

HIGH PERFORMANCE WITH REDUCED AREA 4096 POINT

FEEDFORWARD FFT ARCHITECTURE FOR VDSL APPLICATIONS

A. ARUN C A B. PRAKASAM PERIYASAMY

A. Paavai College of Technology, Namakkal, India.
B. Department of ECE, SNS College of Engineering, Coimbatore, India.

Email – prakasamp@gmail.com

Abstract: In this paper, a new representation for Fast
Fourier Transform (FFT) algorithms based on feedforward
FFT architecture is proposed. A 4096 point pipelined
Feedforward FFT processor is designed to achieve high
throughput for Very high-speed Digital Subscriber Line
(VDSL) and IEEE 802.16e standard applications. The
proposed hardware architecture has been designed based
on reducing the number of rotators and their complexity by
finding the efficient distribution of FFT rotations. The
proposed 2 - parallel, 4 - parallel and 8 - parallel radix-2k
Feedforward MDC architecture is compared with previous
FFT architectures. From the analysis the proposed 4-
parallel architecture savings the area of rotators increased
from 17% to 23% and the proposed 8- parallel architecture
save around 23% to 29% with respect to the existing
architectures.

Key words: Fast Fourier Transform (FFT), Radix-2i
algorithm,Pipelined Architecture, Coordinate Rotation
Digital Computer(CORDIC) and Combined Coefficient
Selection and Shift-and-add Implementation (CCSSI).

1. Introduction

Fast Fourier Transform (FFT) is a crucial part of

modern digital communication systems such as Digital

Video Broadcasting - Terrestrial (DVB-T) [1], Ultra

Wideband Systems (UWB) and Orthogonal Frequency

Division Multiplexing (OFDM) based systems. OFDM

technique is used in the applications, which need of a

large point of FFT processor such as 4096 point FFT in

Very high speed Digital Subscriber Line (VDSL). Fast

Fourier Transform and Inverse Fast Fourier Transform

(IFFT) are central part functions in such multi-carrier

modulations based transmission systems [2]. For

provided that high performance and meet up the real-

time necessities of recent applications, hardware

designers have constantly tried to put into practice

efficient architectures for the working out of the FFT

[3].

Gokhan [4] proposed full parallel a 256- point FFT

processor for 100 GB/s applications, which uses the

radix-4 scheme to reduce complexity as well as

maintaining high-speed data flow. Hun-Sik Kang [5]

reported a 256-point FFT/IFFT processor adopts 32-

paths parallel architecture with mixed radix-23 and

radix-25 algorithm to reduce a large number of complex

multipliers. In this architecture [5], 256 full parallel

data signals can be divided into eight sequential

groups. Each group, composed of 32 parallel signals, is

pipeline- processed. Chao Wang [6] proposed a

structure to meet the throughput of 1.76 GS/s and

reduce the complexity of twiddle factors; an eight-

parallel radix-24-22-23 MRMDF structure is adopted.

Furthermore, a novel single-RAM-group reorder buffer

with simple control logic for parallel and pipelined

FFT structures is proposed.

Jun-Feng Tang [7] reported 512-point FFT has been

realized by a radix-23 and modified radix-25 algorithm.

Hardware complexity is effectively reduced by

replacing the complex multiplier with trivial

multipliers. Chu Yu [8] proposed the data memory of

the proposed FFT processor employs single-port

register files instead of two port memories. Tram Thi

Bao Nguyen [9] proposed a single shared Canonical

Signed Digit code complex constant multiplier for two

parallel data paths is used to reduce the hardware cost

for parallel FFT processors. Seong-Weon Ko [10]

presented the novel cooperative OFDM scheme with

Signal Space Diversity (SSD), which transmits both of

their signals in one-time slot. From the results, the

throughput of the proposed scheme is increased by

twice as compared with the Decode and Forward

Cooperative OFDM scheme and it requires 3dB more

power. R. Simon Sherratt [11] has presented a tested

and implemented architecture to reduce the baseband

processing clock rate by a factor of two by utilizing two

parallel symbol processing paths which are then finally

merged into a Double Data Rate (DDR) path for the

transmission path, or demultiplexing the received DDR

path into two processing paths.

From the past decade different FFT algorithms have

been proposed, from the research, the previous

algorithms focused mainly to trim down the hardware

complexity of multipliers and adders. The researchers

do not give that much importance to reduce the phase

vectors or twiddle factors required in the processor.

The phase vectors generation, storage and multiplying

with input signal requires a lot of hardware resources.

The most complex process in FFT processor is phase

vectors multiplication. Generally, ROM tables are used

to store the phase vectors, when implementing a huge

point FFT processor, the table required to store the

phase vectors becomes large and it requires more area

in the design. The complexity of the algorithm depends

on the number phase vectors multiplication.

Different hardware architecture has been proposed to

design a high-speed FFT/IFFT processor. High

performance can be achieved by using pipelined

processing with a reasonable hardware cost. Pipeline

architecture requires completely scheduled operation

sequences. The pipelined architecture is characterized

by continuous processing of input data. In addition, the

pipeline architecture is highly regular, making it

straight forward to automatically generate FFT’s of

various lengths. It can be classified as Single path

Delay Feedback (SDF), Multipath Delay Feedback

(MDF), Single path Delay Commutator (SDC) and

Multipath Delay Commutator (MDC) based on the

quantity of data to be processed at a time.

