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Abstract: In this paper, a new representation for Fast 
Fourier Transform (FFT) algorithms based on feedforward 
FFT architecture is proposed. A 4096 point pipelined 
Feedforward FFT processor is designed to achieve high 
throughput for Very high-speed Digital Subscriber Line 
(VDSL) and IEEE 802.16e standard applications. The 
proposed hardware architecture has been designed based 
on reducing the number of rotators and their complexity by 
finding the efficient distribution of FFT rotations. The 
proposed 2 - parallel, 4 - parallel and 8 - parallel radix-2k 
Feedforward MDC architecture is compared with previous 
FFT architectures. From the analysis the proposed 4- 
parallel architecture savings the area of rotators increased 
from 17% to 23% and the proposed 8- parallel architecture 
save around 23% to 29% with respect to the existing 
architectures.  
 
 
Key words: Fast Fourier Transform (FFT), Radix-2i 
algorithm,Pipelined Architecture, Coordinate Rotation 
Digital Computer(CORDIC) and Combined Coefficient 
Selection and Shift-and-add Implementation (CCSSI). 
 
 
1. Introduction 
   

Fast Fourier Transform (FFT) is a crucial part of 

modern digital communication systems such as Digital 

Video Broadcasting - Terrestrial (DVB-T) [1], Ultra 

Wideband Systems (UWB) and Orthogonal Frequency 

Division Multiplexing (OFDM) based systems. OFDM 

technique is used in the applications, which need of a 

large point of FFT processor such as 4096 point FFT in 

Very high speed Digital Subscriber Line (VDSL). Fast 

Fourier Transform and Inverse Fast Fourier Transform 

(IFFT) are central part functions in such multi-carrier 

modulations based transmission systems [2]. For 

provided that high performance and meet up the real-

time necessities of recent applications, hardware 

designers have constantly tried to put into practice 

efficient architectures for the working out of the FFT 

[3]. 

Gokhan [4] proposed full parallel a 256- point FFT 

processor for 100 GB/s applications, which uses the 

radix-4 scheme to reduce complexity as well as 

maintaining high-speed data flow. Hun-Sik Kang [5] 

reported a 256-point FFT/IFFT processor adopts 32-

paths parallel architecture with mixed radix-23 and 

radix-25 algorithm to reduce a large number of complex 

multipliers. In this architecture [5], 256 full parallel 

data signals can be divided into eight sequential 

groups. Each group, composed of 32 parallel signals, is 

pipeline- processed. Chao Wang [6] proposed a 

structure to meet the throughput of 1.76 GS/s and 

reduce the complexity of twiddle factors; an eight-

parallel radix-24-22-23 MRMDF structure is adopted. 

Furthermore, a novel single-RAM-group reorder buffer 

with simple control logic for parallel and pipelined 

FFT structures is proposed.  

Jun-Feng Tang [7] reported 512-point FFT has been 

realized by a radix-23 and modified radix-25 algorithm. 

Hardware complexity is effectively reduced by 

replacing the complex multiplier with trivial 

multipliers. Chu Yu [8] proposed the data memory of 

the proposed FFT processor employs single-port 

register files instead of two port memories. Tram Thi 

Bao Nguyen [9] proposed a single shared Canonical 

Signed Digit code complex constant multiplier for two 

parallel data paths is used to reduce the hardware cost 

for parallel FFT processors. Seong-Weon Ko [10] 

presented the novel cooperative OFDM scheme with 

Signal Space Diversity (SSD), which transmits both of 

their signals in one-time slot. From the results, the 

throughput of the proposed scheme is increased by 

twice as compared with the Decode and Forward 

Cooperative OFDM scheme and it requires 3dB more 

power. R. Simon Sherratt [11] has presented a tested 

and implemented architecture to reduce the baseband 

processing clock rate by a factor of two by utilizing two 

parallel symbol processing paths which are then finally 

merged into a Double Data Rate (DDR) path for the 

transmission path, or demultiplexing the received DDR 

path into two processing paths. 

From the past decade different FFT algorithms have 

been proposed, from the research, the previous 

algorithms focused mainly to trim down the hardware 



 

 

complexity of multipliers and adders. The researchers 

do not give that much importance to reduce the phase 

vectors or twiddle factors required in the processor. 

