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Abstract: Permanent-magnet synchronous motor (PMSM) has 
the capability to produce efficient performance with high 
torque/current and power/weight ratios. Therefore PMSM has 
been used in a wide range of modern variable speed AC drives 
such as electric vehicle (EV) applications. Because of the high 
nonlinearity of PMSM system modelling, the gains of PI 
controller have significant effects on the performance during 
different operating points. In this study, particle swarm 
optimization (PSO) technique is used to specify the optimal PI 
controller's gains for a wide range of operation. A comparison 
between fixed and variable gains is investigated. The optimal 
results are used to map the PI controller's gains at variable 
operating load speed and torque using mathematical surface 
fitting tool for online gains adaptation. The proposed 
methodology is applied on the EV as a case study at different 
driving cycles. 
 
Keywords: Permanent-magnet synchronous motor (PMSM), 
Electric vehicle (EV), DTC, PI, PSO. 

 
1. Introduction 

The EV has many advantages from the environmental 

and economic point of view. Therefore, many researchers 

are focusing on its development and performance. A well-

designed robust controller should consider the system 

behavior improvement in steady and dynamic operating 

states (EV torque and speed variation requirement). The 

PMSM has been widely used in many applications such 

as EV, wind systems, and industrial robots due to its 

advantages of high torque-mass ratio, high power-volume 

ratio, and high efficiency [1]. The PMSM drives are 

nonlinear systems and therefore their performance can be 

affected by parameters values during online operation 

which make the control process difficult. The optimal 

design of simple, accurate and robust controller should be 

able to consider the variations in motor parameters, speed 

and load torque. 

The gains of proportional integral (PI) controllers of 

PMSM derive for EV can be fixed or adaptive. The fixed 

gain type is simple and easy in real-time implementation 

but it is not suitable for high performance variable speed 

drive applications such as EV because its performance is 

sensitive to the plant parameter variations, load and speed 

variations. Therefore, it can be used in control application 

around the operating point. Adaptive gains PI controllers 

have to be adjusted online to enhance the performance at 

a wide range of operating conditions [2,3]. 

A self-tuning fuzzy controller used to adjust the gains 

 
 

for speed control of induction motor based on indirect 

field oriented control. A comparison between the results 

of fixed gain and the self-tuning fuzzy controller 

demonstrates smaller overshoot and faster response [4,5].  

A simplified adaptive neuro-fuzzy controller for speed 

control of induction motor is presented which based on 

fuzzy logic and four layers of feed-forward back 

propagation neural network, weights of neural network 

and membership functions of fuzzy logic are tuned online 

for speed control using speed error as input [6,7]. 

An adaptive neuro-fuzzy controller (NFC) based direct 

torque control (DTC) applied for induction motors is 

proposed. The methodology based on the adjustment of 

the parameters of the NFC for minimizing the error 

between the actual acceleration and the reference value. 

In addition to tuning the parameters of NFC, an online 

hysteresis band limits adjustment for torque hysteresis 

controller is used to minimize the steady state torque 

ripples [8]. 

A modified harmony search algorithm and general 

type-2 fuzzy logic controller used for tuning PI controller 

gains to consider the variation in the operating condition 

like load and speed requirement [9]. PSO has been used 

as optimization technique for adaptation of PID controller 

gains. PSO application for online adaptation of PI speed 

controller with variable PMSM moment of inertia based 

on field oriented control is presented in [10,11,12].  

Speed control of EV using PMSM and online variable 

PI controller gains based on DTC scheme proposed in this 

paper. PSO has been used to search the optimal gains of 

the speed, flux and torque controllers of PMSM drive at 

many operating conditions of speed and load variations. 

The optimal gains of PI controllers estimated by PSO for 

the speed outer loop and the two inner loops flux and 

torque used to estimate the control surface for each 

controller in a wide range of operating conditions. Then, 

the control surface used to generate variable PI 

controller’s gains as a function of speed, torque and flux 

error to control the motion of EV reducing the speed 

tracking error. The proposed methodology is tested at 

variety of standard deriving cycles. 

