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Abstract: The target of this work is to increase the annual net 

saving via hyper-spherical search algorithm (HSSA). HSSA is 

employed to obtain the optimal sizing and allocations of the 

candidate buses to contribute effectively in decreasing the total 

costs and system losses in different distributed systems.  Power 

loss index (PLI) is utilized to find the candidate buses with the 

highest possibility for capacitor banks installation. Then, the 

developed HSSA is employed with inequality constraints to 

determine the most elected buses for installing and sizing shunt 

capacitor banks. HSSA is tested on IEEE-15 bus, IEEE-69 bus, 

and IEEE-119 bus systems. Applying the developed algorithm 

to minimize an objective function with constraints shows its 

ability in dealing with different radial systems. Simulated 

results are presented and compared with others to verify the 

effectiveness of the developed HSSA. 

Keywords: Hyper-spherical search algorithm, radial power 

systems, optimal capacitor allocation, power loss index. 

 NOMENCLATURE 

AP: assignment probability 

BFS: Backward/forward sweep 

Ce:  annual power loss 

Dsc: the normalized dominant sphere center  

𝐷𝑆𝑂𝐹: difference in set of objective function 

𝑓𝑠𝑐: objective functions estimation at a sphere center 

Il: branch current 

Kp: Total costs per kWh 

Kc: Total costs per KVAr 

KI: Capital installation costs  

Ko: operational costs  

N: Total number of buses 

NL: total number of lines 

Ncb: Total number of compensated buses 

Npop: number of population  

Nsc: number of hyper spheres centers 

Nnewpar: number of new particles 

OF: objective function 

OFDsc,i: objective function difference of a sphere center 

Pi,center: particle location at the sphere center 

Pi,particle: particle location at the ith position 

P(i):  real power loss reduction at bus i 

PLI: power loss index 

Pld,i: demand power at bus i 

PLosses,i: power losses of line i 

Pmax: maximum real power reduction through all buses 

Pmin: minimum real power reduction through all busses 

Prangle: particle angles probability 

Pslack: active power at the slack bus 

Q1 to Qn: shunt capacitor banks sizing estimation 

Qc,i: injected reactive power at bus i 

Qld,i: demand reactive power at bus i 

Qslack: reactive power at the slack bus power 

𝑟: sphere radius of a particle 

𝑟𝑚𝑖𝑛: minimum sphere of a particle 

𝑟𝑚𝑎𝑥: maximum sphere of a particle 

SCs: hyper-sphere centers 

SOF: set of objective function 

Vi: voltage at bus i 

Xi: decision variables 

I. INTRODUCTION 

For many years, optimal shunt capacitor bank (SCB) 

placement and sizing has become a challenge for researchers 

and system planners.  Recently, deficiency in reactive power 

leads to blackouts in power systems as reported by the US 

Canada reviews in 2004 [1,2]. In addition, system ohmic losses 

are diminished by proper installation of SCBs. Furthermore, at 

the distribution level, system performance in terms of voltage 

profile, system stability, and power factor is improved. Such 

system blackouts and improved system behavior result in more 

focus SCBs optimal allocation and sizing to meet load demands 

of reactive power [3,4]. 

The procedures are designed to find a minimum value for a 

function to solve a problem, in which SCBs allocation and 

sizing are to be determined. There are plenty of published work 

with different algorithms along with solutions to find the most 

proper place and the optimal size of SCBs. The initial work on 

allocating SCB was proposed by analytical calculus algorithms 

[5]-[7]. Although analytical based methods were simple, 

however they require many assumptions due to load variations 

to solve SCBs allocation problem. Recently, heuristic based 

algorithms are heavily used to solve SCBs allocations. 

Simulating annealing algorithm (SAA) for proper allocation of 

SCB was introduced in [8]. However, this algorithm may get 

trapped and take long time in local optimization. In [9], Tabu 

search (TS) was presented to solve SCB placement. However, 

the authors of [9] employed complex fitness functions and used 

many decision variables to be optimized. In [10], genetic 

algorithm (GA) was used. GA employs penalty function 

methods to go to constrained solutions. If a penalty function is 

high, GA could be trapped in local tuning. In the other side, if 

it is low, GA may not be able to find a possible solution [11]. 