The phase vectors generation, storage and multiplying 

with input signal requires a lot of hardware resources. 

The most complex process in FFT processor is phase 

vectors multiplication. Generally, ROM tables are used 

to store the phase vectors, when implementing a huge 

point FFT processor, the table required to store the 

phase vectors becomes large and it requires more area 

in the design. The complexity of the algorithm depends 

on the number phase vectors multiplication.  

Different hardware architecture has been proposed to 

design a high-speed FFT/IFFT processor. High 

performance can be achieved by using pipelined 

processing with a reasonable hardware cost. Pipeline 

architecture requires completely scheduled operation 

sequences. The pipelined architecture is characterized 

by continuous processing of input data. In addition, the 

pipeline architecture is highly regular, making it 

straight forward to automatically generate FFT’s of 

various lengths. It can be classified as Single path 

Delay Feedback (SDF), Multipath Delay Feedback 

(MDF), Single path Delay Commutator (SDC) and 

Multipath Delay Commutator (MDC) based on the 

quantity of data to be processed at a time.  

Generally, a pipeline FFT processor is designed 

using one of two popular methods. The first is Single-

path Delay Feedback (SDF) pipeline architecture and 

the second is Multipath Delay Commutator (MDC) 

pipeline architecture. In feedforward architecture there 

is no feedback loops and the processed data on each 

stage is forwarded to the next step. In Feedforward 

architecture the utilization ratio of butterflies, memory 

as well as efficient use of rotators is 100%. Due to that, 

the required number of adders is reduced by half in 

feedforward architectures [12]-[13]. 

In the proposed system eight parallel 4096 point 

feedforward radix-24 Multipath Delay Commutator 

(MDC) FFT / IFFT processor is designed to improve 

the performance of the OFDM system. In this paper, 

various approaches for twiddle factor multiplications 

are discussed; a feedforward radix-24 MDC 

Feedforward pipeline structure is adopted in our 

design. It improves the performance of FFT / IFFT 

processor in terms of reducing the multiplier 

complexity and also reduces a normalized area of the 

processor. The organization of this brief is as follows: 

Radix-2i algorithm is discussed in Section II and 

Section III describes the rotators. Rotator allocation is 

explained in Section IV and the proposed 2-parallel, 4-

parallel and 8-parallel 4096 point feedforward radix-24 

MDC architecture is explained in Section V. 

Implementation of the proposed model is shown in 

Section VI and finally, conclusions are provided in 

Section VII. 

  
2. Radix – 2i Algorithm 
 

In many signal processing algorithms, input signal is 

multiplied by a complex number which has magnitude 

is equal to one. For example, Fast Fourier Transform 

(FFT), fast Discrete Cosine Transforms (DCT), FIR 

filters and IIR filters follows such technique. Carry out 

the frequency analysis on discrete time signals x(n), the 

time-domain sequences are converted to an equivalent 

frequency domain representation. It leads to the 

Discrete Fourier Transform (DFT) computation; the 

functions X(k) and x(n) are represented by 
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The Frequency domain data can be changed to time 

domain by using Inverse Discrete Fourier Transform 

(IDFT) in which the X(k) is transformed back to x(n) 

[14]-[15]. 
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The DFT and IDFT consume the same type of 

computational algorithm. For  simplification,  the  

variable WN is  frequently  known  as  the  “Nth  root  of 

 unity with its exponent evaluated modulo N”. 
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Here the difference between the (1) and (2) is the 

type of coefficients applied to it [14]-[15]. Most fast 

algorithms share the same general strategy, i.e mapping 

the one-dimensional transform form into a two or 

multi-dimensional representation, then exploiting the 

equivalence property of its coefficients to simplify the 

computation. Unlike conventional step-by-step 

decomposition of the twiddle factors, cascading the 

twiddle factor decomposition method is adopted here. 

Due to this new forms of FFT with high spatial 

regularity can be derived. For N-point FFT 

computation with Radix-2i algorithm consists of i 

stages. The Radix-2i algorithm has the same butterfly 

structure regardless of i value. However, the twiddle 

factor multiplication structure is different by factor i 

[16]-[17].  