 
2. System Modeling 

The system under investigation of the EV speed control 
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using DTC of PMSM presented in Fig. 1. The system 

model consists of PMSM model, DTC model, and vehicle 

model. The controlling system contains one outer loop for 

speed control (PI-1) and two inner PI controllers’ loops 

for torque (PI-2) and flux (PI-3). The output of the inner 

controllers (𝑢𝑑−𝑞) used for generation of space vector 

modulation switching signals (𝑆𝐴,𝐵,𝐶). The modulation 

switching signals used to control the out voltage (𝑉𝐴,𝐵,𝐶) 

of the three-phase inverter. The PSO used to optimize the 

gains for all controllers based on variety of operating 

conditions of speed (𝑤𝑟) and torque (𝑇𝑒). The next 

sections describe the modeling of each part.  

 
Fig. 1. The test system model 

2.1 . Modeling of PMSM 

The mathematical model of PMSM is formulated based 

on a surface-mounted type. The model can be described 

by the following equations in a direct-quadratic 

synchronously rotating reference frame (d-q) [13]. 
 

𝑢𝑑 = 𝑅𝑠. 𝑖𝑑 +
𝑑𝜓𝑑

𝑑𝑡
−𝑤𝑟𝜓𝑞            (1) 

𝑢𝑞 = 𝑅𝑠. 𝑖𝑞 +
𝑑𝜓𝑞

𝑑𝑡
+𝑤𝑟𝜓𝑑                (2) 

𝜓𝑑 = 𝐿𝑑 . 𝑖𝑑 + 𝜓𝑝𝑚                (3) 

𝜓𝑞 = 𝐿𝑞 . 𝑖𝑞                   (4) 

𝑇𝑒 =
3

2
𝑃 (𝜓𝑑 . 𝑖𝑞 − 𝜓𝑞 . 𝑖𝑑)                 (5) 

𝑇𝑒 =
3

2

1

𝐿𝑠
𝑃|𝜓𝑠||𝜓𝑚| 𝑠𝑖𝑛 𝛿                 (6) 

𝑇𝑒 =
3

2
𝑃 (𝜓𝛽 . 𝑖𝛼 − 𝜓𝛼 . 𝑖𝛽)                   (7) 

 

where 𝑢𝑑 and 𝑢𝑞 are the d-axis and q-axis input voltage 

components, 𝑖𝑑 and 𝑖𝑞 are the d-axis and q-axis rotor 

current components, 𝑅𝑠 is the stator resistance, 𝑤𝑟is the 

actual rotor speed, 𝜓𝑑 and 𝜓𝑞 are the stator flux 

components in rotating d-q frame, 𝐿𝑑 and 𝐿𝑞 are the d-

axis and q-axis components of the motor inductance, 𝜓𝑝𝑚 

is the permanent magnetic flux, Te is the electromagnetic 

torque, and P is the number of pole pairs, δ the load angle, 

, ψα and ψβ are the stator flux components in stationary 

frame, iα and iβ are the stator current components in 

stationary frame. 

The stationary frame is preferred in DTC PMSM 

modeling to simplify the transformation. Equation (7) 

represents machine electromagnetic torque in stationary 

α-β coordinate.  

2.2 Direct torque control  

The basic principle of DTC is to directly control the 

stator flux and the electromagnetic torque by the selection 

of optimum voltage vector. The voltage vector is selected 

according to difference between the reference and actual 

values of electromagnetic torque and stator flux. 

Fig. 2 presents the vector of stator flux linkage, Ψs and 

the rotor flux Ψpm in the d-q frame. 

 
Fig. 2. The vector reference frame 

The load angle between the stator flux and rotor flux (δ) 

is constant in the steady state operation where both stator 

flux and rotor flux rotate at the synchronous speed. In 

transient operation, δ varies due to the variation of stator 

and rotor flux rotating speed. The mechanical time 

constant of the system is very slow compared to the 

electrical time constant. The rotating speed of the stator 

flux can easily be controlled with respect to the rotor flux 

by selecting the voltage vector according to flux position 

can control the torque. The relation between the 

electromagnetic torque and the load angle (δ) is presented 

in Equation (6). 