In [12,13], plant grown simulation and cuckoo search 

algorithms were presented to solve SCB installation. However, 

the authors utilized continuous values of SCB rather than 

discrete values. The authors of [14], used particle swarm 

optimization (PSO) to solve SCB allocation. However, other 

authors complain that this algorithm suffers from low speed 

convergence [3]. Bee colony algorithm was used in [15]. For 

the same problem, cuckoo search was introduced in [16] but it 

takes long time for iterations to find optimal solutions. The 

authors of [17] utilizes ant colony algorithm to solve the same 

issue. However, the probability of distribution changes every 

iteration, which makes it consume long time to converge. The 

authors of [18] utilized the firefly algorithm with loss sensitivity 



 

 

factors to deal with the same problem. However, they did not 

include maintenance and installation costs into account. 

Harmony search (HS) and improved harmony algorithms (IHA) 

were introduced in [19,3] with some modifications of the 

objective function between them for optimal SCB placement 

and sizing installation. However, large number of buses was 

used to compensate the reactive power.  

Hyper-spherical search algorithm was inspired to emulate a 

moving particle seeking a space bounded by a sphere [20,21].  

The effectiveness and convergence of HSSA algorithm 

compared to other algorithms for solving some mathematical 

problems is proved in [22].  To the authors knowledge, few 

woks use HSSA to solve some engineering problems [20,23]. 

Moreover, it is obvious from the literature review that the 

utilization of HSSA to solve shunt capacitor banks allocation 

and sizing problem has not been investigated. This encourages 

the authors to utilize the HSSA to solve this problem. The SCB 

placement test starts by using PLI examination test to arrange 

the buses in descending manner. The HSSA is employed to 

decide the optimal allocations and size of SCBs according to 

minimizing the total costs. The performance of the developed 

algorithm in terms of total loss reduction and voltage profile 

improvements algorithm is applied for three different microgrid 

radial networks. The obtained results are compared with other 

works to ensure the notability of the developed HSSA in dealing 

with placement and sizing of SCBs in a discrete manner. 

The remainder of this work is organized as follows. An 

overview of the HSSA is introduced in section 2. Problem 

description is described in section 3. SCB problem formulation 

is presented in section 4. Results and discussion of different 

tested radial systems are given in section 5. Finally,   

conclusions are presented in section 6. 

II. OVERVIEW OF HYPER-SPHERICAL SEARCH 

ALGORITHM 

The HSSA was introduced in [22,23] for solving some 

engineering problems. It was inspired as emulations for a 

particle looking for the best solution in a surface limited by a 

sphere [24]. For a fitness function 𝑓(𝑋𝑖) as given in Eq. 1, the 

target is to find optimal values for the decision variables Xi such 

that the parameter J is minimized.  

𝐽 = min 𝑓(𝑋𝑖)    ∀  𝑋𝑖  ∈   𝑋    (1) 

With some constraints on the decision variables, the 

algorithm includes four steps as follows: 

1- Initialization of particles and optimization parameters. 

 The decision variables spread according to the inequality:

max,min, iii XXX  , i=1,2,…,n. Where, n is the number of 

decision variables and Xi is given as in Eq. 2.  

𝑋𝑖 = [𝑄1     𝑄2    𝑄3     ….𝑄𝑛 ]   (2) 

Herein, the number of initial population (Npop), number of 

hyper-sphere centers (Nsc), rmin, rmax, Prangle, and Nnewpar are 

initialized. Each solution is considered as a particle. The 

decision variables are chosen randomly, with their probability 

is chosen uniformly. At this step, the particles of the objective 

functions (OF) are evaluated. The particles are arranged in 

ascending manner according to the OF estimation. The best Nsc 

particles are set to be hyper-sphere centers (SCs). The objective 

function difference (OFDsc) of a sphere center is defined to 

distribute particles in proportional manner as in Eq. 3. 