2.1 Radix-22 DIF FFT 
 



 

After simplification [18]-[20], we have a set of DFTs 

of length N/4. 
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Where the first butterfly structure can be written as 
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Where the secondary butterfly structure can be 

expressed as 
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Equation (5) and Eq. (6) represent the first two 

columns of butterflies with only trivial multiplications 

in the signal flow graph (SFG) of the Radix-22 

algorithm. After first two columns, full multiplications 

are required to apply the decomposed twiddle factor in 

Eq. (4). The complete Radix-22 FFT Algorithm is 

obtained by applying this cascade decomposition 

recursively to the remaining DFT’s of length N/4 in 

Eq. (4). We know that (–j) has the twiddle factor in 

between the first two columns. It can be implemented 

by real and imaginary part swamping and also a sign 

inversion. 

 

2.2 Radix-23 DIF FFT 

 

The common factor algorithm using 4-Dimensional 

Linear Index Map [18]-[20] takes the form of 
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Where a third butterfly structure has the expression 

of 
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The third butterfly contains a special twiddle factor 
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Similarly, Radix-23 DIF-FFT can be represented in 

Eq. (7), corresponding butterfly structures represented 

in Eq. (8). Equation (9) represents the butterflies have 

twiddle factor    117071.0
k

j and   2k
j [18]-[20]. The 

Radix-23 algorithm has the same computational 

complexity as the Split Radix algorithm, yet with a 

much spatially regular SFG.  

 

2.3 Radix-24 DIF FFT 

 

The common factor algorithm using 5-Dimensional 

Linear Index Map takes the form of, We have a set of 

16 DFTs of length N/16.  
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Where a fourth butterfly structure has the expression 

of 
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The fourth butterfly contains a special twiddle factor 
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Similarly, Radix-24 DIF-FFT can be represented in 

equation (10) and corresponding butterfly structures 

represented in equation (11). The above twiddle factor 

can be divided 2
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0
16 ,, WWW  and 3

16W [18]-[20].   

 

3. Rotators 

 

Generally rotation is a circular movement with 

respect to the origin. The angle of rotations depends on 

the complex numbers. The rotation is calculated by, 

multiplying the input by the rotation coefficient. FFT 

has the symmetry property in their angles, by using the 

property for an N point FFT, only the M = (N/8) +1 

angles in the range of (0, π/4). The remaining rotations 

of the FFT are obtained from the above angle by 

interchanging the real and imaginary parts and their 

signs.  

The rotators are broadly classified as general rotators 

and constant rotators. General rotators are used to 

perform rotation by any angle, which is provided as 

input to the rotator. General rotators are implemented 

by a complex multiplier or by the Coordinate Rotation 

Digital Computer (CORDIC) algorithm. The complex 

multipliers can be implemented by four real multipliers 

and two adders. The sine and cosine components of 

complex multipliers are stored in a memory. While 



 

 

storing in a memory, the number of bits used to store 

the complex numbers decides the quantization error 

and memory requirement. Increase in the coefficients 

word length it leads to reduction in error but it 

increases the memory requirement. In other case, for 

shorter word length both the memory size and accuracy 

will be reduced. The CORDIC algorithm works based 

on breaking down the rotation angle into series of 

micro rotations by specific angles. By using shift and 

addition operations with a minimum amount of 

hardware the micro rotations can be done [21]-[22].  

 

Table 1 Number of rotations required for the FFT with 

different N values 

 

 

Constant rotators are used to find out the rotations for 

specific angles like twiddle factors in FFT algorithms. 

Major elements in constant rotators are coefficient 

selection and the shift and add implementations. The 

coefficients are obtained by rounding the sine and 

cosine components of the angle. The following table.1 

rotations for different number of points, different word 

lengths and the minimum rotation error value is 

indicated in the table. From fig.1, we clearly 

understood the relationship between rotation error, 

coefficients word length and number of points in FFT. 

Constant rotators are further divided into Single 

Constant Rotator (SCR) and Multiple Constant Rotator 

(MCR). Rotation by a single angle referred as single 

constant rotator. Similarly rotation by a multiple angles 

referred as multiple constant rotators [21]-[22]. 