2.3 Vehicle modeling 

The EV modeling should consider all the forces 

affecting of the motion during different operating 

conditions. The main forces affecting the motion are the 

aerodynamic drag force, rolling resistance of the tires, the 

hill-climbing force and the gravitational force as shown in 

Fig. 3. The vehicle dynamic equation which describes the 

total force can be formulated by [14,15]: 

𝐹𝑡𝑟𝑎𝑐𝑡 =
1

2
𝜌𝑎𝑖𝑟. 𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝐶𝐷𝑉𝑤

2 +𝑀𝑣𝑒𝑐ℎ 𝑔 𝑓𝑟 +

𝑀𝑣𝑒𝑐ℎ𝑔 sin𝛼 +𝑀𝑣𝑒𝑐ℎa             (8) 

where Ftract is the required total force of the EV, ρair 
is the mass density of air, Afrontal  is the frontal area of 
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the vehicle, CD is the coefficient of aerodynamic drag, 𝑉𝑤 

is the linear speed of the vehicle relative to wind, Mvech 

represents the mass of the EV, g is the acceleration of 

gravity,  fr represents the rolling resistance coefficient, α 

is the road angle, and a is the vehicle acceleration. 

 
Fig. 3. Forces effecting the EV 

The net force Ftract produces an opposite torque (𝑇𝐿) 

against the driving motor, which can be described by 

equation (9). The differential equation (10) represents 

dynamic behavior of the combination of PMSM and EV 

[9,15].  

𝑇𝐿 = 𝐹𝑡𝑟𝑎𝑐𝑡 ∙
𝑟

𝐺
                   (9) 

𝑑𝑤𝑟

𝑑𝑡
= 𝑇𝑒 − (

1

𝐽+𝑀𝑣𝑒𝑐ℎ∙
𝑟2

𝐺2

+ 𝐵)𝑤𝑟 − 𝑇𝐿        (10) 

where r is the tire radius of the EV, G the gearing ratio 

and B is the motor friction coefficient.  

The traction PMSM must be able to provide sufficient 

torque to overcome the total required force (Ftract) and 

propel the vehicle forward at a desired speed. 
 

3. PI Controller Gain Selection using PSO 
The basic idea is to adjust the gains of speed, flux, and 

torque controllers in order to track the reference speed at 

minimum error on the basis of the speed, flux and torque 

error as shown in Fig. 1. At each operating condition, PSO 

algorithm used to optimize the gains of the PI controllers 

for high-performance DTC drive. 

3.1. Fundamentals of PSO 

PSO as a famous meta-heuristic optimization algorithm 

is used in searching for the optimal solution within a pre-

specified search space. The searching process is 

iteratively modify the positions of pre-specified initial 

solutions (particles) based on the local and global 

experiences of the particles in the swarm. Each particle 

represents the variables for the problem under 

investigation. The position of each particle (𝑋𝑖
𝑘) is 

updated in each iteration (k) based on their velocities (𝑌𝑖
𝑘) 

using the following equations [16]: 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝜒𝑌𝑖
𝑘+1                     (11) 

𝑌𝑖
𝑘+1 = 𝑧𝑘+1𝑌𝑖

𝑘 + 𝐶1(𝑋𝑙𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝐶2(𝑋𝑔𝑖
𝑘 − 𝑋𝑖

𝑘)  (12) 

 

where, 𝑋𝑖
𝑘and 𝑌𝑖

𝑘 are the position and velocity of particle 

i in iteration k. 𝜒 is a constriction factor to improve the 

swarm conversion. z is a weight factor for controlling the 

velocity of the swarm towards the optimal solution.C1 and 

C2 are generated random numbers in the range of 0 and 

1.5. 𝑋𝑙𝑖
𝑘 and 𝑌𝑔𝑖

𝑘are the local and global best positions of 

particle i at the current position in the k iteration. 

3.2. Objective function and constraints 

The particles in the swarm move during the 

optimization process in the direction of minimizing the 

average of the absolute speed error as an objective 

function (𝑤𝑒𝑟
𝑎𝑣) considering satisfaction of a group of 

constraints based on the problem under investigation. 

Constraints satisfaction is accounted using constraints 

violations during the optimization process specialty when 

all particles in the swarm are infeasible. The constraints 

are average error in machine flux and root main square 

error associated with the torque fluctuations. 