 )(max)(, iiscisc XfXFOFD   (3) 

The normalized dominant sphere center (Dsc) is given as Eq. 

3 in terms of the objective function difference (OFDsc,i).  
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The particles number among hyper-spheres is distributed 

according to Eq. 5.  

 𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝐷𝑠𝑐(𝑁𝑝𝑜𝑝 − 𝑁𝑠𝑐)}  (5) 

2- Searching 

The particle searches for a better solution at a specified level 

limited a sphere surface having a radius of r with angles θ and 

φ. the radius r represents the gap between the sphere center and 

the particle position.  The changing of the angles θ and φ results 

in a new movement for the particle. Each angle is varied 

randomly in radians with a probability Prangle. The variation of 

the angles is done uniformly between [0, 2π] during each 

iteration. After determining the particle's angles, the distance 

between the particle and SC is chosen randomly between [rmin, 

rmax]. The larger radius is given in Eq. 6, in which N equals 3 in 

spherical coordinates.   
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Thus, the particle location is determined by its parameters 

in the hyper spherical coordinates as Q[rmin, rmax, Prangle, SC]. 

During the search process, the particle may find a low objective 

function estimation. In this case, the particle's location and 

coordinates will be exchanged.  

3- Recovery of dummy particles 

The set SCs with largest OF are not expected to reach a 

global minimum because of their inappropriate space. Such 

particles hyperspheres should be varied. Dump particles shown 

in Fig. 1 are allocated to new spheres according to set of 

objective function (SOF) estimations given in Eq. 7.  

𝑆𝑂𝐹 = 𝑓𝑠𝑐 + 𝛾 𝑚𝑒𝑎𝑛(𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑜𝑓 𝑆𝐶)   (7) 

The particles are arranged according to SOF in ascending 

manner.  The parameters of the HSSA developed model is given 

the Appendix. To allocate to the resulting particles to new SCs, 

the difference in 𝑆𝑂𝐹 (𝐷𝑆𝑂𝐹) is defined as follows. 

𝐷𝑆𝑂𝐹 = 𝑆𝑂𝐹 − 𝑚𝑎𝑥𝑔𝑟𝑜𝑢𝑝{𝑆𝑂𝐹 𝑔𝑟𝑜𝑢𝑝𝑠}   (8) 

The SC with highest DSOF loses its dummy particles. The 

outputs with highest DSOF are assigned to new SCs. The 

assignment probability (AP) of the new SC is given in Eq. 9.   
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Fig. 1 Dummy particles recovery 

4- New particles generation 

After every search, the SC position and particles are 

interchanged. Then, some particles may find a position having 

a low value of OF estimation value than its SC.  In this step, the 

particles (Nnewpar) with inappropriate OF estimation will be 

eliminated. Such particles are replaced by a new group of 

particles with the same number Nnewpar described in step one.   

5- Convergence checking 

The process continuous until all particles in the best SC have 

same objective function value. The algorithm is terminated if 

the maximum number of iterations is reached or the OF has the 

smallest threshold changes during its estimation [11]. Fig. 2 

illustrates how HSSA is employed to solve capacitor allocation 

and sizing.   

III. PROBLEM DESCRIPTION 

Shunt capacitor bank sizing and placement within radial 

microgrids provide an effective way to decrease ohmic power 

losses and consequently saves net annual cost. The developed 

work in this study presents an optimal planning to allocate 

SCBs and estimate their corresponding size. Fig. 2 shows a flow 

chart of HSSA algorithm and load flow study to solve SCBs 

allocations and sizing. To prove the economical viewpoint 

saving, it is required to run load flow analysis and estimate the 

ohmic loss reduction due to SCBs reactive power 

compensation. In this study, the back/forward sweep (BFS) 

method is employed for load flow analysis. The testing starts by 

a test procedure named power loss index (PLI) to determine the 

candidate buses for SCBs allocation. HSSA is employed to 

determine the place and size of the SCBs. The goal is to 

minimize total active power loss and installation of SCBs costs. 

