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Abstract: In this paper, a robust iterative learning control 

(RILC) will be designed to improve the transient 

response and the tracking performance of differential 

linear iterative processes which are a distinct class of two 

dimensional (2D) systems of both processes theoretic and 

applications interest. Based on H  setting, new 

sufficient conditions will be developed to demonstrate the 

effectiveness and the originality of our proposed scheme. 

The simulation results carried out on servo flexible 

system will be presented to prove the monotonic 

convergence of linear continuous time 2D systems. 
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1. Introduction 

In the recent decades, the two dimensional (2D) 

continuous-discrete systems have received 

important research interest [1,2,3], due to their 

extensive applications in different practical areas 

such as long wall and metal rolling, repetitive 

processes [4,5], image processing, power 

transmission lines and iterative learning control 

(ILC) synthesis [6,7,8]. Two dimensional systems 

are processes which are defined by two independent 

variables propagating information in two 

independent directions, where, the first one can be 

used to reflect the dynamics of the system in the 

time domain (continuous) and the second one can 

be used to reflect the iterative learning dynamics 

(discrete). 

Linear iterative learning processes are a distinct 

class of 2D systems of both systems theoretical and 

applications interest. ILC is an efficient technique 

used to control the systems doing the same task 

over a fixed time interval. The ILC learns the 

information from the previous iteration to improve 

the transient response and the tracking performance 

of the systems during the actual iteration. Using the 

error measurements in the previous cycle, the 

iterative learning control law is updated iteratively 

after each operation. Owing to its effectiveness and 

simplicity, ILC has been used in many applications 

of learning control systems (LCS’s) include metal 

rolling operations and long wall coal cutting [9], IC 

wafer production [10], motion stage for wire 

bonding [11,12] and robotics [13]. 

ILC represents one of principal key to find a 

solution for the problem of monotonic convergence 

and robust stability of systems that execute the 

same task repetitively along the pass. The repetitive 

error generated by these systems, from trial to trial, 

will be memorized and used to design a new and 

simple algorithm which implemented in the next 

iteration to decrease the error until become null. 

Different type of iterative learning control law are 

designed to achieve convergence of systems such as 

the PID type, D type, PD type, PI type and P type. 

However, several research works have focused on 

analytical for nominal systems under assumption 

that there is no uncertainty in the system. In order 

to study the convergence of the systems with the 

model uncertainty, many robust approaches are 

often considered such as H∞ setting [14, 15], µ 

synthesis method [16] and the min-max method 

using the quadratic performance criterion [17].   

The problem of H  control for 2D dynamical 

systems described by state space model have 

received important interest by several research 

works over the last decade. Although H∞ control 

theory have been perfectly studied and developed, 

most approaches have been developed based on 

state space model.  The H∞ setting is an analytical 

approach that has been used to prove the robust 

stability and the monotonic convergence of linear 

systems. Several approaches are also used to 

demonstrate the effectiveness of the robust iterative 

learning controller for tracking performance such as 

the linear inequality matrix (LMI) technique for 

solving optimization problems.  

The objective of this approach is to develop a new 

robust iterative learning control for 2D linear 

systems with parametric uncertainties. This control 

law is able to drive the system to follow a reference 

model with zero error. A PD type ILC is proposed 

and studied to achieve this objective. Monotonic 

convergence and robust stability are also 

guaranteed by using this new scheme. Based on 

H  setting accorded to the resolution of LMI 

problems, new sufficient conditions will be 

developed to prove the effectiveness and the 

originality of our proposed scheme. 



1. Problem setup 

Robust ILC is an interest approach developed and 

used to improve the perfect tracking performance 

and the transient response of dynamical systems. 

Designing an effective and robust control law 

means to find an appropriate algorithm that is 

updated iteratively from trial to trial using the 

information from previous iteration to compute the 

new control law in the next iteration. This next one 

can be implemented to the systems to decrease the 

error between the desired output and the measured 

output until becomes zero. This iterative control 

law must have the capability to drive the system to 

follow a given reference model.  

In this paper, the tracking of an output trajectory of 

reference model is regarded as a principal goal. Let 

us consider the reference model described by the 

following expression: 
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Where ( ) n

dx t R  represents the reference state 

vector, ( ) m

du t R  represents the reference control 

input, ( ) n

dy t R  is the reference output, *n nA R  

is the constant matrix, *n mB R  is the gain matrix 

of control input, *m nC R  is the gain matrix of 

output, *n mH R  is the gain matrix of disturbance 

input and  0,t T . 