Generally, a pipeline FFT processor is designed

using one of two popular methods. The first is Single-

path Delay Feedback (SDF) pipeline architecture and

the second is Multipath Delay Commutator (MDC)

pipeline architecture. In feedforward architecture there

is no feedback loops and the processed data on each

stage is forwarded to the next step. In Feedforward

architecture the utilization ratio of butterflies, memory

as well as efficient use of rotators is 100%. Due to that,

the required number of adders is reduced by half in

feedforward architectures [12]-[13].

In the proposed system eight parallel 4096 point

feedforward radix-24 Multipath Delay Commutator

(MDC) FFT / IFFT processor is designed to improve

the performance of the OFDM system. In this paper,

various approaches for twiddle factor multiplications

are discussed; a feedforward radix-24 MDC

Feedforward pipeline structure is adopted in our

design. It improves the performance of FFT / IFFT

processor in terms of reducing the multiplier

complexity and also reduces a normalized area of the

processor. The organization of this brief is as follows:

Radix-2i algorithm is discussed in Section II and

Section III describes the rotators. Rotator allocation is

explained in Section IV and the proposed 2-parallel, 4-

parallel and 8-parallel 4096 point feedforward radix-24

MDC architecture is explained in Section V.

Implementation of the proposed model is shown in

Section VI and finally, conclusions are provided in

Section VII.

2. Radix – 2i Algorithm

In many signal processing algorithms, input signal is

multiplied by a complex number which has magnitude

is equal to one. For example, Fast Fourier Transform

(FFT), fast Discrete Cosine Transforms (DCT), FIR

filters and IIR filters follows such technique. Carry out

the frequency analysis on discrete time signals x(n), the

time-domain sequences are converted to an equivalent

frequency domain representation. It leads to the

Discrete Fourier Transform (DFT) computation; the

functions X(k) and x(n) are represented by










1

0

1210
2N

n

.,..N,,,k
πnk/Nj

x(n)eX(k)

 (1)

The Frequency domain data can be changed to time

domain by using Inverse Discrete Fourier Transform

(IDFT) in which the X(k) is transformed back to x(n)

[14]-[15].

.,...N,,,n
N

k

πnk/Nj
X(k)e

N
x(n) 1210

1

0

21








 (2)

The DFT and IDFT consume the same type of

computational algorithm. For simplification, the

variable WN is frequently known as the “Nth root of

 unity with its exponent evaluated modulo N”.

1

2





N

πj

e
N

W




. (3)

Here the difference between the (1) and (2) is the

type of coefficients applied to it [14]-[15]. Most fast

algorithms share the same general strategy, i.e mapping

the one-dimensional transform form into a two or

multi-dimensional representation, then exploiting the

equivalence property of its coefficients to simplify the

computation. Unlike conventional step-by-step

decomposition of the twiddle factors, cascading the

twiddle factor decomposition method is adopted here.

Due to this new forms of FFT with high spatial

regularity can be derived. For N-point FFT

computation with Radix-2i algorithm consists of i

stages. The Radix-2i algorithm has the same butterfly

structure regardless of i value. However, the twiddle

factor multiplication structure is different by factor i

[16]-[17].

2.1 Radix-22 DIF FFT

After simplification [18]-[20], we have a set of DFTs

of length N/4.

      33

3

21321

4

1
4

0

2
3

4

321 42
kn

N

N

n

kkn
N

kk

N
WWnBUkkkX 





























 (4)

Where the first butterfly structure can be written as

  















































1

1

1
42

4

4
32

32

32

2
k

k

N

nn
NN

x

nn
N

x

nn
N

BU (5)

Where the secondary butterfly structure can be

expressed as

        







 3

2

3

2

3

4
4

1 121121 n
N

BUjnBUnBU
k

N

kkk

N

kk

N

(6)

Equation (5) and Eq. (6) represent the first two

columns of butterflies with only trivial multiplications

in the signal flow graph (SFG) of the Radix-22

algorithm. After first two columns, full multiplications

are required to apply the decomposed twiddle factor in

Eq. (4). The complete Radix-22 FFT Algorithm is

obtained by applying this cascade decomposition

recursively to the remaining DFT’s of length N/4 in

Eq. (4). We know that (–j) has the twiddle factor in

between the first two columns. It can be implemented

by real and imaginary part swamping and also a sign

inversion.

2.2 Radix-23 DIF FFT

The common factor algorithm using 4-Dimensional

Linear Index Map [18]-[20] takes the form of

 
 

 

44

4 3214

321

8

1
8

0 42

4

84321 842
kn

N

N

n kkkn
N

kkk

N

W

W

nBU

kkkkX 




























 

 (7)

Where a third butterfly structure has the expression

of

 
 

        






























321

2121

321

117071.0

8
4

4

4

44

8 kkk

kk

N

kk

Nkkk

N

jj

n
N

BUnBU
nBU (8)

The third butterfly contains a special twiddle factor

 
       321

321

117071.0
42

8 kkk
kkk

N

N jjW 


 (9)

Similarly, Radix-23 DIF-FFT can be represented in

Eq. (7), corresponding butterfly structures represented

in Eq. (8). Equation (9) represents the butterflies have

twiddle factor    117071.0
k

j and   2k
j [18]-[20]. The

Radix-23 algorithm has the same computational

complexity as the Split Radix algorithm, yet with a

much spatially regular SFG.