Violations of constraints limits are used to penalize the 

objective function of the infeasible particles to move the 

swarm towards the feasible region. Many penalty 

functions are used to account the constraints violations. 

Penalty functions can be classified mainly into static, 

dynamic and adaptive Penalty functions with online 

parameters adaptation are most efficient and utilized ones 

where no user-specified parameters are specified. A 

penalty function with online-parameters adaptations 

based algorithm is introduced and used in many 

applications [17]. 

In this paper, each particle represents the gains of the 

speed, toque and flux controllers. The original objective 

is considered as minimizing of the mean absolute of speed 

tracking error over the time horizon. The constraints taken 

into account are the mean absolute of flux error and the 

mean absolute of torque error. The constraints violations 

are considered using a self-adaptive penalty formulation 

for the infeasible solutions in swam where no need for 

parameters estimation in the formulation [18]. A modified 

fitness function (𝐹𝑖
𝑘 = 𝑓(𝑓𝑖

𝑘, ∁𝑖
𝑘)is formulated base on the 

normalized original objective function (𝑓𝒊
𝒌) and 

normalized average constraints violations (∁𝑖
𝑘) of pre-

specified error. The problem can be formulated as 

follows: 
 

Minimize the average of the absolute speed error: 

𝑓𝒊
𝒌 = 𝑤𝑒𝑟

𝑎𝑣                    (13) 

Subject to: 

𝜓  
𝒂𝒗 = |

∑ (ψ𝑟𝑒𝑓−ψ𝑠)
𝑁
𝑛=1

𝑁
|<ψ𝑒𝑟

𝑚𝑎𝑥            (14) 

𝑇  
𝒂𝒗 = |

∑ (𝑇𝑟𝑒𝑓−𝑇𝑒)
𝑁
𝑛=1

𝑁
| < T𝑒𝑟

𝑚𝑎𝑥           (15) 



 

 

where 𝜓  
𝒂𝒗.and 𝑇  

𝒂𝒗 are the average errors of stator flux 

and machine torque, ψ𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓 are the reference 

values of stator flux and torque, ψ𝑒𝑟
𝑚𝑎𝑥 and T𝑒𝑟

𝑚𝑎𝑥are the 

maximum limits of the errors in stator flux and torque and 

N is the number of discrete values during operating time.  

The iterative optimization process is shown in Fig. 4. 

 
Fig. 4. Iterative optimization process using PSO 

The constraints violations are used to compromise 

between the infeasible solutions in the swarm to push the 

swarm towards the feasible region based on the ratio of 

particles feasibility in the swarm [18]. High level of 

penalization based on the constraints violations is used in 

case of low feasible solutions ratio and with increasing of 

the ratio of feasible solutions in the swarm the motion of 

the swarm depend on the original objective function 

during specify the local and global best position for each 

particle. The target is to move in the way to minimize the 

original objective function without constraints violations. 

The selection strategy for selecting the local and global 

best positions, which used to modify the particle 

positions, presented in Fig.5.  

 
Fig.5. Selection strategy for local and best locations 

In the selection strategy, the state of feasibility is used 

to modify the location of local and global best positions 

to accelerate the swarm speed towards the feasible 

region during the iterative process. 

3.3. PSO procedure for optimal gains selection 

The procedure of searching for the optimal gains using 

PSO can be summarized as follow: 

Step 1: Specify the limits of the controller gains and 

formulate the objective function and constraints. 

Step 2: Generate initial population for all particles 

within the specified limits of gains. 

Step 3: Simulated the test system for each particle 

(solution) and calculate the objective function and 

constraints 

Step 4: Calculate the modified objective function for 

each particle. 

Step 5: Select or modify the local and global best 

particles based on the modified objective function and the 

feasibility of particles. 

Step 6: Modify the particles positions considering 

variable limits. 

Step 7: Check the stopping criteria and print the global 

best solution and if not satisfied go to step 3. 
 
4. Simulation Results 

The test system described in Fig.1 is modeled and 

simulated in MATLAB-SIMULINK software 

environment. PSO algorithm is used to optimize the 

speed, flux, and torque PI gains controllers. The system 

parameters are listed in Table I. 

