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Abstract: A recent case study conducted at one of the 

thermal power plants shows that the CO2 emission which 

is the main reason for global warming is high compared to 

maximum limits. Plug-in hybrid electric vehicles (PHEVs) 

and renewable energy sources, in particular wind energy 

have recently been getting more interest because of 

various environmental and economic considerations 

Hence a solution is proposed to reduce emission level as 

well as cost of operation by incorporating PHEVs and 

renewable energy. Combined environmental economic 

dispatch (CEED) problem proposed in several literatures 

shows the problem is highly nonlinear. Hence, a powerful 

optimization tool is required to solve such a problem and 

because of that NSGA-II algorithm is proposed in this 

paper. In this paper, the impact of PHEVs and renewable 

energy integration into the electric grid is investigated. A 

case study in ten unit system is presented to verify the 

success of this proposed algorithm. 
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1. Introduction 

The alarming rate at which the global energy 

reserves depletion is a major worldwide concern at 

both economic and environmental levels. The power 

industry represents a major portion of global 

emission, which is responsible for 40% of the global 

CO2 production, followed by the transportation 

industry (24%). Climate change is caused by 

greenhouse gas emissions (GHG) and it is now 

widely accepted as a real condition that has 

potentially consequences for human society and 

industries. This is needed to factor into strategic 

plans. The fossil fuel sources are rapidly depleting 

and they are responsible for greenhouse gas 

emissions. Hence, most of the countries are making 

their own regulations and policies to minimize the 

use of fossil fuels in order to reduce the greenhouse 

gas emissions and to preserve the availability of 

fossil fuels. Therefore, the use of green and 

renewable energy sources like wind, solar etc. are 

promoted by most of the countries. The literature 

shows that the usage of green and renewable energy 

sources gets increased year by year. Of course, wind 

energy is the most representative type of renewable 

energy today. It will be indubitably important to 

quantitatively assess the effectiveness of reducing 

emissions by increasing the penetration of wind 

power [1].  

Similarly, the battery operated vehicles are called 

as plug-in hybrid electric vehicles (PHEVs) and are 

integrated with the electrical power network for peak 

shaving and to minimize the emission from fossil 

fuel based power stations [2]. PHEV is growing in 

popularity in most of the countries in an effort to 

overcome the problems of pollution, depleting 

natural oil and fossil fuel reserves and rising fuel 

(petrol, diesel etc.) costs. Also, most of the 

governments force the automotive industries to 

reduce the emissions and to adopt cleaner and more 

sustainable technologies such as PHEVs [3]. 

Therefore, quite a lot of automobile industries have 

already begun to expand the PHEV market.The smart 

grid, which is also called as future grid, involves all 

the conventional power plants along with renewable 

energy sources and PHEV. Some literature [4-6] says 

that the inclusion of PHEV can reduce the emission 

level in the power network and some other paper 

claims that instead of reducing emission level, the 

PHEV increases the emission level. So this has to be 

discussed further. 

In this work, a proposal is given to minimise the 

emission and cost of both thermal generators and 

wind electric generators along with PHEV and 

subjected to several constraints, since only very few 

papers combines all this category[7]. The impacts of 

renewable energy and PHEV on combined economic 

and emission dispatch (CEED) problem are well 

addressed in this paper. In particular, Weibull wind 

speed distribution for wind energy analysis is well 

presented here. The Weibull distribution is a two-

parameter function and it is commonly used to fit the 

wind speed frequency distribution [8]. It provides a 
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convenient representation of the wind speed data for 

the wind energy cost function calculation purposes, 

which is not addressed in most of the works.To solve 

the real time CEED problem, various techniques 

have been proposed by several researchers [9]. 

Though, CEED issues have been successfully solved 

by several existing techniques, the related dispatch 

programs need to be re-run, when the system changes 

and thus, it is unsatisfactory for the real time 

dispatch. Particle swarm optimization (PSO) method 

is also used [7, 10] to solve CEED problem, since it 

provides more computational efficiency, less 

computational effort to reach accurate solutions and 

best results compared to the other methods, such as 

the genetic algorithm, evolutionary programming etc. 

[11].   

In this work, modified PSO with time varying 

acceleration coefficients (MPSO-TVAC) approach, 

which enhances particle diversity and improves 

global searching capability is proposed to solve the 

CEED problem, as an algorithmic level novelty. 

Also, NSGA-II approach [12-14], which is one of the 

best optimization techniques, is proposed as novelty 

to solve the CEED problem incorporating PHEVs 

and wind energy. 

The organization of the paper is as follows. 

Motivation behind the work is explained in section 2. 

The section3 illustrates the CEED problem 

formulation by considering wind farm cost function 

selection and PHEV modelling. Section 4 explains 

about the overview of modified PSO and NSGA-II 

algorithm and the implementation of the same for 

solving the CEED problem. In section 5, test system 

and the simulation results are presented and analysed. 

The conclusions are given in section 6. 

 

2. Motivation for the work 

 The Southern Regional Load Dispatch Centre 

(SRLDC), Ministry of Power, Government of India 

report says that thermal power generation effective 

installed capacity is increased every year. For 

example, the thermal power generation installed 

capacity increased to 5620 MW from 5020 MW in 

the last 6 months (April 2016 – September 2016) in 

Tamil Nadu state alone. Similarly, the capacity is 

increased significantly in other states linked with 

SRLDC and automatically the level of greenhouse 

gas emissions is getting increased. Here, we made an 

attempt to study the emission level in thermal power 

plants and gas power plants. 

Case study 1:A case study conducted at one of the 

210 MW thermal power plants in the state of Tamil 

Nadu, India is given in Table 1 and Table 2. They 

show the emission level of various gases such as 

carbon dioxide (CO2), sulphur dioxide (SO2), 

nitrogen oxide (NOX), oxygen (O2) etc. Table 1 

shows average level of emission of CO2 and O2 

measured at economizer outlet point during a 

particular day of the month of August 2016. The 

parameters are measured with the help of ORSAT 

gas analyzer. It is clearly indicates that emission level 

is higher than the standard limits. Table 2 gives 

ambient air emission level measured during the study 

period. 

A case study conducted at one of the 210 MW 

thermal power plants in the state of Tamil Nadu, 

India is given in Table 1. It shows the emission level 

of various gases such as CO2, SO2, NOX etc. Table 1 

shows average level of emission of CO2 and O2 

measured at economizer outlet point during a 

particular day of the month of August 2016. The 

parameters are measured with the help of ORSAT 

gas analyzer. 