2.3 Radix-24 DIF FFT

The common factor algorithm using 5-Dimensional

Linear Index Map takes the form of, We have a set of

16 DFTs of length N/16.

 

    55

5

432154321

16

1
16

0

842
5

16

54321 16842

kn

N

N

n

kkkkn
N

kkkk

N
WWnBU

kkkkkX
































 (10)

Where a fourth butterfly structure has the expression

of

 

 

 

 321

4321

321

4321 42

16

5

8

5

8

5

16 1
16

kkk

kkkk

N

kkk

N

kkkk

N
W

n
N

BU

nBU

nBU




































 (11)

The fourth butterfly contains a special twiddle factor

 
   3214

4321 42
16

842
16 1

kkkk
kkkk

N

N WW





 (12)

Similarly, Radix-24 DIF-FFT can be represented in

equation (10) and corresponding butterfly structures

represented in equation (11). The above twiddle factor

can be divided 2
16

1
16

0
16 ,, WWW and 3

16W [18]-[20].

3. Rotators

Generally rotation is a circular movement with

respect to the origin. The angle of rotations depends on

the complex numbers. The rotation is calculated by,

multiplying the input by the rotation coefficient. FFT

has the symmetry property in their angles, by using the

property for an N point FFT, only the M = (N/8) +1

angles in the range of (0, π/4). The remaining rotations

of the FFT are obtained from the above angle by

interchanging the real and imaginary parts and their

signs.

The rotators are broadly classified as general rotators

and constant rotators. General rotators are used to

perform rotation by any angle, which is provided as

input to the rotator. General rotators are implemented

by a complex multiplier or by the Coordinate Rotation

Digital Computer (CORDIC) algorithm. The complex

multipliers can be implemented by four real multipliers

and two adders. The sine and cosine components of

complex multipliers are stored in a memory. While

storing in a memory, the number of bits used to store

the complex numbers decides the quantization error

and memory requirement. Increase in the coefficients

word length it leads to reduction in error but it

increases the memory requirement. In other case, for

shorter word length both the memory size and accuracy

will be reduced. The CORDIC algorithm works based

on breaking down the rotation angle into series of

micro rotations by specific angles. By using shift and

addition operations with a minimum amount of

hardware the micro rotations can be done [21]-[22].

Table 1 Number of rotations required for the FFT with

different N values

Constant rotators are used to find out the rotations for

specific angles like twiddle factors in FFT algorithms.

Major elements in constant rotators are coefficient

selection and the shift and add implementations. The

coefficients are obtained by rounding the sine and

cosine components of the angle. The following table.1

rotations for different number of points, different word

lengths and the minimum rotation error value is

indicated in the table. From fig.1, we clearly

understood the relationship between rotation error,

coefficients word length and number of points in FFT.

Constant rotators are further divided into Single

Constant Rotator (SCR) and Multiple Constant Rotator

(MCR). Rotation by a single angle referred as single

constant rotator. Similarly rotation by a multiple angles

referred as multiple constant rotators [21]-[22].

Fig.1: Rotation error as a function of the coefficient

word lengths and number of points in FFT

4. Rotation Allocation

Generally M-rotators are a rotator that rotates any

number of angles in M different symmetric angle sets.

From the literature survey, based on the symmetric

angle set the twiddle factor W8 is called 2-rot, W16 is

represented as 3-rot and W32 is represented as 5-rot.

Hardware cost of rotators can be estimated in terms of

adders. CCSSI [23] approach is used to obtain the

equivalent adders required for M-rotators and

CORDIC-II [24] algorithm is used to calculate the

equivalent adders required for general rotators.

During the designing process of FFT architecture,

the designer should follow the following properties.

The properties are derived from the signal flow graph

(SFG) of the radix-22 algorithm. The index of the data

is represented as I = bn-1….b2, b1, b0. In that the first

property represents, ‘n’ is the number of FFT stages

and‘s’ is the stage which is going to be design. The

P
o

in
ts

 i
n

F
F

T

N
o

.
o

f
b

it
s Rotation Angles

R
o

ta
ti

o
n

E
rr

o
r

ε

0

π
/1

6

π
/8

3
π

/1
6

π
/4

8

4 7 - - - 5+j5
0.0050

5

5 14 - - -
10+j

10

0.0050

5

6 17 - - -
12+j

12

0.0008

67

7 41 - - -
29+j

29

0.0001

49

8 99 - - -
70+j

70

0.0000

255

16

4 7 - 7+j3 - 5+j5 0.0430

5 13 -
12+j

5
- 9+j9

0.0107

6 31 -
29+j

12
-

22+j

22

0.0061

7

7 55 -
51+j

21
-

39+j

39

0.0021

8

8
12

0
-

111+

j46
-

85+j

85

0.0008

67

32

4 7 7+j1 7+j3 6+j4 5+j5 0.0574

5 11
11+j

2

10+j

4
9+j6 8+j8

0.0261

6 31
31+j

6

29+j

12

26+j

17

22+j

22

0.0116

7 47
46+j

9

43+j

18

39+j

26

33+j

33

0.0049

6

8
11

7

115+

j23

108+

j45

97+j

65

83+j

83

0.0027

9

number of stages ‘n’ can be calculated by using the

formula n = log2N, where N is the number of points in

the FFT. For any stage‘s’ the index input to the

butterfly differ by bn-s position only. For example a 16

point FFT has 4 stages and the respective index of data

is represented as I = b3b2b1b0. Consider the second

stage of the FFT in the I = 1000 and I’ = 1100 are

processed by the butterfly. The indices are differ only

in the position of b2 (b n-s = b 4-2 = b2). In the table 2.b

the indices matrices show the stage 2 is differ only in

the position b2. The table 2.c shows the rotation matrix

for each stage.