IV. PROBLEM FORMULATION 

The optimal capacitor allocation in radial distributed 

systems or microgrids is solved in discrete estimations 

according to Eqs. 1 and 2. The purpose of the problem is to 

minimize total yearly operational costs for capacitor installation 

and power losses. This section introduces the problem 

formulation. 

A. Power loss index (PLI) 

In this study, PLI is employed to specify the highest priority 

buses for capacitor placement, which results in less time 

consumption for optimization procedures. This PLI method 

includes injecting reactive power at each bus except the slack 

bus. The injected power should be a fraction from the total 

reactive power demand at each bus. The PLI is given in Eq.10. 

minmax
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All designations are given in the nomenclature. The highest 

buses in terms of PLI index will be inserted to the HSSA to 

optimally fix SCBs placement and sizing.  

 

Fig. 2 SCBs flow chart using HSSA 

B. Objective (fitness) function 

The objective of capacitor allocation and sizing is to 

minimize the annual energy losses with consideration of   

capacitor installation and size costs. The objective function 

given in Eq. 1 can be tailored as follows: 

𝐽 = 𝑚𝑖𝑛 [𝐾𝑝𝐶𝑙𝑜𝑠𝑠𝑒𝑠 + 𝐷 (𝐾𝐼 ∑ 𝑖 + 𝐾𝑐 ∑ 𝑄𝑐,𝑖

𝑁𝑐𝑏

𝑖=1

𝑁𝐶𝑏

𝑖=1

) + 𝐾𝑜𝑁𝑐𝑏] 

 (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialize parameters such as Npop, Nsc, rmin,rmax, Prangle,, Nnewpar 

Run PLI algorithm to decide the highest priority buses particle then Initialize particles 

Run BFS method to evaluate objective for each particle function as in Eq. (1) or (10) 

Arrange particles in ascending manner  

Choose particles with lowest (J) to be hyper-sphere centers (SCs) 

yes 

Exchange (SC) with the particle 

No 

Distribute particles among SCs as in Eq. 3 to 5 

Searching a better space for particles as in step (2) 

Run BFS then dummy particles selection according to Eqs. 7 to 9 

No 

New particles generations 

yes 
Change 𝑆𝐶 

into a particle 

No 

yes 

Print best particle ever found 

Old SC 

New SC 

Dummy 

particles 

Searching sphere 

before dummy 

particles recovery 

Searching sphere 

after dummy 

particle recovery 



 

 

The terminology in Eq. 11 accounts for annual ohmic loss, 

installation and running costs, and the total operational costs of 

the estimated reactive power. All parameters are given in Table 

I [3,15]. 

Table I Cost function parameters 

Parameter Value unit 

Kp 0.06 $/kWh 

T 0.8760 H 

D 0.2 - 

Kc 25 $/kVAr 

Ko 300 $/year/location 

Ki 1600 $ 

 

C. Constraints  

The real power and reactive power constraints are given in 

the quality and inequality functions in Eqs. 12 to 14 

respectively.  
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𝑄𝑐,min ≤ 𝑄𝑐,i  ≤  𝑄𝑐,m𝑎𝑥   (14) 

The estimation of the reactive power is given in discrete 

values with a step of 50kVAr [3]. In addition, this power should 

be less than half the total reactive power demand as in Eq. (15). 
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The voltage magnitude constraints at each bus are restricted 

by the following inequality, in which the minimum and 

maximum voltage limits lie in the interval [0.9,1.05]. 

NiVVV i  maxmin   (16) 

In order to keep transmission line complex power capacities 

within their constraints, the current through any line is limited 

by the inequality in Eq. 17.  