 
Table 1 

 Emission level at economizer outlet 

Parameter 

CO2 (%) O2 (%) 

Measured 

level 
Limits 

Measured 

level 
Limits 

Level 21.56 14.99 3.49 4.26 

 

Table 2 

 Ambient air emission 

Parameter 
SO2 

(µg/Nm
3
) 

NOX 

(µg/Nm
3
) 

SPM 

(µg/Nm
3
) 

Measured 

level 
34.08 0.23 Not tested 

Limits 80 80 100 

 

Case study 2: Similarly, a case study is conducted at 

one of the gas turbine power station in Tamilnadu 

state during August 2016. The emission level is listed 

in Table 3. It indicates clear violation of standards. 

 
Table3 

 Emission level at gas turbine power plant 

Parameter NOX (ppm) CO (ppm) SO2 (ppm) 

Measured 

level 
28 9.1 Not tested 

Limits 20 2-4 0-2 

 

Another side, it is well known that wind energy is 

one of the promising energy sources in the world. 



    

 

 

   

   

 

   

   

 

   

       
 

The wind generator installed capacity and power 

generation level in Tamilnadu state during the last 6 

months is given in Table 4. It is seem to be the wind 

energy installed capacity is increased nearly 400kW 

in the last 6 months. The power generation level is 

only 30% when it is compared with installed 

capacity. If the percentage of wind power generation 

capacity is increased, the thermal power plant share 

can be reduced significantly.  Similarly, plug-in 

electric vehicles (PHEV) are identified as another 

alternative energy source. Also, it is well known that 

combining thermal energy with green energy like 

wind energy can reduce the emission (CO2 etc.) as 

well as cost of operation of thermal plants. 

Table 4 

Wind power generation during April-September 2016 

Month April May June July August 
Septem

-ber 

PG(kW) 302.8 1018.6 1882.4 2041.2 2525.7 2277.3 

IC (kW) 7251.9 7525.3 7525.3 7525.3 7525.3 7616.2 

Source: http://www.srldc.org/var/ftp/reports/pdf 

 

Therefore an environmental/economic dispatch 

problem is designed in this work to determine the 

optimum loading of all committed units to minimize 

the emission as well as cost of the thermal plants by 

integrating green energy like wind energy and 

electric vehicles. 

 

3. Mathematical problem formulation 

The environmental/economic dispatch problem 

[7] is designed to determine the optimum loading of 

all committed units to minimize the cost and 

emission functions subject to the system constraints. 

3.1 Objective function 

The proposed problem is designed to determine 

the optimum loading of all the committed units to 

minimize the cost function and emission subject to 

the system constraints. Therefore the objective 

function is given by the equation (1). For a specified 

power plant, both cost and emission can be expressed 

as a quadratic function, as described in equations (2) 

and (3), respectively. 

Objective function=  𝑤𝑐𝑇𝐶 + 𝑤𝑒𝑇𝐸(1) 

Where, 𝑇𝐶 is total (Generation) cost function, 𝑇𝐸 is 

total emission function, 𝑤𝑐  is cost coefficient and 𝑤𝑒  

is emission coefficient. 

The total fuel cost TC ($/hr) of N generating units 

can be represented as follows. 

𝑇𝐶 =  𝑎𝑖 + 𝑏𝑖𝑃𝑖 𝑡 + 𝑐𝑖𝑃𝑖
2(𝑡)𝑁

𝑖=1 (2) 

Where, 𝑃𝑖 𝑡  is generated power of 𝑖𝑡ℎ  unit at hour 

t.𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  is fuel cost coefficients of 𝑖𝑡ℎ  unit and N is 

number of generator units. 

The total GHG emission, TE (tons/hour) of N 

generating units can be represented as, 

    𝑇𝐸 =  (𝐴 ∗  𝛾𝑖𝑃𝑖
2 𝑡 + 𝛽𝑖𝑃𝑖 𝑡 + 𝛼𝑖 + 𝜉𝑖 ∗

𝑁
𝑖=1

exp𝑃𝑖𝑡∗𝜆𝑖)      (3) 

Where, 𝛾𝑖 ,𝛽𝑖 ,𝛼𝑖 , 𝜉𝑖𝑎𝑛𝑑𝜆𝑖  are greenhouse gas (GHG) 

emission coefficients of the𝑖𝑡ℎunit and A is emission 

curve coefficient. 

 

3.2 Constraints 

The objective function represented by equation (1) 

is subjected to physical and operating constraints as 

given in equations (4) and (5) and presented as 

follows. 

Load balance:    𝑃𝑖 𝑡 = 𝐷 𝑡 + 𝑃𝑙𝑜𝑠𝑠 (𝑡)𝑁
𝑖=1    (4) 

Where, 𝐷 𝑡 is demand of network at hour t and 

𝑃𝑙𝑜𝑠𝑠 (𝑡) active power loss at hour t. 

Generating unit capacity limit: 

𝑃𝑖𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑖𝑚𝑎𝑥 (5) 

Where,𝑃𝑖𝑚𝑖𝑛  is minimum generating power of the𝑖𝑡ℎ  

unit and 𝑃𝑖𝑚𝑎𝑥 is maximum generating power of the 

𝑖𝑡ℎ  unit. 

3.3 Modeling of wind farm 

The characterization of wind farm model in the 

CEED problem is a challenging task. The average 

wind power is considered for the calculation in most 

of the cases. Although, this approach seems 

intuitionally fine and can be easily implemented, it 

has so many drawbacks. Hence, it is necessary to 

model the wind farm in a more accurate and detailed 

manner. Therefore, the wind farm is modeled based 

on the detailed cost function as given in equation (6). 

𝐶 =  𝐶𝑑 𝑤𝑖 +  𝐶𝑝 𝑊𝑖𝑎𝑣 −𝑤𝑖 +
𝑁𝑤𝑓

𝑖=1

𝑁𝑤𝑓

𝑖=1

                                              𝑖=1𝑁𝑤𝑓𝐶𝑟(𝑤𝑖−𝑊𝑖𝑎𝑣)       

(6) 
Where, 𝑁𝑤𝑓  is number of wind farms, 𝐶𝑑 𝑤𝑖 is 

direst cost function for the 𝑖𝑡ℎwind farm, 𝐶𝑝 𝑊𝑖𝑎𝑣 −

𝑤𝑖 is penalty cost of 𝑖𝑡ℎ wind farm due to under-

estimation of expected wind power and 𝐶𝑟(𝑤𝑖 −
𝑊𝑖𝑎𝑣 ) is reserve requirement cost of 𝑖𝑡ℎ  wind farm 

due to over estimation of expected wind power. 