Table 2.a Index of the data

Stage - 1

b2 b3 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Stage - 2

b3 b2 b1 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Stage - 3

b1 b2 b3 b0

0 0 0 0

0 0 0 1

1 0 0 0

1 0 0 1

0 1 0 0

0 1 0 1

1 1 0 0

1 1 0 1

0 0 1 0

0 0 1 1

1 0 1 0

1 0 1 1

0 1 1 0

0 1 1 1

1 1 1 0

1 1 1 1

Stage - 4

b1 b0 b3 b2

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0 0 1

0 1 0 1

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 1

The next property related to the rotations at the FFT

stages. For each stage the input is rotated by a factor

according to the equation (3). In that the ϕ value

depends on the stage index I and stage‘s’ value. From

table.3 for an odd stages the index value satisfied bn-

s.bn-s-1 =1 the condition, it should be rotated by a trivial

rotations. Similarly for even stages those index values

satisfies the bn-s+1 + bn-s = 1 condition, it should be

rotated by non-trivial rotations. The angles which are

multiples of π/4 considered as rotation by W8 and the

angles which are multiples of π/8 considered as rotation

by W16. Using the above properties mentioned in the

table.2 we get different possibilities in rotator values

with respect to change the data order at different FFT

stages. The proposed hardware architecture works

based on reducing the number of rotators and their

complexity by finding the efficient distribution of FFT

rotations [25]-[26]. The table.4 and table.5 represents

the properties of the radix-23 and radix-24 decimation

in frequency algorithm respectively.

Table 2.b Indices matrix for each stage

INDICES INDICES

Stage - 1 Stage -2

3 2 1 0

11 10 9 8

7 6 5 4

15 14 13 12

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

INDICES

Stage 1

INDICES

Stage 2

9 8 1 0

11 10 3 2

13 12 5 4

15 14 7 6

12 8 4 0

13 9 5 1

14 10 6 2

15 11 7 3

Table 2.c Rotation matrix for each stage

Table 3 Properties of the Radix-22 Decimation In

Frequency (DIF) algorithm

Properties Radix-22

Butterfly Unit (BU) bn-s

Trivial Rotations (For odd stages) bn-s . bn-s-1 =1

Non-Trivial Rotations (For even

stages)

bn-s+1 + bn-s =

1

Table 4 Properties of the Radix-23 Decimation In

Frequency (DIF) Algorithm

Properties Radix-23
M-

rotator

Butterfly

Unit (BU)
s bn-s -

Trivial

Rotations

(For odd

stages)

s = 3i+2 bn-s . bn-s-1 =1 -

Non-Trivial

Rotations

(For even

stages)

s = 3i+3
bn-s+2 + bn-s+1+ bn-s

= 1
-

s = 3i+1
bn-s.(bn-s+1 + bn-s-

2) = 1

2-

rotator

Table 5 Properties of the Radix-24 Decimation In

Frequency (DIF) algorithm

Properties Radix-24
M-

rotator

Butterfly

Unit (BU)
s bn-s -

Trivial

Rotations

(For odd

stages)

s = 4i+1 bn-s . bn-s-1 =1 -

s = 4i+3 bn-s . bn-s-1 =1 -

Non-Trivial

Rotations

(For even

stages)

s = 4i+4
bn-s+3 + bn-s+2 + bn-

s+1+ bn-s = 1
-

s = 4i+2
(bn-s+1 + bn-s) .(bn-

s-1+ bn-s-2) = 1

3-

rotator

5. Proposed FeedForward Architectures

The total area of the processor is measured with the

help of total number of twiddle factors, complex

address and complex data memory requirement.

Simultaneously, the performances of the proposed

architectures are measured in terms of number of clock

cycles required by the architecture to finish the process

and number of samples processed by the architecture

per clock cycle. The proposed model worked based on

find an efficient method for distribution of FFT

rotations. Rotation allocation approach is discussed in

this paper. Due to that the number of rotations and their

complexity is reduced.

Rotator allocation is done by rearranging the matrices

of indexes and matrices of rotations. Complexities of

rotators are reduced only the matrices of rotations have

fewer rotations. When rearrange the matrices into more

number of rows are equal to zero, the resultant

structure has fewer rotator than other. The rotator

allocation is distributing the bits b3b2b1b0 of the index I

into serial and parallel bits. The combination of serial

bits or parallel bits reflects on the complexity of the

rotator. The table.2.a shows the 16 point FFT with 4-

parallel line processor has 2 serial bits and 2 parallel bit

dimensions. For example 16 point FFT has four stages

in that each stage has six different possible alternatives.

 For example a N point FFT with P-parallel line

processor (N=32, P=4 ;) has 3 serial bits and 2 parallel

bits dimensions. The number of possible alternatives

for each stage is ten [25]-[26].

For serial dimensions n - p = log2 (N) - log2 (P); n - p =

3.

For parallel dimensions p = log2 (P); =2.