 

Table I 

PMSM and EV parameters of Ford Vocus car 
Motor parameters Vehicle parameters 

R (ohm) 0.0068 Mass Mvech (kg) 1230 

Ld (mH) 0.482 Frontal area Afrontal (𝑚2) 2.26 

Lq (mH) 0.482 Tire radius r (m) 0.2 

P (poles) 4 Drag coefficient (CD) 0.324 

J (kg-𝑚2) 0.0015 Rolling resistance 

coefficient ( 𝑓𝑟) 

0.01 

Ym (Wb) 0.1413 

4.1 PSO application for selecting optimal PI 

controller gains  

4.1.1 Results for Fixed and variable gains  

At first case, the gains considered fixed over the 

simulation time for all operating points where the speed 

and torque considered variable. The optimal values of PI 

controller gains tabulated in Table (II). At second case, 

the gains considered variables during the simulation 

time. The optimal values of PI controller gains tabulated 

in Table (III). During simulation, there are load step 

changes at 0.6 sec, 1.5 sec, and 2.5 sec. There are ramp 

changes in the speed at 0-0.3 sec, 1-1.1 sec, 2-2.1 sec 

and 3-3.1 sec. Fig. 6 presents the simulation result of the 

optimal solution for speed and torque in the two cases.  
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Table II 

Optimal solution with fixed PI controller gains 
Speed controller Torque controller Flux controller 

𝑘𝑝
𝑆 𝑘𝑖

𝑆 𝑘𝑝
𝑇 𝑘𝑖

𝑇 𝑘𝑝
𝐹 𝑘𝑖

𝐹 

85.63 3215.95 0.12 95.83 273.35 2975.95 

 

Table III 

Optimal solution with variable PI controller gains 

Time (sec) 
Speed controller Torque controller Flux controller 

𝑘𝑝
𝑆 𝑘𝑖

𝑆 𝑘𝑝
𝑇  𝑘𝑖

𝑇  𝑘𝑝
𝐹 𝑘𝑖

𝐹  

0 < t ≤ 0.3 189.86 5000.0 0.36 92.08 585.35 2853.08 

0.3 < t ≤1 101.43 4181.97 0.68 40.12 833.84 2506.84 

1 < t ≤ 1.1 200.00 3954.97 0.07 42.74   37.27 1720.56 

1.1 < t ≤ 2 66.47 3492.00 0.56 79.90   1358.99 3191.17 

2 < t ≤ 2.1 116.54 3242.69 0.74 60.69 796.94   2388.44 

2.1 < t ≤ 3 65.94 3042.83 0.59 52.11   584.02   204.09 

3 < t ≤ 3.1 173.44 3109.46 0.18 177.64 281.88   3045.05 

3.1 < t ≤ 3.5 72.12 2975.80 0.44 38.06   1995.66 2386.10 

 

 
(a) 

 
(b) 

Fig. 6. Drive response with fixed and variable gains 

4.1.2 Fixed and variable drive performance 

measurement 

The performance measurement of the PMSM drive in 

case of fixed and variable PI controller gains based on the 

maximum overshoot (𝑤𝑒𝑟
𝑚𝑎𝑥) and the standard deviation 

(𝑤𝑒𝑟
𝑠𝑑) of the speed tracking error. Fig. 7 refers to the in 

speed tracking error of both cases. From the figure, the 

case with PI controller variable gains drive system shows 

more rapid response. The drive performance quality 

measured and presented in Table IV. The results shows 

that the performance of variable PI gains drive is more 

accurate and track the require speed with less tracking 

error and less speed overshoot. 

 

𝑤𝑒𝑟
𝑚𝑎𝑥 = max (𝑤𝑒𝑟)                (16) 

𝑤𝑒𝑟
𝑠𝑑 = √∑

(𝑤𝑒𝑟−𝑤𝑒𝑟
𝑎𝑣)2

𝑛
𝑛
1               (17) 

 

Table IV 

Drive Performance Measurement 
 Variable gain Fixed gain 

𝑤𝑒𝑟
𝑎𝑣  0.0364 0.0882 

ψ  
𝒂𝒗 0.0026  0.0031 

T  
𝒂𝒗 4.2193 5.188 

𝑤𝑒𝑟
𝑠𝑑 0.0859 0.2410 

𝑤𝑒𝑟
𝑚𝑎𝑥 1.0471 2.4110 

 
Fig. 7. Drive tracking error with fixed and variable gains  

4.2 EV speed control  

The results indicates that the operation with variable 

gains PI controllers is more efficient than the operation in 

case of fixed gains PI controllers. 