3.3.1 Direct cost function for wind farm 

In this work, all wind turbines in wind farm are 

represented by a single wind turbine. This factor will 

typically take the form of a payment to the wind farm 

operator for the wind generated power actually used. 



A linear cost function (first term) for power output of 

𝑖𝑡ℎwind farm is formulated as given in equation (7). 

 𝐶𝑑 𝑤𝑖 = 𝑑𝑖𝑤𝑖        (7) 

Where,𝑑𝑖 is direct cost coefficient for the 𝑖𝑡ℎ  wind 

farm and 𝑤𝑖  is scheduled wind power output of the 

𝑖𝑡ℎ  wind farm. 

3.3.2 Cost due to underestimation of wind power 

The second and third terms in equation (6) are 

related to the uncertain nature of the WF power 

output given in equation (8) and (9), respectively [8]. 

The second term, which gives penalty cost due to 

underestimation for 𝑖𝑡ℎwind farm is given in equation 

(8). 

𝐶𝑝 𝑊𝑖𝑎𝑣 −𝑤𝑖 = 𝑘𝑝𝑖   𝑤 − 𝑤𝑖 𝑓𝑤  𝑤 𝑑𝑤
𝑤𝑟

𝑤 𝑖
        (8) 

Where,𝑘𝑝𝑖 is penalty cost coefficient because of the 

underestimation of wind Power for𝑖𝑡ℎWind farm, 𝑤𝑟  

is rated wind farm capacity and 𝑓𝑤 𝑤 is probability 

density functions of wind power output. 

3.3.3 Cost due to over estimation of wind power 

The third term in the equation (6) is the reserve 

requirement cost that is similar to penalty cost except 

that in this case, it is a cost due to the available wind 

power being less than the scheduled wind power. 

Thus, the cost due to provision of reserve i.e. due to 

overestimation situation for 𝑖𝑡ℎwind farm is given as, 

𝐶𝑟 𝑤𝑖 −𝑊𝑖𝑎𝑣  = 𝑘𝑟𝑖   𝑤𝑖 −𝑤 𝑓𝑤 𝑤 𝑑𝑤
𝑤 𝑖

0
(9) 

Where,𝑘𝑟𝑖 is reserve cost (over estimation) coefficient 

for the𝑖𝑡ℎ  wind farm. 

The direct cost coefficient and penalty cost may be 

zero, if the wind power plant is not owned by the 

system operator. The probability density function of 

the wind energy conversion system output power is 

obtained by the well-known two-parameter weibull 

function. 

3.3.4 Wind power model and weibull function 

The weibull distribution is a two-parameter 

function and is commonly used to fit the wind speed 

frequency distribution. This family of curves has 

been shown to give a good fit to measured wind 

speed data. The weibull function provides a 

convenient representation of the wind speed data for 

wind energy calculation purposes. The wind speed 

variations for a given site can be well defined by the 

weibull probability density function (PDF) with two 

parameters namely, the scale parameter (c) and the 

shape parameter (k). The PDF of weibull distribution 

is given in equation (10). 

 

𝑓𝑣 𝑣 =  
𝑘

𝑐
  

𝑣

𝑐
 
𝑘−1

𝑒− 𝑣/𝑐 𝑘 , 0<v<∞ (10) 

Where, k is weibull shape parameter at a given 

location, c is weibull scale parameter at a given 

location and v is wind speed. 

The cumulative distribution function (CDF) is 

represented by equation (11). 

𝐹𝑣 𝑣 = 1 − 𝑒− 𝑣/𝑐 𝑘 (11) 

The power (W) generated by the wind generators 

can be represented as given in equation (12). 

𝑊 =
1

2
𝜌𝐴𝑉3𝐶𝑝     (12) 

Where,𝜌 is density of air (kg/𝑚3), A is area swept by 

the wind turbine blade (𝑚2) and 𝐶𝑝 is co-efficient 

performance. 

The power generated by the wind turbine at 

different wind velocities is stated as given in 

equation (13). 

              𝑤 = 0 ,                   𝑣 < 𝑣𝑖𝑎𝑛𝑑𝑣 >

𝑉𝑜               𝑤 = 𝑤𝑟
 𝑣−𝑣𝑖 

 𝑣𝑟−𝑣𝑖 
  ,   𝑣𝑖 ≤ 𝑣 ≤ 𝑣𝑜  

              𝑤 = 𝑤𝑟  ,                 𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑜                  (13) 

Where,𝑣𝑖 is cut-in wind velocity, 𝑣𝑟 is rated wind 

velocity and 𝑣𝑜 is cut-out wind velocity. The 

probability of wind power between these two 

extreme velocities is given by a weibull function 

PDF. Thus, the PDF of the wind energy conversion 

system output power is indicated by 𝑓𝑤 (𝑤) in 

equation (14) and is obtained by the well-known two-

parameter weibull function. 

𝑓𝑤  𝑤 =
𝑘𝑙𝑣𝑖

𝑤𝑟𝑐
 
 1+𝑝𝑙  𝑣𝑖

𝑐
 
𝑘−1

exp  − 
 1+𝑝𝑙  𝑣𝑖

𝑐
 
𝑘
 (14) 

Where, 𝜌 =
𝑤

𝑤𝑟
is the ratio of wind power output to 

rated wind power and 𝑣 =
(𝑣𝑟−𝑣𝑖)

𝑣𝑖
is the ratio of linear 

range of wind speed to cut-in wind speed which are 

intermediate variables. 

The penalty cost due to underestimation for the 

𝑖𝑡ℎwind farm is computed as given in equation (15). 

  𝐶𝑝(𝑊𝑖𝑎𝑣 −𝑤𝑖) = 𝑘𝑝𝑖 {  𝑤 − 𝑤𝑖 𝑓𝑤 𝑤 𝑑𝑤 +
𝑤𝑟

𝑤 𝑖

                     𝑤𝑖{exp⁡(− 
𝑣𝑟

𝑐
 
𝑘
−  exp(− 

𝑣𝑜

𝑐
 
𝑘

)}}   (15) 

Similarly, the analysis for overestimation condition is 

computed as given in (16). 