ROTATIONS ROTATIONS

0 0 0 0

0 0 0 0

0 0 0 0

4 4 4 4

0 0 0 0

0 2 4 6

0 1 2 3

0 3 6 9

ROTATIONS

0 0 0 0

0 0 0 0

0 0 0 0

4 4 4 4

5.1 Radix- 2k 2-parallel pipelined architecture

using feedforward MDC

In radix-2k, all the approaches are almost have same

twiddle factor values. But some of the rotators

available in radix 23 can be adjusted to perform the

entire operation with the help of W8 and W16. From the

analysis, the Radix -24 has less number of address and

reduced memory requirement, even other methods

having the same twiddle factor values.

Generally the proposed architecture is derived from

the base of radix-2 butterflies, non trivial rotator, trivial

rotators and multiplexers. In 2-parallel architecture

processes 2 samples in parallel and three distinct

approaches are discussed like Radix-22, Radix -23 and

Radix- 24. The table.6 compares the rotators required

for 2- Parallel pipelined architectures different points

FFT in Radix-22, Radix- 23 and Radix -24. The

following Fig. 2, Fig. 3 and Fig. 4 show the 64 point

pipelined 2 parallel Radix-22, Radix -23 and Radix- 24

Feedforward MDC architectures respectively. In Fig. 2

the rotations by W8 is represented with the help of

square box. From the analysis in 2-parallel, radix-22

and radix-23 has the same number of rotations,

butterflies and total memory compared with radix-2

feedforward FFT [2]. Compare the Fig. 2, Fig. 3 and

Fig. 4, we get both the 2 parallel Radix-22 and Radix -

24architecture has the same structure except the rotator

W16 is replaced for every four stages in radix-22

structures.

In feedforward architecture the number of complex

adder is calculated by using the formula [27]-[28]

NP 2log. (13)

General rotator can be calculated by using the

formula,









1

log
. 2

k

N
P , if P < 2 (14)












1

log
..

2

12 2

k

N
P

k

k

, if P ≥ 2k (15)

Table.6 N-point radix-2k 2- Parallel Pipelined

Architecture Using Feedforward Multipath Delay

Commutator

No. of

Points

Rotators

Total General W8 (or) W16

22 23 24 22 23 24 22 23 24

64 4 4 4 4 2 1 0 2 3

128 5 5 5 5 3 1 0 2 4

256 6 6 6 6 3 2 0 3 4

512 7 7 7 7 4 3 0 3 5

1024 8 8 8 8 5 3 0 3 5

2048 9 9 9 9 5 4 0 4 5

4096 10 10 10 10 6 4 0 4 6

From Fig.2, Fig.3 and Fig.4 in the proposed

architecture the required number of butterfly units

depends on the number of samples in parallel.

Generally the butterfly does not vary with respect to

stages but the rotators depend on the stage. Rotators

are classified into trivial, non-trivial and rotations by

W8 (or) W16. Compared radix- 22 FFT architecture

with the proposed radix- 24 Feedforward architecture

requires the same number of rotators, area and

memory. The Radix-23 and Radix -24 FFT architecture

can be simplified into use only W8 or W16 rotators.

The proposed 2 parallel radix-24 Feedforward MDC

architecture saves 50% of the adders and reduces the

memory requirement compared with the existing

structures [29]. But it keeps the same number of

rotator values.

5.2 Radix- 2k 4-parallel pipelined architecture

using feedforward MDC

The 4- Parallel pipelined architectures using

Feedforward Multi-path Delay Commutator structure

for the computation of a N point FFT like Radix-22,

Radix- 23 and Radix -24 is compared in table. 7. From

the table.7, Radix-22 architecture requires only trivial

multiplication. Simultaneously it has a very good

architecture style compared to other methods. In 4

parallel architectures, Radix-23 and Radix-24 is

compared with 4 parallel radix-4 feedforward FFT, it

requires fewer rotators than other approach [30]-[31]

but it has the equal amount of adders and memory. The

Radix- 24 Feedforward architecture reduces 50% of

address and 25% of twiddle factor W16 than existed

Radix- 24 feedback architectures [32]-[33].

The following Fig. 5, Fig. 6 and Fig. 7 show the 4-

parallel architecture, three distinct approaches are

discussed like Radix-22, Radix -23 and Radix- 24. As

we discussed earlier, due to Feedforward architecture

the required number of rotators in proposed design is

reduced when compared with existing feedback

architectures. A 4 parallel Radix-22 architecture saves

up to 25% of total number of rotators. Simultaneously,

4 parallel Radix-24 Feedforward architecture saves up

to 50% of total number of adders and 25% of W16

rotators compared with existing Radix-24 feedback

architecture [32]-[33].

Table.7 N-point radix-2k 4- Parallel Pipelined

Architecture using Feedforward Multipath Delay

Commutator

No.

of

Poin

ts

Rotators

Total General
W8 (or)

W16

22 23 24 22 23
2
4

2
2

23 24

64 6 8 7 6 4 2 0 4 5

128 8
1

0
8 8 5 3 0 5 5

256 9
1

2
10 9 6 4 0 6 6

512
1

1

1

4
12 11 8 5 0 6 7

1024
1

2

1

6
14 12 9 6 0 7

8

2048
1

4

1

8
15 14

1

0
7 0 8 8

4096 1

5

2

0
17 15 1

2
8 0 8 9

5.3 Radix- 2k 8-parallel pipelined architecture using

feedforward MDC

In 8 parallel architecture, Radix-22, Radix -23 and

Radix- 24 has very good performance than any other

proposed methods. Especially the Radix- 24 feed

forward architectures has less number of W16 twiddle

factors and 50% less in adders compared with the well

known Radix- 24 feedback architectures [34]. From

the existing research work and table.6, table.7 and

table.8 the numbers of non-trivial multiplications are

increased with respect to the number of points in the

FFT processor.