Llill NiIII  max,,min,   (17) 

V. RESULTS AND DISCUSSION 

In this section, the notability of the developed HSSA to find 

optimal locations and sizing of SCBs for different radial 

systems is investigated. Three different radial distribution 

networks are considered: IEEE-15, IEEE-69, and IEEE-119.  

The developed algorithm has been developed via Matlab ver 

2015 [25].  

A. IEEE-15 bus radial system 

HSSA is applied firstly for IEEE-15 bus system shown in 

Fig. 3. The data of this system was found in [26]. The total 

network loads are 1752kVA with power factor equals 0.7. Total 

losses without SCB reactive power compensation are 61.95kW. 

In this article, the PLI are initially used to select the candidate 

buses for SCBs placement as shown in Fig. 4. The buses with 

largest values can be ordered as follows: 15, 11, 4, 7, 6, 12, 14, 

3, 8, 13,…2 . Then, the proposed HSSA is applied to decide the 

optimal allocation and SCBs sizing. This can be achieved by 

installing 800kVAr at four buses (150kVAr at 15, 250kVAr at 

14, 200kVAr at 4 and 200kVAr at 7).  

A comparison was made among the developed algorithm 

and the previous works form the literature to solve SCB 

placement and sizing.  This comparison is tabulated in Table II. 

From Table II, it is clear that the total losses are decreased to 

31.01kW with percentage of reduction of 51.578%. In addition, 

the annual cost is reduced to 22782$ with improving the net 

saving to 30.04%, which is the most valuable result among the 

others. Fig. 5 shows the buses voltage profile improvement. The 

OF performance against number of iterations is shown in Fig. 

6. The objective function convergence takes 17 iterations to 

reach the optimal estimations. The first 17 iterations take 5.12s 

using an intel-core CPU of i3 with 3.6GHz speed. 

Nobility of HSSA over others 

To prove the notability of the developed HSSA, the obtained 

results are compared with previous works that achieve good 

results from the literature. From the data given in Table II, 

HSSA gives better results compared to others. This can be 

achieved by installing of 800kVAr at four buses, which is the 

smallest value compared what is achieved in [30]. The power 

losses reduction achieves 49.99% compared to 50.86% in [27]. 

The spectacular appeal of HSSA is the net saving per year. The 

developed HSSA shows the best net saving among the others 

with a value of 9781.4$/year with the percentage of saving 

reaches 30.04%. It is obvious from the above results that the 

developed HSSA is a strong competitive to other algorithms.  

 
Fig. 3 One line diagram of IEEE-15 bus system 

 
Fig. 4 PLI of IEEE-15 bus system 



 

 

 

 
Fig. 5 Improvement in IEEE 15 bus system voltages due to 

HSSA compensation 

 

 
Fig. 6 Objective function variation for IEEE 15 bus 

system 

B. IEEE-69 bus radial system 

The second scenario employing HSSA is the IEEE-69 bus 

system as shown in Fig. 7. The data of this system are given in 

[26]. Total losses without SCB reactive power compensation 

are 224.89kW. Fig. 8 shows the buses according to PLI index. 

They can be arranged as follows: 61, 64, 59, 65, 21, 12, 11, 62, 

18, 17,…, 16. Then, the proposed algorithm is applied by 

selecting the optimum positions and capacitor values depending 

on the HSSA method. This is achieved by installing of 

1400kVAr at two buses (1050kVAr at 61 and 250kVAr at 21). 

This comparison is given in Table III. It can be noticed that 

the value of total losses are decreased to 147.7kW with 

percentage of reduction of 34.32%. In addition, the developed 

algorithm is capable to reduce annual costs to 85865.21$. The 

corresponding net saving records 27.35%, which is the best one. 

This improvement is achieved by installing of 1400kVAr at two 

buses.  It is clear that the buses voltage profile is improved as 

shown in Fig. 9. The lowest bus voltage is improved to 

0.9290pu.  