To complete the process description, the 

specification of the boundary condition is required 

i.e., the initial iteration profile and the initial state 

on each iteration. The resetting condition is 

satisfied at each trial i.e. (0) 0dx  , where (0)dx  

represents the initial state of the reference model.  

To achieve the objective considered in this 

paper, we propose to design a robust proportional 

derivative PD type iterative learning control law. 

This control law is updated iteratively from trial to 

trial. The analysis and synthesis of this control law 

are based on a set of lemmas and property, as is the 

well identified Schur’s complement rule. 

Lemma. 1. (Schur lemma) 

Let Ʃ1 and Ʃ2 be real matrices of appropriate 

dimensions. Then for any matrix F satisfying  

TF F I  and a scalar 0  the following 

inequality holds [18]: 

1

1 2 2 1 1 1 2 2

T T T T TF F             (2) 

Property 1: 

Let considers an invertible matrix T: 

( * ) , 0 0n n TT R S T ST     (3) 

2. Linear systems stability analysis 

Linear differential iterative processes are defined 

by a state space model described by the following 

systems: 
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Where ( ) n

kx t R  is the state vector, ( ) m

ku t R

is the control input, ( ) n

ky t R  is the output,

( ) m

kw t R is the disturbance, *n mH R  is the gain 

matrix of disturbance input and k≥0 denotes the 

number of iteration. The boundary condition is 

0(0)x x . 

For 2D systems with considerable disturbances 

of the form considered in the system (4), we 

propose a proportional derivative PD type iterative 

learning control of the following expression: 
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The learning rules  1,kv t and  2,kv t  

represent respectively the robust control and the 

iterative learning control that is iteratively 

updated, where Krob, KP and KD are the robust 

gain matrix, the proportional gain matrix and the 

derivative gain matrix, respectively. 

At the first iteration (iteration number 0) the 

iterative learning control is zero i.e.
2,0 0v   then

   0 1,0u vt t . 

 

In this section, An H∞ setting is proposed to 

design a robust iterative learning control. Based on 

linear matrix inequalities LMI technique, a set of 

sufficient conditions are solved to demonstrate the 

stability of the system.  

We define the tracking error model by the 

following system: 
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        Let consider the state variable defined by: 

1 1

0 0

t t

k k kx dt x dt                                             (7) 

With the help of (4) and integrating the control 
law (5), we develop the new state variable described 
by the following expression: 

1 1 1 1k k k kA Bu Hw                                    (8) 

From (7) and (8) and after substituting (4) from 
(1) and integrating the control law (5) the error at 
the iteration k+1 is described by the following 
expression: 

11 1 1k k kk kCBe uy CA ey CHw                 (9) 

Where  

1 1k rob k P k D ku K K ey K ey       

0

t

k key ey dt   

1 1

0

( )k

t

k kw w tw d  

 
From (8) and (9), we consider the following 

new system: 
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Where: 

A ,A B ,B 0B 0, 11B ,H C ,CA 

D ,CB  0D ,I 12B CH   

It is easy to see the system stability described 

by (10) along the pass is independent of the 

influence of the disturbance terms. A lyapunov 

function interpretation will be also required of 

this property, where the variable function is 

taken as: 

  1 1 1 1 2 1, T T

k k k kV k t P ey P ey                       (11) 

Where 1 0P   and 2 0P  .  The associated 

increment is: 

     1 2 ,, ,k t kk t V V tV                          (12) 

It is now routine to interpret that stability along 

the pass is achieved if ( , ) 0V k t   

Definition 1:  linear iterative process defined in 

(10) is said to have H  disturbance attenuation 

bound 0   if the system is stable along the pass 

and the induced norm between the output and the 

disturbance input is bounded by  . 

Theorem 1: a differential linear iterative system 

defined by (10) is stable along the pass and has 

H∞ disturbance norm bound γ if there exist 

matrices 1 0P   and 
2 0P   such that the 

following LMI holds: 
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Where:  
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Based on the state space model description of 
the systems dynamics, the conditions which 
guarantee the robust monotonic convergence and the 
stability of the system is developed in terms of the 
feasibility of LMIs. 