Similarly, the required numbers of complex twiddle

factors are reduced when the radix values rise from

Radix-2, Radix-22, Radix -23 and Radix- 24. The

following Fig. 8, Fig. 9 and Fig. 10 show the 8-parallel

architecture, three distinct approaches are discussed

like Radix-22, Radix -23 and Radix- 24. From the

table.8, the required number of general multiplications

are has the same value compared to the existing

architectures [37] but the number of twiddle factor W16

is save up to 12% . Due to this the total area required

by the processor is reduced. The Feedforward structure

is more efficient than feedback structures in the

applications like more samples to be processed in

parallel manner, which has power of two. The required

numbers of parallel samples are chosen based on the

required throughout value depending on the

applications. From the Fig.11 and Fig.12 we

understand that for any FFT size, the proposed feed

forward architecture has the smallest area.

Fig.2 64-point 2- Parallel Pipelined Architecture using

Radix-22 Feedforward Multipath Delay Commutator

Fig.3 64-point 2- Parallel Pipelined Architecture using

Radix-23 Feedforward Multipath Delay Commutator

Fig.4 64-point 2- Parallel Pipelined Architecture using

Radix-24 Feedforward Multipath Delay Commutator

Fig.5 64-point 4- Parallel Pipelined Architecture using

Radix-22 Feedforward Multipath Delay Commutator

Fig.6 64-point 4- Parallel Pipelined Architecture using

Radix-23 Feedforward Multipath Delay Commutator

Fig.7 64-point 4- Parallel Pipelined Architecture using

Radix-24 Feedforward Multipath Delay Commutator

Fig.8 64-point 8- Parallel Pipelined Architecture using

Radix-22 Feedforward Multipath Delay Commutator

Fig.9 64-point 8- Parallel Pipelined Architecture using

Radix-23 Feedforward Multipath Delay Commutator

Fig.10 64-point 8- Parallel Pipelined Architecture

using Radix-24 Feedforward Multipath Delay

Commutator

Table.8 N-point radix-2k 8- Parallel Pipelined

Architecture using Feedforward Multipath Delay

Commutator

No. of

Points

Rotators

Total General
W8 (or)

W16

22 23 24
2
2

23
2
4

2
2

2
3

24

64 12
1

1

1

3

1

2
7 4 0 4 9

128 15
1

4

1

7

1

5
9 6 0 5 11

256 18
1

7

2

0

1

8

1

1
8 0 6 12

512 21
2

0

2

4

2

1

1

4

1

0
0 6 14

1024 24
2

3

2

7

2

4

1

6

1

2
0 7 15

2048 27
2

6

3

1

2

7

1

8

1

4
0 8 17

4096 30
2

9

3

4

3

0

2

1

1

6
0 8 18

6. Implementation of Proposed System

In proposed architecture the throughput is

proportional to the number of samples in parallel. The

latency is equal to the size of the FFT divided by the

number of parallel samples. The suitable architecture

has been selected based on the throughput and latency

that depends upon the application requires. The

memory size does not vary with respect to the number

of parallel samples. In few applications input samples

and output frequencies are required in normal order

for that reordering circuits are required before and

after the FFT. For input and output reordering, in our

proposed design requires N-P amount of total memory

is required for P-parallel N-point FFT. For radix-23

and radix 24 the non-trivial rotations are W8 and W16

respectively. The number of non-trivial rotations WL,

dependent on radix-2k of the algorithm (L=2k). If the k

values are increased it also increases the number of

angles of the kernel. Finally, it leads to

implementations of non-trivial rotations are very

difficult. In our proposed model we discussed only

about the DIF structure. But from the research we

know that both DIT and DIF requires architecture uses

the same amount of hardware components.

From the table.9 for an 8-parallel MDC FFT

architecture has only general rotators and 1-rotators.

But remaining architectures have 3- rotators and 2-

rotators in their design except radix-23. Compared to

radix-23 our proposed architecture has fewer amounts

of general rotators with the increases in 1-rotators.

Table.9 Twiddle factors in the 4- parallel and 8-parallel

MDC-FFT Architecture for different Radix-2 algorithm

R
a

d
ix

Rotators

E
q

u
iv

a
le

n
t

a
d

d
er

s

G
en

er
a

l

3
-

R
o

ta
to

rs

2
-

R
o

ta
to

rs

1
-

R
o

ta
to

rs

4-Parallel

MDC FFT

Architecture

2 14 1 2 2 476

23 12 0 0 4 442

24 8 0 3 6 412

26 8 2 4 4 438

8-Parallel

MDC FFT

Architecture

2 26 1 4 6 886

23 24 0 0 6 876

24 16 0 0 15 776

26 12 2 8 12 782

Our proposed 8-parallel MDC FFT architecture can

be divided in to upper part 4-parallel MDC FFT

architecture and lower part 4-parallel MDC FFT

architecture. Samples that available in odd clock cycles

can be processed by lower part 4-parallel MDC FFT

architecture. Similarly, samples that available in even

clock cycles can be processed by upper part 4-parallel

MDC FFT architecture.