Nobility of HSSA over others 

In order to ascertain the reliability and effectiveness of the 

proposed algorithm, a comparison was made among the 

developed algorithm and the previous methods to solve this 

capacitor allocation problem. From the data given in Tables III, 

HSSA competes other algorithms. The power losses reduction 

achieves 34.32% compared to 35.38% in [3].  

 

 
Fig. 7 One line diagram of IEEE 69-bus system 

Total kVAr compensation obtained by HSSA is 1400kVAr, 

which is the smallest value compared to 1700kVAr as achieved 

in [3]. Again, the biggest appeal of HSSA is the net saving per 

year. The developed HSSA shows the highest net saving among 

the others with a value of 32334.3$/year. The percentage of 

saving reaches 27.35%. From the investigation of the IEEE-69 

bus network, HSSA capability to solve SCBs allocation and 

sizing is proved with the least value of annual cost. 

 

 
Fig. 8 PLI of IEEE-69 bus system 

 
Fig. 9 Improvement in IEEE-69 bus system voltages due to 

HSSA compensation 

C.  IEEE-119 bus radial system 

HSSA is applied for the IEEE-119 bus system shown in Fig. 

10. The data of this system are given in [33]. The total network 

loads are 28392.42kVA. The total power of such network is 

22709kW. Total losses without SCB reactive power 

compensation are 1294.35kW. The PLI results for candidate 

bus arrangement to SCB placement are shown in Fig. 11. 

According to PLI  values, the buses are arranged as follows 116, 

52, 77, 73, 114, 112, 74, 117, 56, 115, 101, 79, 33, 83, 113, 53, 

100, 75, 32, 107, 61, 89, 42, …,92, 104.  

 



 

 

Table II Comparison results of IEEE-15 bus system 

 

 

 

 

Table III Comparison results of IEEE-69 bus system 

 

 

 

 

 

 

 

 

Table IV Comparison results of IEEE-119 bus system 

Item 
Un-

compensated 
ABC [16] CSA [15] HS [19] IHA [3] 

Developed 

HSSA 

Total losses (kW) 1294.38 845.39 858.89 926.1 843.14 834.05 

Loss reduction (%) - 33.99 33.64 28.26 34.85 34.87 

Minimum voltage - 0.90886 0.9060 - 0.9020 0.9073 

Total kVAr - 10000 9000 9928 9800 8850 

Annual cost  ($/year) 680310.36 50588.7 501392.6 549418.2 497737.5 488077.63 

Net saving ($/year) - 174423 178917.8 130892.2 182572.8 192232.73 

% saving - 25.64 26.3 19.24 26.8 28.26 

 

Table V Optimal location and sizing of SCBs in kVAr for IEEE-119 bus 
Bus number 116 52 83 74 42 101 79 113 

kVAr  1450 2150 1050 1150 900 800 500 850 

 

Table VI Effectiveness of HSSA  

IEEE system Best ever found from Table II,III,V Developed HSSA *% of increasing of net 

saving with HSSA 

15 bus 9593.84 29.46% 9781.4 30.04% 2% 

69 bus 32082.7 27.14% 32334.3 27.35% 0.8% 

119 bus 182572.8 26.8% 192232.73 28.26% 5.1% 
*% of increasing of net saving with HSSA= (Best ever found from Table III, V, VII - Developed HSSA)/ Best ever found 

from Tables II,III,V.  

  

Developed 

HSSA 
IHA [3] In [30] DE [29] In [28] FGA [27] PSO [14] 

Un-

compensated 
Items 

31.01 31.1255 33.2 32.3 32.6 30.4411 32.7 61.95 Total losses (kW) 

49.99% 49.76 46.41 47.86 47.38 50.86 47.22 - Loss reduction (%) 

0.9662 0.9658 - - - 0.9677 - 0.9424 Minimum voltage 

800 950 900 1132 1193 1100 1192 - Total kVAr 

22782 22969.56 24429.9 24496.8 24339.6 24599.8 24387.1 32563.4 Annual cost ($/year) 

9781.4 9593.84 8133.5 8066.4 8223.8 7963.6 8176.3 - Net saving $/year) 