 

 
Fig.1: Rotation error as a function of the coefficient 

word lengths and number of points in FFT 

 

4. Rotation Allocation 

 

Generally M-rotators are a rotator that rotates any 

number of angles in M different symmetric angle sets. 

From the literature survey, based on the symmetric 

angle set the twiddle factor W8 is called 2-rot, W16 is 

represented as 3-rot and W32 is represented as 5-rot. 

Hardware cost of rotators can be estimated in terms of 

adders. CCSSI [23] approach is used to obtain the 

equivalent adders required for M-rotators and 

CORDIC-II [24] algorithm is used to calculate the 

equivalent adders required for general rotators. 

During the designing process of FFT architecture, 

the designer should follow the following properties. 

The properties are derived from the signal flow graph 

(SFG) of the radix-22 algorithm. The index of the data 

is represented as I = bn-1….b2, b1, b0. In that the first 

property represents, ‘n’ is the number of FFT stages 

and‘s’ is the stage which is going to be design. The 
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number of stages ‘n’ can be calculated by using the 

formula n = log2N, where N is the number of points in 

the FFT. For any stage‘s’ the index input to the 

butterfly differ by bn-s position only. For example a 16 

point FFT has 4 stages and the respective index of data 

is represented as I = b3b2b1b0. Consider the second 

stage of the FFT in the I = 1000 and I’ = 1100 are 

processed by the butterfly. The indices are differ only 

in the position of b2 (b n-s = b 4-2 = b2). In the table 2.b 

the indices matrices show the stage 2 is differ only in 

the position b2. The table 2.c shows the rotation matrix 

for each stage. 

 

Table 2.a Index of the data 

 

Stage - 1 
 

b2 b3 b1 b0 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

Stage - 2 

 

b3 b2 b1 b0 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

 

Stage - 3 

 

b1 b2 b3 b0 

0 0 0 0 

0 0 0 1 

1 0 0 0 

1 0 0 1 

0 1 0 0 

0 1 0 1 

1 1 0 0 

1 1 0 1 

0 0 1 0 

0 0 1 1 

1 0 1 0 

1 0 1 1 

0 1 1 0 

0 1 1 1 

1 1 1 0 

1 1 1 1 

Stage - 4 

 

b1 b0 b3 b2 

0 0 0 0 

0 1 0 0 

1 0 0 0 

1 1 0 0 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 0 1 

0 0 1 0 

0 1 1 0 

1 0 1 0 

1 1 1 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 1 

 

The next property related to the rotations at the FFT 

stages. For each stage the input is rotated by a factor 

according to the equation (3). In that the ϕ value 

depends on the stage index I and stage‘s’ value.  From 

table.3 for an odd stages the index value satisfied bn-

s.bn-s-1 =1 the condition, it should be rotated by a trivial 

rotations. Similarly for even stages those index values 

satisfies the bn-s+1 + bn-s = 1 condition, it should be 

rotated by non-trivial rotations. The angles which are 

multiples of π/4 considered as rotation by W8 and the 

angles which are multiples of π/8 considered as rotation 

by W16. Using the above properties mentioned in the 

table.2 we get different possibilities in rotator values 

with respect to change the data order at different FFT 

stages. The proposed hardware architecture works 

based on reducing the number of rotators and their 

complexity by finding the efficient distribution of FFT 

rotations [25]-[26]. The table.4 and table.5 represents 

the properties of the radix-23 and radix-24 decimation 

in frequency algorithm respectively. 

 
Table 2.b Indices matrix for each stage 

 

INDICES INDICES 

Stage - 1 Stage -2 

 

3 2 1 0 

11 10 9 8 

7 6 5 4 

15 14 13 12 
 

3 2 1 0 

7 6 5 4 

11 10 9 8 

15 14 13 12 



 

 

INDICES 

 

Stage 1 

INDICES 

 

Stage 2 

 

9 8 1 0 

11 10 3 2 

13 12 5 4 

15 14 7 6 
 

12 8 4 0 

13 9 5 1 

14 10 6 2 

15 11 7 3 

 

Table 2.c Rotation matrix for each stage 

 

 

 

 

 

 

 

 

 

Table 3 Properties of the Radix-22 Decimation In 

Frequency (DIF) algorithm 

 