   𝐶𝑟(𝑤𝑖 −𝑊𝑖𝑎𝑣 ) = 𝑘𝑟𝑖{  𝑤𝑖 −𝑤 𝑓𝑤  𝑤 𝑑𝑤 +
𝑤 𝑖

0

                 𝑤𝑖{1 − exp⁡(− 
𝑣𝑖

𝑐
 
𝑘

+  exp(− 
𝑣𝑜

𝑐
 
𝑘

)}}(16) 

 

3.4 Modeling of PHEV 

The V2G is relatively a new concept, where the 

electric energy is stored in the EV battery and can 

also be fed back to the power grid. The V2G 

structure has a bidirectional energy flow. That is, the 

energy flows from electric vehicles to grid and grid 



    

 

 

   

   

 

   

   

 

   

       
 

to electric vehicles. Utility grid operators can 

communicate with the plugged-in vehicles via the 

established communication link. Utility can buy 

energy from the vehicle owners, when it is required 

during peak hours and sell it back, when demand is 

low during off peak hours. Therefore, PHEV can be 

modeled either as load or energy source based on the 

operating mode [15-16]. Now, the load balance 

constraint in equation (4) is modified as equation 

(17), when PHEVs are considered as source along 

with wind power. 

 𝑃𝑖 𝑡 +  Ƞ𝑃𝑗
𝑃𝐸𝑉 𝑡  𝛹𝑝𝑟𝑒 −𝛹𝑑𝑒𝑝  +

𝑁𝑃𝐸𝑉 (𝑡)
𝑖=1

𝑁
𝑖=1

                                   𝑃𝑤𝑖𝑛𝑑𝑡=𝐷𝑡+𝑃𝑙𝑜𝑠𝑠(𝑡)   (17) 

Similarly, the equation (4) is modified, when PHEVs 

are considered as load as given in equation (18). 

 𝑃𝑖 𝑡 + 𝑃𝑤𝑖𝑛𝑑  𝑡 = 𝐷 𝑡 + 𝑃𝑙𝑜𝑠𝑠  𝑡 +𝑁
𝑖=1

                      𝑖=1𝑁𝑃𝐸𝑉(𝑡)Ƞ𝑃𝑗𝑃𝐸𝑉𝑡𝛹𝑝𝑟𝑒−𝛹𝑑𝑒𝑝    

(18) Where, 𝑃𝑤𝑖𝑛𝑑  𝑡  is wind farm output power and 

𝑃𝑗
𝑃𝐸𝑉 𝑡  is power of 𝑗𝑡ℎ  PHEV and 𝑁𝑃𝐸𝑉(𝑡) is 

number of PHEVs at time t. Ƞ is efficiency of the 

PHEV system and 𝛹𝑝𝑟𝑒 ,𝛹𝑑𝑒𝑝 is present and departure 

state of PHEV’s battery charges respectively. 

 

4. Solving CEED problem 

In this work, the powerful optimization algorithms 

like PSO, modified PSO & NSGA-II algorithms are 

used to solve the highly nonlinear CEED problem. 

 

4.1 Conventional PSO algorithm 

PSO algorithm is a population based stochastic 

optimization technique introduced by Kennedy and 

Eberhart. It is motivated by the behavior of 

organisms such as, fish schooling and bird flocking. 

In the recent years, PSO algorithm has been 

successfully employed to solve many real world 

optimization problems. In the PSO algorithm, each 

particle can be represented by its position and 

velocity. The particles change their positions by 

flying around in a multidimensional search space, 

until a relatively unchanged position has been 

encountered. In the search space, particle best is the 

best position corresponding to the best fitness 

encountered so far, by a particle and is denoted as 

Pbest, whereas, global best is the best position 

encountered so far, among the whole population and 

is denoted as Gbest. The velocity and position of 

each particle are updated using Eqs. (19) and (20), 

respectively. 

𝑉𝑗 ,𝑑
 𝑘+1 

= 𝑤𝑉𝑗 ,𝑑
𝑘 + 𝑐1𝑟𝑎𝑛𝑑1 𝑃𝑏𝑒𝑠𝑡𝑗 ,𝑑

𝑘 − 𝑋𝑗 ,𝑑
𝑘  +

𝑐2𝑟𝑎𝑛𝑑2 𝐺𝑏𝑒𝑠𝑡𝑗 ,𝑑
𝑘 − 𝑋𝑗 ,𝑑

𝑘                                      (19) 

𝑋𝑗 ,𝑑
(𝑘+1)

=  𝑋𝑗 ,𝑑
𝑘 +  𝐶𝑉𝑗 ,𝑑

(𝑘+1)
               (20) 

Where, k is the current iteration; 𝑉𝑗 ,𝑑
𝑘  is the velocity 

of the jth particle in the dth dimension at iteration k; 

𝑃𝑏𝑒𝑠𝑡𝑗 ,𝑑
𝑘  is the own best position of particle j in the 

dth dimension until iteration k; 𝐺𝑏𝑒𝑠𝑡𝑗 ,𝑑
𝑘  is the best 

particle in the swarm in the dth dimension at iteration 

k; c1 and c2 are the cognitive and social component 

acceleration coefficients, respectively; rand1 and 

rand2 are the uniformly distributed random numbers 

between 0 and 1; 𝑋𝑗 ,𝑑
𝑘 is the position of particle j in 

the d
th
 dimension at iteration k; C is the constriction 

factor calculated using Eq. (21); w is the inertia 

weight, which is linearly decreasing as the 

generations proceed and is updated using Eq. (22). 

𝐶 =
2

 2−𝜙− 𝜙2−4𝜙 
           (21) 

𝑤 = 𝑊𝑚𝑎𝑥 −
 𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛  

𝐺𝑚𝑎𝑥
∗ 𝐺  (22) 

Where, ϕ = 4.1; Wmax and Wmin are the initial and 

final values of inertia weights, respectively; Gmax is 

the maximum number of generations; G is the current 

generation.  

To control excessive roaming of particles, the 

velocity of each particle obtained using Eq. (19) is 

restricted by their upper and lower limits and is given 

by Eq. (23).  