The equivalent adders can be calculated by using

the following formula,











P

NP
RotatorsinAddersNPaddersEquival 22 log

4
2..log.2.

(16)

Fig.11 4096-point 4- Parallel Pipelined Architecture

using Radix-2k Feedforward Multipath Delay

Commutator

The fig.11 and fig.12 shows the equivalent adders

required for proposed 4096-point 4-parallel and 8-

parallel pipelined architecture using Radix-2k

feedforward multipath delay commutator. From the

figures we know that the proposed 4096-point 8-

parallel and 4-parallel pipelined architecture using

Radix-24 feedforward multipath delay commutator is

better than other architectures for VDSL applications.

In a 4 - parallel architecture the reduction in area is

improved from 17% to 23% compared with [32]-[33].

For an 8 parallel architecture the reduction in area is

improved from 23% to 29% compared with the

existing architectures [32]-[33]. These results show our

proposed design reduces the area of the processor

significantly.

Fig.12 4096-point 8- Parallel Pipelined Architecture

using Radix-2k Feedforward Multipath Delay

Commutator

7. Conclusion

From the literature review, none of the single FFT

algorithm is suitable for different hardware platforms.

For better result, the best algorithm should be selected

based on the hardware and applications. The prime

concerns are regularity in structure, low power

consumption, less area and high performance. If the

number of points in the FFT increased, the numbers of

possible FFT computation algorithms are also

increased. Finally, the different FFT algorithms are

developed for achieving required goals in specific

applications. Rotation allocation approach is discussed

in this paper. The proposed model worked based on

choosing an efficient method for distribution of FFT

rotations. Due to that the number of rotations and their

complexity is reduced. In the research work different

radices are tried. From the observation the number of

complex rotators decreases with increase in k value up

to radix-24. From the analysis the proposed 4- parallel

radix-24 MDC architecture savings the area of rotators

increased from 17% to 23% and the proposed 8-

parallel radix-24 MDC architecture save the area of

rotators around 23% to 29% with respect to the

existing architectures.

References

[1] Digital Video Broadcasting (DVB); Framing

structure, channel coding and modulation for

Digital Terrestrial Television, ETSI EN 300 744,

2004, ETSI, v.1.5.1.

[2] S.He and M.Torkelson, “Design and

implementation of 1024-point pipeline FFT

processor,” in Proc. IEEE Custom Integr. Circuits

Syst.II, Exp. Briefs, vol.57, no.6, pp.451-455, jun

2010.

[3] Arun.C.A and P.Prakasam, “Design of high

speed FFT algorithm for OFDM technique”, in

Proc.IEEE International Conference on Emerging

Devices and Smart Systems (ICEDSS)., pp:66-71,

March 2016.

[4] Gokan Polat, Sitki Ozturk, and Mehmet

Yakut, “Design and Implementation of 256-Point

Radix-4 100 Gbit/s FFT Algorithm into FPGA for

High-Speed Applications,” ETRI Journal, vol.37,

no.4, Aug. 2015, pp. 667-676.

[5] Hun-Sik Kang, Sun Hyok Chang, In-Ki

Hwang and Joon-Ki Lee, “A design and

implementation of 32-paths parallel 256-point

FFT/IFFT for optical OFDM systems,” in Proc.

IEEE International Conference on Advanced

Communication Technology (ICACT).,pp: 417 -

421, Feb 2016.

[6] Chao Wang, Yuwei Yan and Xiaoyu Fu, “A

High-Throughput Low-Complexity Radix- 24 -

22 - 23 FFT/IFFT Processor with Parallel and

Normal Input / Output Order for IEEE 802.11ad

Systems,” IEEE Trans. on VLSI Systems. vol. 23,

issue: 11. pp. 2728–2732, 2015.

[7] Jun-Feng Tang, Xiao-Jin Li, Gang Zhang and

Zong-Sheng Lai, “Design of high-throughput

mixed-radix MDF FFT processor for IEEE

802.11.3c,” in Proc. IEEE. International

Conference on Solid-State and Integrated Circuit

Technology (ICSSICT), Pages: 1 - 3, 2012.

[8] Chu Yu, “A 128/512/1024/2048-point pipeline

FFT/IFFT architecture for mobile WiMAX, “in

Proc. IEEE. International Conference on Global

Conference on Consumer Electronics (GCCE),

pp: 243–244, 2013.

[9] Tram Thi Bao Nguyen and Hanho Lee,”

Shared CSD complex constant multiplier for

parallel FFT processors, “in Proc. IEEE.

International SoC Design Conference (ISOCC),

pp: 27 – 28, 2015.

[10] Seong-Weon Ko, Jee-Hoon Kim, Jae-Seon

Yoon and Hyoung-Kyu Song, “Cooperative

OFDM system for high throughput in wireless

personal area networks” , IEEE Trans. Consumer

Electronics, vol. 56, issue: 2 pp. 458 - 462, June

2010.

[11] R. Simon Sherratt and Oswaldo Cadenas, “A

double data rate architecture for OFDM based

wireless consumer devices,” IEEE

Trans.Consumer Electronics, vol. 56, issue: 1 pp.

23 - 26, Jan.2010.