Properties Radix-22 

Butterfly Unit (BU) bn-s 

Trivial Rotations (For odd stages) bn-s . bn-s-1 =1 

Non-Trivial Rotations (For even 

stages) 

bn-s+1 + bn-s = 

1  

Table 4 Properties of the Radix-23 Decimation In 

Frequency (DIF) Algorithm 

 

Properties  Radix-23 
M-

rotator 

Butterfly 

Unit (BU) 
s  bn-s - 

Trivial 

Rotations 

(For odd 

stages) 

s = 3i+2 bn-s . bn-s-1 =1 - 

Non-Trivial 

Rotations  

(For even 

stages) 

s = 3i+3 
bn-s+2 + bn-s+1+ bn-s 

= 1 
- 

s = 3i+1 
bn-s.( bn-s+1 + bn-s-

2) = 1 

2-

rotator 

 

Table 5 Properties of the Radix-24 Decimation In 

Frequency (DIF) algorithm 

 

Properties  Radix-24 
M-

rotator 

Butterfly 

Unit (BU) 
s  bn-s - 

Trivial 

Rotations 

(For odd 

stages) 

s = 4i+1 bn-s . bn-s-1 =1 - 

s = 4i+3 bn-s . bn-s-1 =1 - 

Non-Trivial 

Rotations 

(For even 

stages) 

s = 4i+4 
bn-s+3 + bn-s+2 + bn-

s+1+ bn-s = 1 
- 

s = 4i+2 
(bn-s+1 + bn-s) .( bn-

s-1+ bn-s-2) = 1 

3-

rotator 

 

5. Proposed FeedForward Architectures 

 

The total area of the processor is measured with the 

help of total number of twiddle factors, complex 

address and complex data memory requirement. 

Simultaneously, the performances of the proposed 

architectures are measured in terms of number of clock 

cycles required by the architecture to finish the process 

and number of samples processed by the architecture 

per clock cycle. The proposed model worked based on 

find an efficient method for distribution of FFT 

rotations. Rotation allocation approach is discussed in 

this paper. Due to that the number of rotations and their 

complexity is reduced.  

Rotator allocation is done by rearranging the matrices 

of indexes and matrices of rotations. Complexities of 

rotators are reduced only the matrices of rotations have 

fewer rotations. When rearrange the matrices into more 

number of rows are equal to zero, the resultant 

structure has fewer rotator than other. The rotator 

allocation is distributing the bits b3b2b1b0 of the index I 

into serial and parallel bits. The combination of serial 

bits or parallel bits reflects on the complexity of the 

rotator. The table.2.a shows the 16 point FFT with 4-

parallel line processor has 2 serial bits and 2 parallel bit 

dimensions. For example 16 point FFT has four stages 

in that each stage has six different possible alternatives. 

 For example a N point FFT with P-parallel line 

processor (N=32, P=4 ;) has 3 serial bits and 2 parallel 

bits dimensions. The number of possible alternatives 

for each stage is ten [25]-[26]. 

For serial dimensions n - p = log2 (N) - log2 (P); n - p = 

3. 

For parallel dimensions p = log2 (P); =2. 

ROTATIONS ROTATIONS 

0 0 0 0 

0 0 0 0 

0 0 0 0 

4 4 4 4 

 

0 0 0 0 

0 2 4 6 

0 1 2 3 

0 3 6 9 

 

ROTATIONS 

0 0 0 0 

0 0 0 0 

0 0 0 0 

4 4 4 4 

 



 

5.1 Radix- 2k 2-parallel pipelined architecture 

using feedforward MDC 

In radix-2k, all the approaches are almost have same 

twiddle factor values. But some of the rotators 

available in radix 23 can be adjusted to perform the 

entire operation with the help of W8 and W16. From the 

analysis, the Radix -24 has less number of address and 

reduced memory requirement, even other methods 

having the same twiddle factor values. 