𝑉𝑑
𝑚𝑖𝑛 ≤ 𝑉𝑑 ≤ 𝑉𝑑

𝑚𝑎𝑥    (23) 

Where,𝑉𝑑
𝑚𝑎𝑥  is the velocity maximum and 𝑉𝑑

𝑚𝑖𝑛  is 

the velocity minimum in the dth dimension and is 

given by Eqs. (24) and (25), respectively. 

𝑉𝑑
𝑚𝑎𝑥 =

 𝑥𝑑
𝑚𝑎𝑥 −𝑥𝑑

𝑚𝑖𝑛  

𝐾
   (24) 

𝑉𝑑
𝑚𝑖𝑛 = −𝑉𝑑

𝑚𝑎𝑥      (25) 

Where, K=5 is the parameter to control the number 

of intervals in the dth dimension. Even though, PSO 

algorithm can determine a better solution in a fast 

convergence rate, its ability to fine tune the optimal 

solution is lacking because of lack of diversity at the 

end of the search. 

 

4.2 Modified PSO 

In order to prevent premature convergence, the 

proposed modified particle swarm optimization-Time 

variant acceleration coefficient (MPSO-TVAC) 

algorithm is employed. The crossover operator and 

time varying acceleration coefficients are used to 



enhance particle diversity and improve global 

searching capability. The position of particle j, is 

obtained in Eq. (19) and is mixed with Pbestj to 

generate the new position as shown in Eq. (26).  

𝑥𝑗 ,𝑑
𝑘+1 =  

𝑥𝑗 ,𝑑
𝑘+1𝑖𝑓𝑟𝑎𝑛𝑑 ≤ 𝐶𝑟

𝑃𝑏𝑒𝑠𝑡𝑗 ,𝑑
𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (26) 

Where, Cr is the crossover probability. In the 

conventional PSO algorithm, c1 and c2 are fixed as 

2.0. Relatively, high value of the social component c2 

in comparison with cognitive component c1and leads 

to particles being trapped into local optimum and 

relatively high value of cognitive component results 

to wander the particles around the search space. In 

order to obtain solution quality, the acceleration 

coefficients are updated using the following 

equations: 

𝑐1 =  𝑐1𝑓 − 𝑐1𝑖 +  
𝐺

𝐺𝑚𝑎𝑥
 ∗ 𝑐1𝑖   (27)  

𝑐2 =  𝑐2𝑓 − 𝑐2𝑖 +  
𝐺

𝐺𝑚𝑎𝑥
 ∗ 𝑐2𝑖         (28) 

Where, c1i and c2i are the initial values of c1 and c2, 

respectively; c1f and c2f are the final values of c1 and 

c2, respectively. Local search space is reduced as c1 

decreases and c2 increases to accelerate the solution 

towards the global convergence. 

 

4.3 Parameters selection 

The performance of PSO greatly depends on three 

parameters such as cognitive parameter (c1), social 

parameter (c2) and the weight factors Wmin and Wmax. 

The balance among these factors determines the 

balance between local and global searching 

capability. The objective function used in this PSO 

based optimization problem is the minimization of 

total fuel cost as given in equation (1) and it is 

subjected to the constraints as listed in equations (4) 

and (5). 

The selected parameters of PSO for this problem are 

tabulated in Table 5. One of the most important 

issues to find the optimum solution effectively and 

efficiently, while designing the PSO algorithm is its 

parameters. The necessary conditions for selecting 

cognitive and social parameters are the value of c1 

equals to c2 and they ranges between 0 and 4. The 

cognitive component (c1) encourages the particles to 

move toward their own best positions found so far, 

whereas the social component (c2) are useful in 

finding the global optimal solution. The social 

component always pulls the particles towards the 

global best particle found so far. Hence, other 

combinations for these parameters have also tried, 

but the optimal solution is arrived, when the values 

of c1 and c2 are selected as 2. The values of minimum 

and maximum inertia weights are selected as 0.4 and 

0.9, respectively. Initially, the inertia weight is kept 

as 0.4 in order to support for exploration i.e., global 

search. Then, the value of inertia weight is kept as 

0.9 in order to support exploitation i.e., local search. 

This kind of decaying inertia weight approach is 

proposed to do favor for global search at the start of 

the algorithm and the local search later. Other 

combinations for all the above values are also tried in 

trial and error basis, but the optimal solution is 

arrived with this selected parameters only.  
 

Table 5 

The parameter selection for PSO 

Cognitive 

Factor c1 

Social 

Factor c2 

Minimum 

Inertia Weight 

Factor Wmin 

Maximum 

Inertia Weight 

Factor Wmax 

Number of 

Particles 

2 2 0.4 0.9 50 

 

The MPSO algorithm is applied to solve the 

combined environmental/economic dispatch (CEED) 

non-linear problem. The steps involved to find the 

optimal value of the control variables for the CEED 

problems are as follows: 

1. Initialization: Set the time counter k=0 and 

generate randomly n particles within 

feasible range. 

2. Counter updating: Update the time counter 

k=k+1. 

3. Weight updating: Update the inertia weight 

using the Eq. (29). 

𝑊 = 𝑊𝑚𝑎𝑥 −
 𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛  

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
∗ 𝑖𝑡𝑒𝑟  (29) 

4. Velocity updating: Using the global best and 

individual best, the 𝑖𝑡ℎ  particle velocity is 

updated using Eq. (30). 

𝑉𝑗
(𝑘+1)

= 𝑤𝑉𝑗
𝑘 + 𝑐1𝑟𝑎𝑛𝑑1𝑥 𝑃𝑏𝑒𝑠𝑡𝑗

𝑘 − 𝑋𝑗
𝑘 +

𝑐2𝑟𝑎𝑛𝑑2𝑥 𝐺𝑏𝑒𝑠𝑡𝑗
𝑘 − 𝑋𝑗

𝑘                                           (30) 

5. Position updating: Based on the updated 

velocities, each particle changes its position 

according to the following Eq. (31). 

𝑋𝑗
(𝑘+1)

=  𝑋𝑗
𝑘 + 𝐶𝑉𝑗

(𝑘+1)
 (31) 

 Where, C is the constriction factor calculated 

using Eq. (32). 

𝐶 =
2

 2−∅− ∅2−4∅ 
   (32) 

6. In order to prevent premature convergence to fine 

tune the optimal solution to enhance particle diversity 

and to improve global searching capability crossover 

operator and time varying acceleration coefficients  

been used. 