Proof: introducing the associated Hamiltonian as: 
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Now, it easy to show the stability of the 

system described by the equality (10) along the 

pass. The system stability and the monotonic 

convergence are guaranteed along the pass if: 

  , 0k t 
 

 

The Hamiltonian function can be written as: 
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The stability of the system is achieved if 0 
where  can be written as follow: 
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Where: 
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 An obvious application of a successive modified 

Schur’s lemma to the condition (16) followed by 

replacing the variables with theirs appropriates 

expressions in the result then applying the property 

1 pre and post multiplying the result by

 1 1 1 1 1

4 3 2 1 2diag P P P P I P I I    

 to eliminate the bilinearity in the matrix. 

Then setting 
1 1 1 1

1 1 2 2 1 1 2 2, , , ,rob PN K P N K P w P w P      

1 1

3 3 4 4,w P w P   in the result. Finally, noting 

that the result doesn’t depend to 3w and 4w  leads 

to (13) and the proof is complete: 

3. Uncertain linear systems stability 

analysis 

In this section we will extend the results obtained in 

the previous section to the case where the linear 

systems presented a parametric uncertainty 

associated with the process state space model. 

These uncertainties can arise from different source 

such as imperfect knowledge of the system 

dynamics and/or variation of physical parameters 

over time, leading to only an estimated model. We 

aim to design in this section the robust iterative 

learning control law of the previous section to 

guarantee the system stability along the pass with a 

given H∞ disturbance norm level for all tolerable 

uncertainties. 

We suppose that uncertainty is norm bounded in 

both the pass and state profile updating equations. 

In this case, the uncertainty is modeled as an 

additive disturbance to the nominal model state 

space representation. These differential linear 

uncertain iterative processes can be presented by 

the following state space representation: 
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Where the admissible uncertainties are assumed to 

be of the following assumption: 

   1 1 2A B H F E E                             (18) 

whereH1, E1, E2, are known constant matrices of 

compatible dimensions.  F is unknown matrix with 

constant entries and satisfies TF F I .  

With the help of (17) and (7) and integrating the 
control law (5), we develop the new state variable 
described by the following expression: 
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Now, we will determine the error expression at 
the iteration number k+1: 
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From (19) and (20), we considered the new 
system described by the following state 
representation:
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Where: 

0 0B  , 11B H , 
1C CA  , D CB  , 

0D I , 

12B CH  , 1C C A     and D C B    . 

Based on (18) the induced uncertainties in the 
representation (21) verify the following condition: 
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The resolution of the problem of designing a 

robust iterative control law (5) to track a reference 

model is given by the following result. 

Theorem 2: Suppose that a robust control law 
described by (5) is applied to a 2D linear iterative 
system of the form (21), with uncertainties form 
modeled by (22). Then, the resulting system is stable 
along the pass for all tolerable uncertainties and has 

H norm bound 0   if there exist matrices

1 0w  , 2 0w  , N1 and N2 and a scalar 0   

such that the LMI presented in (23) holds:
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Where:  
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If (23) holds, the robust control gain 
robK and 

the proportional control gain 
PK are given by 

1

1 1N w
and

1

2 2N w
, respectively. The derivative 

control gain 
DK  can be obtained directly by 

resolving the above inequality. 

Proof: at the beginning interpret (13) in terms of the 

state space model obtained from application of the 

robust iterative control law to obtain the following 

expression: 
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Where: 
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The second term in the above inequality can be 

written as: 
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 , , , , ,F diag F F F F F F  

 1 1 2 1 2 2 20, , , ,0,0DE diag E w E N E K E N   

An obvious application of lemma 1 followed by an 

application of Schur’s complement lemma yields 

(25):
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                                                               (25) 

Where: 

 1 2 2 24 ,Tw H H   

2 1 1 1 1 2C D 4 ,TT T Tw N H H   

3 1 1 1 1 1 1A A B B 4 ,T T T Tw w N N H H     

4 0D D ,T T T

DK   5 0B ,T T T

DK B  

6 1 1 2 1E w E N  
 

Replacing the variables by theirs expression in the 

result and the proof is complete. 

4. Uncertain linear systems with uncertain 

disturbances 

In this section we will extend the results obtained in 

the previous sections to the case where the 

uncertain linear systems are affected by 

perturbations that presented a parametric 

uncertainty. We aim to design in this section the 

robust iterative learning control law of the previous 

sections to guarantee the system stability along the 

pass with a given H∞ disturbance norm level for all 

tolerable uncertainties. 