Generally the proposed architecture is derived from 

the base of radix-2 butterflies, non trivial rotator, trivial 

rotators and multiplexers. In 2-parallel architecture 

processes 2 samples in parallel and three distinct 

approaches are discussed like Radix-22, Radix -23 and 

Radix- 24. The table.6 compares the rotators required 

for 2- Parallel pipelined architectures different points 

FFT in Radix-22, Radix- 23 and Radix -24. The 

following Fig. 2, Fig. 3 and Fig. 4 show the 64 point 

pipelined 2 parallel Radix-22, Radix -23 and Radix- 24 

Feedforward MDC architectures respectively. In Fig. 2 

the rotations by W8 is represented with the help of 

square box. From the analysis in 2-parallel, radix-22 

and radix-23 has the same number of rotations, 

butterflies and total memory compared with radix-2 

feedforward FFT [2]. Compare the Fig. 2, Fig. 3 and 

Fig. 4, we get both the 2 parallel Radix-22 and Radix -

24architecture has the same structure except the rotator 

W16 is replaced for every four stages in radix-22 

structures.  

In feedforward architecture the number of complex 

adder is calculated by using the formula [27]-[28]  

 

NP 2log.       (13) 

General rotator can be calculated by using the 

formula, 
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Table.6 N-point radix-2k 2- Parallel Pipelined 

Architecture Using Feedforward Multipath Delay 

Commutator 

 

No. of 

Points 

Rotators 

Total General W8 (or) W16 

22 23 24 22 23 24 22 23 24 

64 4 4 4 4 2 1 0 2 3 

128 5 5 5 5 3 1 0 2 4 

256 6 6 6 6 3 2 0 3 4 

512 7 7 7 7 4 3 0 3 5 

1024 8 8 8 8 5 3 0 3 5 

2048 9 9 9 9 5 4 0 4 5 

4096 10 10 10 10 6 4 0 4 6 

 

From Fig.2, Fig.3 and Fig.4 in the proposed 

architecture the required number of butterfly units 

depends on the number of samples in parallel. 

Generally the butterfly does not vary with respect to 

stages but the rotators depend on the stage. Rotators 

are classified into trivial, non-trivial and rotations by 

W8 (or) W16. Compared radix- 22 FFT architecture 

with the proposed radix- 24 Feedforward architecture 

requires the same number of rotators, area and 

memory. The Radix-23 and Radix -24 FFT architecture 

can be simplified into use only W8 or W16 rotators. 

The proposed 2 parallel radix-24 Feedforward MDC 

architecture saves 50% of the adders and reduces the 

memory requirement compared with the existing 

structures [29]. But it keeps the same number of 

rotator values. 

 

5.2 Radix- 2k 4-parallel pipelined architecture 

using feedforward MDC 

The 4- Parallel pipelined architectures using 

Feedforward Multi-path Delay Commutator structure 

for the computation of a N point FFT like Radix-22, 

Radix- 23 and Radix -24 is compared in table. 7. From 

the table.7, Radix-22 architecture requires only trivial 

multiplication. Simultaneously it has a very good 

architecture style compared to other methods. In 4 

parallel architectures, Radix-23 and Radix-24 is 

compared with 4 parallel radix-4 feedforward FFT, it 

requires fewer rotators than other approach [30]-[31] 

but it has the equal amount of adders and memory. The 

Radix- 24 Feedforward architecture reduces 50% of 

address and 25% of twiddle factor W16 than existed 

Radix- 24   feedback architectures [32]-[33].  

The following Fig. 5, Fig. 6 and Fig. 7 show the 4-

parallel architecture, three distinct approaches are 

discussed like Radix-22, Radix -23 and Radix- 24. As 

we discussed earlier, due to Feedforward architecture 

the required number of rotators in proposed design is 

reduced when compared with existing feedback 

architectures. A 4 parallel Radix-22 architecture saves 

up to 25% of total number of rotators. Simultaneously, 

4 parallel Radix-24 Feedforward architecture saves up 

to 50% of total number of adders and 25% of W16 

rotators compared with existing Radix-24 feedback 



 

 

architecture [32]-[33]. 