    

 

 

   

   

 

   

   

 

   

       
 

7. The position j, is obtained just in equation (31) is 

mixed with Pbestj to generate the new position as 

shown in Eq. (26). 

8. The acceleration coefficients are updated using the 

following equation to improve the solution quality 

and to avoid from particle being trapped and wander 

around the search space. 

𝐶1 =  𝐶1𝑓−𝐶1𝑖 +  
𝐺

𝐺𝑚𝑎𝑥
 ∗ 𝐶1𝑖  (33) 

𝐶2 =  𝐶2𝑓−𝐶2𝑖 +  
𝐺

𝐺𝑚𝑎𝑥
 ∗ 𝐶2𝑖  (34) 

Where,𝐶1𝑖 and 𝐶2𝑖  are the initial values of 𝐶1and 𝐶2; 

𝐶1𝑓  and 𝐶2𝑓  are the final  values of 𝐶1and 𝐶2. 

9. Compute the objective function f. 

10. Individual best updating: If fj<fj*, for i=1...n, then 

update individual best as Xj*(k) = Xj(k) and fj* = fj 

and go to step 11; else go to step 4. 

11. Global best updating: If fj* < f**, then update 

global best as X**(k) = Xj*(k) and f** = fj* and go 

to step 12; else go to step 5. 

12. Stopping criteria: If the number of iterations 

reaches the maximum allowable number, then   

stop; otherwise go to step 2. 

 

4.4 NSGA-II 
 

 
 

Fig.1 Flow chart of proposed NSGA-II Algorithm 

The NSGA-II algorithm [12-14] is applied to 

solve the combined environmental/economic 

dispatch (CEED) non-linear problem. The algorithm 

is selected since the two objectives, environmental 

dispatch and economic dispatch are contradictory to 

each other. The steps involved to find the optimal 

value of the control variables for the CEED problem 

are as follows. The flow chart is shown in Figure 1 

Step 1: Initialize a population with the set of random 

variables. Input system data and initialize the 

algorithm parameters. The number of decision 

variables is the number of generators. Initialize a 

population such that it satisfies the boundary 

conditions of the generators. 

The power generated by the generators is the 

decision variable. Based on randomly created 

generation, the constraints and objective function 

values are calculated. Here the constraint considered 

is load balance and the objective function values of 

cost and emission levels are calculated individually. 

Here penalty less constraint handling method is used. 

Step 2: The initialized population is sorted based on 

non- domination of both the objective function 

values. 

Step 3: Once the non-dominated sort is complete the 

crowding distance is assigned. Since the individuals 

are selected based on rank and crowding distance, all 

the individuals in the population are assigned a 

crowding distance value. 

Step 4: Once the individuals are sorted based on non-

domination and with crowding distance assigned, the 

selection is carried out using a crowded-comparison-

operator. The individuals are selected by using a 

binary tournament selection with crowed-

comparison-operator. 

The crossover and mutation operations are carried 

out in the selected parents and offspring are created. 

The objective function values for the offspring are 

calculated.  

Step 5: The offspring population is combined with 

the current generation population to form 2X 

population size. 

Step 6: Since, all the previous and current best 

individuals are added in the population, elitism is 

ensured. The entire offspring and parent Population 

is now sorted based on non-domination and all the 

individuals in the population are assigned a rand and 

crowding distance value. The new generation is filled 

by each front subsequently until the population size 

exceeds the current population size by using the rank 



value and crowding distance value. Hence, the 

process repeats to generate the subsequent 

generations. The process is stopped with the stopping 

criteria of ‘number of generations’.  

 

5. Results and discussion 

In this study, a ten generating unit system along 

with 40 MW of wind farm and 50 thousand PHEVs 

is analyzed. The parameters of the generators and its 

cost and emission coefficients for the ten unit system 

are given in Annexure I. Three scenarios are 

considered to investigate the effects of integrating 

PHEVs and wind energy sources on the electricity as 

follows: Without auxiliary power, With PHEVs in 

grid-to-vehicle mode and With PHEVs and wind 

farm. Thus, to assess the effects of PHEVs and wind 

power, these three cases have been applied to the 

CEED problem by using PSO, modified PSO and 

NSGA-II algorithms. All the calculations and 

simulations are performed in MATLAB 2010b 

software. The ten unit system is simulated and the 

demand of the system is divided into 24 hours 

(intervals) for a whole day. 

 

5.1 Without auxiliary power 

First, the proposed algorithms are applied one by 

one to the ten-unit system without considering the 

auxiliary power (that is, PHEVs and wind power) for 

solving the objective function given in equation (1). 

The results are given in Table 6 for each hour. For 

simplicity, results obtained with NSGA-II algorithm 

are only presented here. 

The total emission for the first case is 16916.6 

tons per day and the total electricity production cost 

is $614540 per day. In the Table 6, column 1 shows 

the time of the day in hours and column 2 is the 

distribution system load demand for that time 

interval. The optimal control values of the ten unit 

generator’s active power output are given from 

column 3 to column 12. The fuel cost and emission  

value of the given CEED problem for the first case is 

shown in column 13 and column 14, respectively. 

 
Table 6 

Cost and emission level without auxiliary power

Time 
Demand 

(MW) 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

P7 

(MW) 

P8 

(MW) 

P9 

(MW) 

P10 

(MW) 

Cost 

($) 

Emission 

(Ton) 