[12] S.He and M.Torkelson,”Designing pipelining

FFT processor for OFDM (de)Modulation”, Proc.

IEEE URSI Int. Symp. Sig. Syst. Electron.,

pp.257-262, 1998.

[13] E. H. Wold and A. M. Despain, “Pipeline and

parallel-pipeline FFT processors for VLSI

implementations,” IEEE Trans. Comput., no. 5,

pp. 414–426, May 1984.

[14] J. G. Proakis and D. G. Manolakis, 1996.

Digital Signal Processing Principles, Algorithm

and Applications. Prentice Hall, pp: 449-495.

[15] C.S.Burrus, “Efficient Fourier transform and

convolution Algorithms”, in:J.S. Lim and A.V

Oppenhiem, eds,. Advanced Topics in Digital

Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1988.

[16] M.T.Heidmen, D.H.Johnson and

C.S.Burrus,”Gauss and the history of the FFT”,

IEEE.Acoust.Speech Signal Process. Magazine,

vol.1, No.4, October 1984, pp.14-21.

[17] Duhamel, P., and M.Vetterli, “Fast Fourier

transforms: a tutorial review and a state of the

art”,Signal Processing, vol.19,pp.259–299,1990.

[18] Arun.C.A and P.Prakasam, “A mathematical

approach on various radix-2i FFT algorithms”, in

Proc.IEEE International Conference on Electrical,

Electronics and Optimization Techniques

(ICEEOT)., pp:1040-1045, March 2016.

[19] C. S. Burrus. Index mapping for

multidimensional formulation of the DIF and

convolution. IEEE Trans. Acoust.,Speech, Signal

Processing, ASSP- 25(3):239-242, June 1977.

[20] James C.Schatzman,” Index Mapping for the

Fast Fourier Transform”, IEEE.trans.Signal

Processing,Vol 44.No.3,pp.717-719.march 1996.

[21] M. Garrido and J. Grajal, “Efficient

memoryless CORDIC for FFT computation,” in

Proc. IEEE Int. Conf. Acoust. Speech Signal

Process.,Apr. 2007, vol. 2, pp. 113–116.

[22] J. E. Volder, “The CORDIC trigonometric

computing technique,” IRE Trans. Electron.

Comput., vol. EC-8, pp. 330–334, Sep. 1959.

[23] M. Garrido, F. Qureshi, and O. Gustafsson,

“Low-complexity multiplierless constant rotators

based on combined coefficient selection and shift-

and-add implementation (CCSSI),” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 61, no. 7, pp.

2002–2012, Jul. 2014.

[24] M. Garrido, P. Källström, M. Kumm, and O.

Gustafsson, “CORDIC II: A new improved

CORDIC algorithm,” IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 63, no. 2, pp. 186–190, Feb.

2016.

[25] M. Garrido, O. Gustafsson, and J. Grajal,

“Accurate rotations based on coefficient scaling,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58,

no. 10, pp. 662–666, Oct. 2011.

[26] M.Garrido, J.Grajal, M.A. Sanchez, and O.

Gustafsson, “Pipelined radix-2k feedfoeward FFT

architectures,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol.21, no.1, pp.23-32,

Jan.2013.

[27] M. Garrido, “A New representation of FFT

algorithms using Triangular Matrices,” IEEE

Trans. Circuits and Syst. I, vol. 63, no.10,

pp.1737-1745, 2016.

[28] M. Garrido; S. J. Huang; S. G. Chen,

"Feedforward FFT Hardware Architectures Based

on Rotator Allocation," in IEEE Transactions on

Circuits and Systems I: Regular Papers, 2017.

[29] J. Lee, H. Lee, S. in Cho, and S.-S. Choi, “A

high-speed, low-complexity radix-24 FFT

processor for MB-OFDM UWB systems,” in

Proc. IEEE Int. Symp. Circuits Syst., 2006, pp.

210–213.

[30] E. E. Swartzlander, W. K. W. Young, and S. J.

Joseph, “A radix 4 delay commutator for fast

Fourier transform processor implementation,”

IEEE J. Solid-State Circuits, vol. 19, no. 5, pp.

702–709, Oct. 1984.

[31] J. H. McClellan and R. J. Purdy, Applications

of Digital Signal Processing. Prentice-Hall, 1978,

ch. 5, Applications of Digital Signal Processing to

Radar.

[32] H. Liu and H. Lee, “A high performance four-

parallel 128/64-point radix-2 4 FFT/IFFT

processor for MIMO-OFDM systems,” in Proc.

IEEE Asia Pacific Conf. Circuits Syst., 2008, pp.

834–837.

[33] S.-I. Cho, K.-M. Kang and S.-S. Choi,

“Implemention of 128-point fast Fourier

transform processor for UWB systems,” in Proc.

Int. Wireless Comm. Mobile Comp. Conf., 2008,

pp. 210–213.

[34] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A

2.4-GS/s FFT processor for OFDM-based WPAN

applications,” IEEE Trans. Circuits Syst. I, vol.

57, no. 6, pp. 451–455, Jun. 2010.

[35] M. A. Sanchez, M. Garrido, M. L. L ´ opez,

and J. Grajal, “Implementing ´ FFT-based digital

channelized receivers on FPGA platforms,” IEEE

Trans. Aerosp. Electron. Syst., vol. 44, no. 4, pp.

1567–1585, Oct. 2008.