30.04 29.46 24.98 24.77 25.26 24.46 25.11 - % saving 

Developed 

HSSA 
IHA [3] DE [32] In [31] FGA [30] PSO [14] 

Un-

compensated 
Items 

147.7 145.32 151.37 148.48 156.62 152.48 224.89 Total losses (kW) 

34.32 35.38 32.7 34.0 30.4 32.2 - Loss reduction (%) 

0.9290 0.937 0.9311 0.9305 0.9396 - 0.9092 Minimum voltage 

1400 1700 1450 1800 1600 1621 - Total kVAr 

85865.21 86122.1 89913.4 88901.1 92179.5 90108.5 118200.0 
Annual cost  

$/year) 

32334.3 32082.7 28291.4 29303.7 26025.3 28096.3 - Net saving $/year) 

27.35 27.14 23.93 24.79 22.02 23.77 - % saving 



 

 

 

Fig. 10 One line diagram of IEEE-119 bus system [33] 

 

 
Fig. 11 PLI of IEEE-119 bus system 

With Applying the developed HSSA, Optimal location and 

sizing of SCBs are determined as in Table IV. The losses are reduced 

to 834.05kW. This represents a percentage of reduction of 

34.87%. The annual cost decreases to 488077.63$. The 

resultant net saving percentage is enhanced by 28.26%. In 

addition, it is clear that the buses voltage profile is improved as 

shown in Fig. 12. 

Nobility of HSSA over others 

The notability of the developed HSSA is proved through the 

obtained results as given in Table IV. The results are compared 

with previous works that achieve high-qualified results from the 

literature. From the data given in Table VI, HSSA gives 

competitive results compared to others. The power losses 

reduction achieves 34.87% compared to 28.26% in [19]. Total 

kVAr compensation obtained by HSSA is 8850kVAr at only 

eight buses as in Table V, which is the smallest value, compared 

to what is achieved in [15]. The developed HSSA shows the 

best net saving among the investigated others with a value of 

192232.72$/year with the percentage of saving reaches 28.26%. 

It is clear from the above results that the developed HSSA lends 

itself as strong competitive to other algorithms.  

 

 
Fig. 12 Improvement in IEEE-119 bus system voltages due to 

HSSA compensation 

D. HSSA effectiveness outline 

From the different investigated radial systems above, HSSA 

shows strong contribution in achieving the study target, which 

aims primarily to increase the annual net cost saving. Table VI 

highlights the effectiveness of the developed HSSA compared 

to the best results ever obtained through the investigated state-

of-the-art works from the literature. It is clear from Table VI 

that HSSA shows good results in increasing the net saving. It 

reaches 5.1% net saving for the IEEE-119 bus.  

VI. CONCLUSIONS 

In this research, hyper-spherical search algorithm (HSSA) 

has been utilized to estimate the optimal size and allocation of 

shunt capacitor banks. The effectiveness of HSSA is 

demonstrated through different radial distribution systems. 

Simulation results reveal that the developed algorithm is 

effective to offer an optimal scheduling of SCBs estimation in 

order to maximize net annual saving. From the above 

development, comparison results, and discussions, the 

following conclusions are drawn. (1) The developed algorithm 

allows the SCB estimation to be evaluated in an economic and 

high-qualified way. (2) The effectiveness of the developed 

HSSA to estimate the optimal size and allocation of SCBs to 

maximize net annual costs is achieved compared to best results 

ever obtained through the stat-of-the-art works. It reaches 5.1% 

for IEEE-119 bus system. (3) The algorithm is effective and can 

be cooperated with different radial distributed power systems to 

achieve SCBs operation and reduce total ohmic losses.  

APPENDIX 

Number of particles (Npop)=200; Maximum number of 

iterations=200; Nsc=50; 𝛾=0.1; rmin=0.0, rmax=1.1; Nnewpar=10, 

difference between SCs in two successive iteration=0.000001. 
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