1 700 207.24 150 120.32 122.43 25 20 25 10 10 10 20870 400 

2 750 213.88 162.31 130 130 38.8 20 25 10 10 10 21870 435 

3 850 250.84 199.92 130 130 64.23 20 25 10 10 10 24010 510 

4 950 287.79 237.53 130 130 89.67 20 25 10 10 10 25900 790 

5 1000 306.28 256.34 130 130 102.38 20 25 10 10 10 27100 791 

6 1100 343.24 293.94 130 130 127.81 20 25 10 10 10 27900 792 

7 1150 361.17 312.75 130 130 140.53 20 25 10 10 10 28700 795 

8 1200 380.19 331.55 130 130 153.25 20 25 10 10 10 30030 799 

9 1300 425.42 377.57 130 130 162 20 25 10 10 10 24200 800.2 

10 1400 402.91 455 130 130 162 65.08 25 10 10 10 24300 801 

11 1450 438 455 130 130 162 80 25 10 10 10 23600 802 

12 1500 455 455 130 130 162 80 25 43 10 10 24400 802.5 

13 1400 402.91 455 130 130 162 65.08 25 10 10 10 24300 801 

14 1300 425.42 377.57 130 130 162 20 25 10 10 10 24200 800.2 

15 1200 380.19 331.55 130 130 153.25 20 25 10 10 10 30030 799 

16 1050 324.75 275.14 130 130 115.1 20 25 10 10 10 26900 791.5 

17 1000 306.28 256.34 130 130 102.38 20 25 10 10 10 27100 791 

18 1100 343.24 293.94 130 130 127.81 20 25 10 10 10 27900 792 

19 1200 380.19 331.55 130 130 153.25 20 25 10 10 10 30030 799 

20 1400 402.91 455 130 130 162 65.08 25 10 10 10 23900 811 

21 1300 425.42 377.57 130 130 162 20 25 10 10 10 24200 810.2 

22 1100 343.24 293.94 130 130 127.81 20 25 10 10 10 27900 792 

23 900 295.06 244.93 130 130 25 20 25 10 10 10 23500 610 

24 800 232.36 181.12 130 130 51.52 20 25 10 10 10 21700 590 

           614540 16916.6 

 

 

 

 

 

 

 



    

 

 

   

   

 

   

   

 

   

       
 

5.2 PHEVs in grid-to-vehicle (G2V) mode for load 

leveling 

In this case, PHEVs are operated in G2V mode for 

load leveling purpose. That is, the PHEVs are 

integrated with the grid for charging during off-peak 

hours for load leveling. 50000 PHEVs are taken for 

analysis and the details are given in Table 7. 

According to the data, the additional load of 418.5 

MWh (50000×10 kWh×0.93×0.9) = 418.5 MWh) is 

added to the total demand. Hence, the demand is 

increased by 34.87 MW during the off-peak hours as  

given in Table 8. The CEED problem is solved and 

the results are obtained as given in Table 6.Since, the 

additional loads (418.5 MWh) are added, the net cost 

and emission are get increased in this case as given in 

the Table 8 as compared to Table 6. 

Further, this increase in the GHG emission level is 

explained as follows. When, PHEVs are operated in 

G2V mode, an additional load (418.5 MWh) is 

imposed on the grid, so that it makes the units to 

operate in a new operating point. Because, the 

emission curves of the units are incremental and non-

linear, the additional emission will not increase 

linearly.   Even a small increase from the nominal 

operating point leads to a great rise in emission. This 

inference is mentioned in very few literatures 

including [7]. Therefore, it is shown that the shifted 

emission from the transportation industry to the 

electric industry is due to the presence of PHEVs, 

which increases the net emission. 

 
Table 7 

PHEVs data 

Number of PHEVs 50000 

Battery capacity 10 kWh 

System efficiency 0.93 

Depth of discharge of battery 10% 

 

Table 8  

Cost and emission level with PHEVs in G2V mode 

Time 
Demand 

(MW) 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

P7 

(MW) 

P8 

(MW) 

P9 

(MW) 

P10 

(MW) 

Cost 

($) 

Emission 

(Ton) 

1 734.87 224.87 150 130 130 25 20 25 10 10 10 21500 431 

2 784.87 274.87 150 130 130 25 20 25 10 10 10 22660 560 

3 884.87 263.73 213.08 130 130 73.1 20 25 10 10 10 24500 590 

4 984.87 300.69 250.65 130 130 98.54 20 25 10 10 10 26500 788.9 

5 1034.87 319.17 269.45 130 130 111.25 20 25 10 10 10 27600 798.5 

6 1134.87 356.12 307.06 130 130 136.68 20 25 10 10 10 29500 800 

7 1184.87 368.36 319.51 130 130 162 20 25 10 10 10 30200 800.1 

8 1234.87 393.14 344.73 130 130 162 20 25 10 10 10 31100 800.78 

9 1334.87 382.87 455 130 130 162 20 25 10 10 10 24300 802.5 

10 1400 448 455 130 130 162 20 25 10 10 10 24200 801.5 

11 1450 438 455 130 130 162 80 25 10 10 10 24500 801 

12 1500 455 455 130 130 162 80 25 43 10 10 24400 802 

13 1400 448 455 130 130 162 20 25 10 10 10 24600 801 

15 1200 380.19 331.55 130 130 153.25 20 25 10 10 10 30200 798.5 

16 1050 324.75 275.14 130 130 115.1 20 25 10 10 10 25000 798.25 

17 1000 306.28 256.34 130 130 102.38 20 25 10 10 10 27010 798 

18 1100 343.24 293.94 130 130 127.81 20 25 10 10 10 28700 798.4 

19 1200 380.19 331.55 130 130 153.25 20 25 10 10 10 28900 798.5 

20 1400 448 455 130 130 162 20 25 10 10 10 24500 801.5 

21 1300 425.42 377.57 130 130 162 20 25 10 10 10 24400 800.5 

22 1134.87 356.12 307.06 130 130 136.68 20 25 10 10 10 27200 791 

23 934.87 282.21 231.84 130 130 85.82 20 25 10 10 10 25700 790 

24 834.87 245.25 194.23 130 130 60.39 20 25 10 10 10 23400 566.6 

 

 

 

 

 

 

          628770 18117.0 

 

 

 



5.3 With PHEVs and wind farm 

Here, the wind farm of 40 MW capacities along 

with PHEVs is added to the network to generate the 

electricity. The wind speed data for 24 hours is given 

in Table 9. 
 

Table 9 

Wind speed data 

Hour 
Velocity 

(m/s) 
Hour 

Velocity 

(m/s) 
Hour 

Velocity 

(m/s) 

1 9 9 10 17 10.5 

2 12.5 10 10 18 10 

3 13 11 8.2 19 12.4 

4 11.5 12 15 20 6.2 

5 5.4 13 12 21 3.4 

6 8.3 14 16.2 22 7 

7 9.5 15 13.8 23 5.6 

8 14.5 16 12.4 24 3 

 

The shape parameter (k) and scale parameter (c) of 

the Weibull distribution are calculated by using 

maximum likelihood approach. The obtained values 

are converged after ten iterations. The converged 

values are K = 5.8138 and C = 11.9967. The CEED 

problem is solved and cost and emission level are 

attained as $589660 and 14457.19 tons/day, 

respectively as given in Table 10. 

Compared to previous case, the reduction in both 

total cost and CO2 emission are greatly achieved. 