 

Table.7 N-point radix-2k 4- Parallel Pipelined 

Architecture using Feedforward Multipath Delay 

Commutator 

 

No. 

of 

Poin

ts 

Rotators 

Total General 
W8 (or) 

W16 

22 23 24 22 23 
2
4 

2
2 

23 24 

64 6 8 7 6 4 2 0 4 5 

128 8 
1

0 
8 8 5 3 0 5 5 

256 9 
1

2 
10 9 6 4 0 6 6 

512 
1

1 

1

4 
12 11 8 5 0 6 7 

1024 
1

2 

1

6 
14 12 9 6 0 7 

8 

2048 
1

4 

1

8 
15 14 

1

0 
7 0 8 8 

4096 1

5 

2

0 
17 15 1

2 
8 0 8 9 

 

5.3 Radix- 2k 8-parallel pipelined architecture using 

feedforward MDC 

In 8 parallel architecture, Radix-22, Radix -23 and 

Radix- 24 has very good performance than any other 

proposed methods. Especially the Radix- 24  feed 

forward architectures has less number of W16 twiddle 

factors and 50% less in adders compared with the well 

known Radix- 24   feedback architectures [34]. From 

the existing research work and table.6, table.7 and 

table.8 the numbers of non-trivial multiplications are 

increased with respect to the number of points in the 

FFT processor.  

Similarly, the required numbers of complex twiddle 

factors are reduced when the radix values rise from 

Radix-2, Radix-22, Radix -23 and Radix- 24. The 

following Fig. 8, Fig. 9 and Fig. 10 show the 8-parallel 

architecture, three distinct approaches are discussed 

like Radix-22, Radix -23 and Radix- 24. From the 

table.8, the required number of general multiplications 

are has the same value compared to the existing 

architectures [37] but the number of twiddle factor W16 

is save up to 12% . Due to this the total area required 

by the processor is reduced. The Feedforward structure 

is more efficient than feedback structures in the 

applications like more samples to be processed in 

parallel manner, which has power of two. The required 

numbers of parallel samples are chosen based on the 

required throughout value depending on the 

applications. From the Fig.11 and Fig.12 we 

understand that for any FFT size, the proposed feed 

forward architecture has the smallest area.  

 

 

 

 

 

 

 

 

 

 

Fig.2 64-point 2- Parallel Pipelined Architecture using 

Radix-22 Feedforward Multipath Delay Commutator  

 

 

Fig.3 64-point 2- Parallel Pipelined Architecture using 

Radix-23 Feedforward Multipath Delay Commutator 

 

 

Fig.4 64-point 2- Parallel Pipelined Architecture using 

Radix-24 Feedforward Multipath Delay Commutator 



 

 

 

Fig.5 64-point 4- Parallel Pipelined Architecture using 

Radix-22 Feedforward Multipath Delay Commutator  
 

 

 

Fig.6 64-point 4- Parallel Pipelined Architecture using 

Radix-23 Feedforward Multipath Delay Commutator 

 

 

Fig.7 64-point 4- Parallel Pipelined Architecture using 

Radix-24 Feedforward Multipath Delay Commutator 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 64-point 8- Parallel Pipelined Architecture using 

Radix-22 Feedforward Multipath Delay Commutator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 64-point 8- Parallel Pipelined Architecture using 

Radix-23 Feedforward Multipath Delay Commutator 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig.10 64-point 8- Parallel Pipelined Architecture 

using Radix-24 Feedforward Multipath Delay 

Commutator  

 

 

Table.8 N-point radix-2k 8- Parallel Pipelined 

Architecture using Feedforward Multipath Delay 

Commutator  
 

No. of 

Points 

Rotators 

Total General 
W8 (or) 

W16 

22 23 24 
2
2 

23 
2
4 

2
2 

2
3 

24 

64 12 
1

1 

1

3 

1

2 
7 4 0 4 9 

128 15 
1

4 

1

7 

1

5 
9 6 0 5 11 

256 18 
1

7 

2

0 

1

8 

1

1 
8 0 6 12 

512 21 
2

0 

2

4 

2

1 

1

4 

1

0 
0 6 14 

1024 24 
2

3 

2

7 

2

4 

1

6 

1

2 
0 7 15 

2048 27 
2

6 

3

1 

2

7 

1

8 

1

4 
0 8 17 

4096 30 
2

9 

3

4 

3

0 

2

1 

1

6 
0 8 18 

 