The variable gains PI controller’s data used to build 

surface equations, which represent the relationship 

between inputs and output of each PI controller to be 

applicable for different operating points of speed and 

torque. Surface fitting mathematic tool used to interpolate 

the optimal gain values of PI controllers. Fig. 8 maps the 

relation between the inputs of speed controller (PI-1) 

(speed error (wer) and integration of speed error (swer)) 

and the reference torque (Tref) as an output. 
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Fig. 8 Speed controller inputs-output relation 

The same process is applied for torque and flux PI 

controllers. Then the estimated relations of speed, flux 

and torque controller listed in Equations (18-20) are 

applied for controlling the speed of EV. The accuracy of 

the proposed methodology of gains estimation is 

investigated using two different standard deriving cycles. 

The surface equations represent the speed, torque and 

flux time varying gains PI controllers are: 

 

𝑇𝑟𝑒𝑓 = 184.1 𝑤𝑒𝑟 + 5482𝑠𝑤𝑒𝑟 − 82.27 𝑤𝑒𝑟
2 −

 2220 𝑤𝑒𝑟𝑠𝑤𝑒𝑟 + 5.11𝑒4 𝑠𝑤𝑒𝑟
2
         (18) 

𝑉𝑞 = 0. 285 𝑇𝑒𝑟 + 4.271 𝑠𝑇𝑒𝑟 + 5.33𝑒 − 5  𝑇𝑒𝑟
2 +

0.299 𝑇𝑒𝑟𝑠𝑇𝑒𝑟 + 217.4 𝑠𝑇𝑒𝑟
2           (19) 

𝑉𝑑 = 5.275  𝑒𝑟 + 0.581 𝑠 𝑒𝑟 −   0.528 𝑒𝑟
2 −

 2.32  𝑒𝑟𝑠 𝑒𝑟 − 0.1998  𝑠 𝑒𝑟
2         (20) 

 

The obtained surface equations representing the PI 

controllers applied on two different test cycles. The 

selected driving test cycles are the urban dynamometer-

driving schedule (UDDS) and the highway driving cycle 

test (HWDCT) which used to test the EV drive system. 

 

4.2.1 Urban dynamometer driving schedule 

Fig. 9 presents the EV system response obtained over 

the UDDS cycle. The motor drive has the capability to 

track the reference speed with speed tracking error of 

−1.49 ∗ 10−5 km/h and maximum speed tracking error of  

−7.62 ∗ 10−2 km/h. The motor torque varies within the 

motor rated torque with a maximum overshoot value of 

84.97 N.m. 

 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 9. Vehicle response in case of UDDS 

4.2.2 Highway driving cycle test 

Fig. 10 shows the vehicle response derived over a 

HWDCT cycle. The motor drive has the capability to 

track the reference speed with speed tracking error of 

−5.33 ∗ 10−6 km/h and maximum speed tracking error of 

Wer
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−7.87 ∗ 10−2 km/h. The motor torque varies within the 

motor rated torque with a maximum overshoot value of 

90 N.m. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Vehicle response in HWDCT 

5. Conclusion 
 

The paper presents modeling, simulation and 

comparison of a speed control of PMSM drive based on 

DTC in case of variable and fixed gains PI controllers at 

different operating states. The parameters of outer PI 

speed and the inners flux and torque controllers are 

optimized using PSO. The results from the comparison 

shows a smaller overshoot and faster response of the 

variable gains PI controllers over fixed ones. A 

mathematical model is obtained using mathematical 

surface fitting tool to map the PI controller's gains 

adaptation for variable operating load speed and torque. 

The obtained mathematical model is applied on the EV as 

a case study at two different driving cycles (UDDS and 

HWDCT|). The results clarify that the PMSM drive with 

the obtained PI mathematical model able to track the 

electric vehicle load requirements with a very low 

tracking speed error in both UDDS and HWDCT driving 

cycles. 
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