Particularly, the reduction of cost achieved is 

$23660/day and annual saving is $8635900/year, 

when PHEV and wind power is added with the 

conventional power unit.  Similarly, the difference in 

emission level is 2333 tons/day and the annual 

reduction is 851545 tons/year. The results confirm 

the significance of renewable energy participation in 

the power market.  

Table 10 

Cost and emission level with PHEVs and wind farm 

Time Demand 

(MW) 
P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

P7 

(MW) 

P8 

(MW) 

P9 

(MW) 

P10 

(MW) 

V2G 

(MW) 

PW 

(MW) 

Cost 

($) 

  Emission 

(Ton) 

1 700 211.12 150 122.5 124.6 36.9 20 25 10 10 10 -32.19 12 27500 798.5 

2 750 225.52 174.16 130 130 25 20 25 10 10 10 -32.19 22.5 22100 479 

3 850 253.87 203 130 130 66.3 20 25 10 10 10 -32.19 24 24500 650 

4 950 292.3 242.12 130 130 92.7 20 25 10 10 10 -32.19 19.5 26400 689.53 

5 1000 267.73 217.99 130 130 110.2 20 25 10 10 10 -32.19 1.2 21500 476.37 

6 1100 287.34 237.94 130 130 162 20 25 10 10 10 -32.19 9.9 24500 675 

7 1150 301.99 252.85 130 130 133.8 20 25 10 55 10 -32.19 13.5 24610 610.01 

8 1200 305.6 256.53 130 130 136.3 20 25 10 10 10 38.04 28.5 23600 568.73 

9 1300 326.83 272.13 130 130 162 20 25 10 55 10 38.04 15 26000 648.7 

10 1400 319.01 405 130 130 162 45.9 25 10 10 10 38.04 15 25500 780.25 

11 1450 340.36 405 130 130 162 80 25 55 10 10 38.04 9.6 29700 785.70 

12 1500 369.96 405 130 130 162 80 25 10 10 10 38.04 30 26500 650.51 

13 1400 395.72 348.23 130 130 162 20 25 10 10 10 38.04 21 27390 780.23 

14 1300 311.96 262.99 130 130 162 20 25 10 10 10 38.04 30 22780 487.35 

15 1200 293.92 244.64 130 130 162 20 25 10 10 10 38.04 26.4 23610 575.10 

16 1050 256.27 206.33 130 130 102.3 80 25 10 10 10 -32.19 22.2 22110 453.20 

17 1000 234.5 184.18 130 130 162 20 25 10 10 10 -32.19 16.5 21600 400.01 

18 1100 289.59 250.41 130 130 132.1 20 25 10 10 10 -32.19 15 23310 500.07 

19 1200 301.9 242.77 130 130 133.7 36.3 25 10 10 10 38.04 22.2 23400 527.17 

20 1400 346.36 405 130 130 162 20 25 10 10 10 38.04 3.6 27100 779.01 

21 1300 324.26 285.69 130 130 162 20 25 55 10 10 38.04 0 28200 780.23 

22 1100 279.37 240.01 130 130 162 20 25 10 10 10 -32.19 6 21500 549.25 

23 900 220.55 180.16 130 130 84.6 20 25 10 10 10 -32.19 1.8 21720 410.72 

24 800 194.26 143.22 130 130 59.7 20 25 10 10 10 -32.19 0 21532 409.35 

              589660  14457.19 

 



    

 

 

   

   

 

   

   

 

   

       
 

 

Fig. 2Pareto Front of NSGAII algorithm 

 

Fig. 3 Converge characteristics of modified PSO 

 

Table 11 

Comparison of results 

 Configur 

-ation 

Cost ($) Emission (Ton) 

PSO 

[7] 

MPSO-

TVAC 

NSGA-

II 

PSO 

[7] 

MPSO 

-TVAC 

NSGA

-II 

Without 

auxiliary 

power 

645825 642464 614540 20922 20407 16917 

With 

PHEVs in 

G2V mode 

653148 650677 628770 21686 20904 18117 

With 

PHEVs in 

V2G mode 

647975 640487 613320 19967 19499 16790 

With 

PHEVs and 

WF 

640115 614316 589660 20309 18842 14457 

Reduction 7860 26171 23660 1377 657 2333 

Reduction 

in % 
1.22 4.26 4.01 6.78 3.49 16.14 

 

The Pareto front of NSGA-II algorithm of the ten 

unit system by considering PHEVs and wind farm for 

a particular demand is shown in Figure 2. Similarly, 

the modified PSO algorithm is applied to solve the 

CEED problem and final results are tabulated in 

Table 11. The convergence characteristic of the ten 

unit system with considering PHEVs and wind farm 

is shown in Figure 3. It illustrates the comparison of 

the proposed scenarios with respect to total cost and 

emission. Based on the results given in Table 11, the 

fourth case (with PHEVs and wind power) is 

preferable, because of less cost and emission. It is 

evident from the results that the proposed NSGA-II 

algorithm provides best results compared to other 

methods proposed and existing works available in the 

literature. 

6. Conclusion 

The integration of PHEVs and wind energy into 

conventional thermal generation systems and their 

impact on the environmental/economic dispatch are 

investigated in this work to minimize CO2 emission 

as well as operating cost of thermal power. Three 

different optimization algorithms are tested to solve 

the nonlinear problem. A ten unit thermal power 

generation system is considered and tested with four 

different scenarios in order to analyze the 

effectiveness of the proposed approach. It is 

identified that NSGA-II algorithm is giving better 

results compared to PSO and MPSO algorithms for 

the particular problem. The test results have 

confirmed the effectiveness and robustness of these 

proposed algorithms. 
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Annexure I 

Ten unit generation system data 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

Pmax(MW) 455 455 130 130 162 80 85 55 55 55 

Pmin(MW) 150 150 20 20 25 20 25 10 10 10 

a($/h) 1000 970 700 680 450 370 480 660 665 670 

b($/MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79 

c($/MWh
2
) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.0079 0.00413 0.00222 0.00173 

α(ton/h) 10.33 10.33 30.03 30.03 32 32 33 33 35 36 

β(T/MWh) -.2444 -0.2444 -0.4069 -0.4069 -0.3813 -0.3813 -0.3902 -0.3902 -0.3952 -0.3986 

γ(T/MWh
2
) 0.00312 0.00312 0.00509 0.00509 0.00344 0.00344 0.00465 0.00465 0.00465 0.0047 
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