6. Implementation of Proposed System 

In proposed architecture the throughput is 

proportional to the number of samples in parallel. The 

latency is equal to the size of the FFT divided by the 

number of parallel samples. The suitable architecture 

has been selected based on the throughput and latency 

that depends upon the application requires. The 

memory size does not vary with respect to the number 

of parallel samples. In few applications input samples 

and output frequencies are required in normal order 

for that reordering circuits are required before and 

after the FFT. For input and output reordering, in our 

proposed design requires N-P amount of total memory 

is required for P-parallel N-point FFT. For radix-23 

and radix 24 the non-trivial rotations are W8 and W16 

respectively. The number of non-trivial rotations WL, 

dependent on radix-2k of the algorithm (L=2k). If the k 

values are increased it also increases the number of 

angles of the kernel. Finally, it leads to 

implementations of non-trivial rotations are very 

difficult. In our proposed model we discussed only 

about the DIF structure. But from the research we 

know that both DIT and DIF requires architecture uses 

the same amount of hardware components. 

From the table.9 for an 8-parallel MDC FFT 

architecture has only general rotators and 1-rotators. 

But remaining architectures have 3- rotators and 2-

rotators in their design except radix-23. Compared to 

radix-23 our proposed architecture has fewer amounts 

of general rotators with the increases in 1-rotators. 

 

Table.9 Twiddle factors in the 4- parallel and 8-parallel 

MDC-FFT Architecture for different Radix-2 algorithm 
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4-Parallel 

MDC FFT 

Architecture 

2 14 1 2 2 476 

23 12 0 0 4 442 

24 8 0 3 6 412 

26 8 2 4 4 438 

8-Parallel 

MDC FFT 

Architecture 

2 26 1 4 6 886 

23 24 0 0 6 876 

24 16 0 0 15 776 

26 12 2 8 12 782 

 

Our proposed 8-parallel MDC FFT architecture can 

be divided in to upper part 4-parallel MDC FFT 

architecture and lower part 4-parallel MDC FFT 

architecture. Samples that available in odd clock cycles 

can be processed by lower part 4-parallel MDC FFT 

architecture. Similarly, samples that available in even 



 

clock cycles can be processed by upper part 4-parallel 

MDC FFT architecture. 

The equivalent adders can be calculated by using 

the following formula, 
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Fig.11 4096-point 4- Parallel Pipelined Architecture 

using Radix-2k Feedforward Multipath Delay 

Commutator  

 

The fig.11 and fig.12 shows the equivalent adders 

required for proposed 4096-point 4-parallel and 8-

parallel pipelined architecture using Radix-2k 

feedforward multipath delay commutator. From the 

figures we know that the proposed 4096-point 8-

parallel and 4-parallel pipelined architecture using 

Radix-24 feedforward multipath delay commutator is 

better than other architectures for VDSL applications. 

In a 4 - parallel architecture the reduction in area is 

improved from 17% to 23% compared with [32]-[33]. 

For an 8 parallel architecture the reduction in area is 

improved from 23% to 29% compared with the 

existing architectures [32]-[33]. These results show our 

proposed design reduces the area of the processor 

significantly. 

 

 

 

 

 

 

 

 

 
 

Fig.12 4096-point 8- Parallel Pipelined Architecture 

using Radix-2k Feedforward Multipath Delay 

Commutator  

 

7. Conclusion 

From the literature review, none of the single FFT 

algorithm is suitable for different hardware platforms. 

For better result, the best algorithm should be selected 

based on the hardware and applications. The prime 

concerns are regularity in structure, low power 

consumption, less area and high performance. If the 

number of points in the FFT increased, the numbers of 

possible FFT computation algorithms are also 

increased. Finally, the different FFT algorithms are 

developed for achieving required goals in specific 

applications. Rotation allocation approach is discussed 

in this paper. The proposed model worked based on 

choosing an efficient method for distribution of FFT 

rotations. Due to that the number of rotations and their 

complexity is reduced. In the research work different 

radices are tried. From the observation the number of 

complex rotators decreases with increase in k value up 

to radix-24. From the analysis the proposed 4- parallel 

radix-24 MDC architecture savings the area of rotators 

increased from 17% to 23% and the proposed 8- 

parallel radix-24 MDC architecture save the area of 

rotators around 23% to 29% with respect to the 

existing architectures. 
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