, the SNR of 
FastICA is 30.20dB, NICA is 32.40 dB, MILCA 
34dB and CMILCA and CCGMILCA are providing 
higher value of SNR as 36.2dB and 40dB 
respectively.  

 

Fig. 3. Comparison of SNR value for image dataset (in 

dB) 

Fig. 4. Comparison of SNR value for Audio dataset (in 

dB) 

Fig 4 shows the comparison of SNR for 

audio signals. The result shows that the SNR value 

of CCGMILCA method is higher than the other 

methods. While considering the number of source 

signal as 9, the SNR of FastICA is 27.8dB, NICA is 

29.4dB, MILCA is 30dB and when CMILCA and 

CCGMILCA are applied the value of SNR is 

improved to 33dB and 38dB respectively. 

5.2 Structural Similarity Index (SSIM) 

It is defined as the similarity value between the 
original and recovered images s(x, y). It is given as 
follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
               (52) 

In the above equation, μx, μy are averages of x, y 

respectively. σx
2, σy

2 are variances of x, y 

respectively, and c1, c2 are constants. σxy is the 
covariance of x and y.   

 

Fig. 5. Comparison of SSIM value for Image dataset  

Fig 5 illustrates the comparison of SSIM for colour 

image database. The result shows that the SSIM 

value of CCGMILCA method is higher than the 

other methods. While considering the number of 

observations as 10, the SSIM of FastICA was 0.83, 

NICA was 0.86, MILCA was 0.88 and when 

CMILCA and CCGMILCA are applied, the value of 

SSIM is improved to 0.89 and 0.91 respectively. 

5.3 Universal Image Quality Index (UIQI) 

It is referred as the overall normalized quality value 

of the  

UIQI =
1

N×M
∑ ∑ Qij

M
j=1

N
i=1                                         (53) 

In the above equation, N and M are the row and 

column numbers of the image or audio signal 

respectively. Qij refers the local quality index 

at (𝑖, 𝑗). 

Fig. 6: Comparison of UIQI value for Image dataset 

 



 

Fig 6 illustrates the comparison of UIQI for 

colour image database. The result shows that the 

UIQI value of CCGMILCA method is higher than 

the other methods. While considering the number of 

observations as 10, the UIQI of FastICA was 0.84, 

NICA was 0.88, MILCA was 0.90 and when 

CMILCA and CCGMILCA are applied the value of 

UIQI was improved to 0.92 and 0.94 respectively. 

5.4 Signal-to-distortion ratio (SDR) 

     It is the ratio between Signal power and the 

Distortion power. Signal to Distortion ratio is 

obtained by using Equation (54). 

SDR =10 log 10
∑ ∑ sij(t)2

t
I
i=1

∑ ∑ ( e ij
spat(t)+e ij

interf(t) +e ij
artif(t))2

t
I
i=1

   

                                                                                      (54) 

Fig .7 shows the comparison of SDR for audio 

signal. The result shows that the SDR value of 

CCGMILCA method is higher than all the other 

methods. For any number of observations, CMILCA 

and CCGMILCA based Blind source separation 

results from 18 dB to 20 dB. The results show that 

the proposed approaches are separating signals from 

the mixture signals with lesser distortion than 

classical Blind source separation. CMILCA method 

shows almost equal performance when compared to 

CCGMILCA method performance. 

Fig. 7. Comparison of  SDR for Audio Dataset 

5.5 signal-to-interference ratio (SIR) 

SIR = 10 log 10

∑ ∑ (sij(t)t    
I
i=1 + e ij

spat(t) )2

∑ ∑ e ij
interf(t)2

t  
I
i=1

                (55) 

A noise due to mis-separation is called 

interference (For instance, while extracting the lyrics 

from a song, this might be a residual of the 

background tune). 

 

 

Fig. 8. Comparison of SIR for Audio Dataset 

Fig 8 shows the comparison of SIR for audio 
signals. The result shows that the SIR value of 
CCGMILCA method is higher than the other 
methods.   SIR value obtained for CMILCA is 
improved 9% than MILCA. CCGMILCA results 
around 15% improvement than MILCA method. 

 

5.6 SAR (signal to artifacts ratio) 

SAR= 10 log 10

∑ ∑ (sij(t)t    
I
i=1 + e ij

spat(t)+e ij
interf(t) )2

∑ ∑ e ij
artif(t)2

t  
I
i=1

    

                                                                                      (56) 

A noise due to the reconstruction algorithm itself is 

known as artifacts. Fig 9 shows the comparison of 

SAR for audio signals. The result shows that the SIR 

value of CCGMILCA method is higher than the 

other methods.   SIR value obtained for CMILCA is 

6% improved than MILCA. CCGMILCA is obtained 

with more than 18% improvement than MILCA. 

Fig.  9. Comparison of SAR for Audio Dataset 

 

 

 



 

5.7 Computational Time 
       It refers to the time needed for finishing the 
computational process. Figure.10 illustrates the 
comparison of computational time for colour image 
database. The results show that the computational 
time value of CCGMUILCA method is lesser than 
the other methods. While considering the number of 
observations as 10,the computational time of 
FastICA was with 1 hr. 

 

Fig. 10. Comparison of computation time for Image 

Dataset (hrs) 

NICA was 2 hrs, MILCA was 29hrs and when 

CMILCA and CCGMILCA are applied, the value of 

computational time was reduced to 4hrs and 2.5hrs 

respectively. Comparatively MILCA method takes 

many hours compared to all other methods. 

Fig. 11. Comparison of computational time Audio 

Dataset (hrs) 

Fig 11 shows the comparison of computational time 
for audio signals. The result shows that the 
computational time value of CCGMILCA method is 
lesser than the other methods. While considering the 
number of observations as 10, the computational 
time of FastICA was 50 mins, NICA was 2.2hrs, 
MILCA was 25hrs and when CMILCA and 
CCGMILCA are applied the value of computational 
time is reduced to 5 hrs and 2.8 hrs respectively. 

6. Conclusion and Future work 
      In this paper, the problem of Independent 
Component Analysis (ICA) in Blind Source 
Separation (BSS) is analyzed. From the analysis, it 
is found that MILCAmethod performs better blind 
source separation, but it takes much time to 
converge. Hence, Clustering of Mutual Information 
based Least-dependent Component Analysis 
(CMILCA) technique is developed to overcome the 
problem of MILCA.To supportthe number of 
observations and sources, Clustering in Conjugate 
Gradients of Mutual Information based Least-
dependent Component Analysis (CCGMILCA) 
method is used. Thus the proposed BSS methods are 
used to reduce the considerable computation time of 
MILCA.The experiment results proved that the 
proposed techniques perform better in terms of 
SNR,SSIM for image and SDR,SIR,SAR for Audio 
dataset. In future the problem with NMF based Blind 
source separation techniques will be analyzed to 
give better results and compared with the proposed 
techniques. 
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