The uncertain linear iterative systems with 

disturbances parametric uncertainty are defined by 

a state space model as the following expression: 

             

   

, , , ,

, ,

k t k t k t k t

k t k t

x A A x B B u H H w

y Cx

     






                                                                        (26)
                 

 



The uncertainties matrices ΔA, ΔB and ΔH are 

supposed verifying the following assumption: 

   1 1 2 3A B H H F E E E              (27)
                 

 

whereH1, E1, E2 and E3 are known constant matrices 

of compatible dimensions.  F is unknown matrix 

with constant entries and satisfies TF F I  . 

With the help of (7) and (26) and integrating the 
control law (5), we develop the new state variable 
described by the following expression: 

     1 1 1 1k k k kA A B B wu H H         

                                                                        (28)
                 

 

Now, we will determine the error expression at 
the iteration number k+1: 

     1 1 1 1k k k k key C A A C B B u ey C H H w          

                                                                        (29)
                 

 

From (28) and (29), we considered the new 
system described by the following state 
representation: 
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          
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



 (30)
                 

 

Where: 

0 0,B  11 ,B H 0 ,C CA 
 ,D CB   0 ,D I

11 ,D CH 
 11 ,B H  

 11 ,D C H   
 

0  andC C A   
 .D C B     

Based on (27) the induced uncertainties in the 
representation (30) verify the following condition: 

 11 1

1 2 3

0 11 2

A B B H
F E E E

C D D H

     
   

     
    (31)

                 
 

Where 
2 1H CH   

Theorem 3: Suppose that a robust control law 
described by (5) is applied to a 2D linear iterative 
system of the form (30), with uncertainties form 
modeled by (31). Then, the resulting system is stable 
along the pass for all tolerable uncertainties and has 

H norm bound 0   if there exist matrices

1 0w  , 2 0w  , N1 and N2 and a scalar 0   

such that the LMI presented in (32) holds: 

1

2 3

4 5

6 7 2

2

8

2

9

10

11

3

0

0

0 0
0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

w

H I

w I

I

I

I

E I



 

 

 

 

 

 

 



         
 

       
 
       
 

       
      
 

     
    
 

   
 

  
  



                                                                          (32)
                 

 

Where:  
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Proof: First interpret (13) in terms of the state 

space model obtained from application of the robust 

iterative control law to obtain the following 

expression: 
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Where: 
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The second term in the above inequality can be 

written as: 
T T THFE E F H  

Where:    
             

2 2 2 2

1 1 1 1

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

H H H H

H H H H

H

 
 
 
 

  
 
 
 
  

 

 , , , , ,F diag F F F F F F  

 1 1 2 1 2 2 2 30, , , , ,0DE diag E w E N E K E N E   

An obvious application of lemma 1 followed by 

an application of Schur’s complement formula 

yields (34): 
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                                                            (34) 
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Replacing the variables by theirs expression and 

the proof is complete. 

5. SIMULATION EXAMPLE 

We use the flexible joint shown in fig 1 to 

demonstrate the performance of the proposed ILC 

method.  The process consists of a ROTOFLEX 

Rotary Flexible Joint and a SRV02 Rotary Servo 

plant [19]. 

 
Fig.1. simplified description of the Flexible Joint 

process. 

The system dynamics are represented by: 

   2 2m m m m m a m a

k b
J f r r

r r
              

    0a a m a m a

k b
J r r

r r
            

Where: 

a , 
a
 , 

m  and 
m
 denote  the arm angle, the 

arm torque, the motor angle and the motor torque 

respectively. Jm and Ja denote the moment of 

inertia of the motor and the arm respectively. The 

parameters b and k denote damping and stiffness 

respectively of the spring, f is the viscous friction 

coefficient of the motor and r is the gear ratio. 

Finally, the parameter KT denotes the torque 

constant and represents the relationship between 

generated torque and input voltage. 

The physical parameters of the system are given 

by [19]: 
TABLE. 1: PHYSICAL PARAMETERS OF THE SYSTEM. 

Jm 

(Kg.m2) 

Ja 

(Kg.m2) 

KT 

(m.V-1) 

k f b 

0.0021 0.0991 0.122 35.1 0.0713 0.0924 

 

The model of the plant is defined by the 

following state space representation: 

     

 

( )

( )

k k k k

k k
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 0 0 0 1C   

The state variable x is defined by: 

 
T

a a m mx        

The desired input and the disturbance are: 

2 sin(2 )du t  

0.2 sin(2 )w t  

 

The robust gain matrix Krob, the proportional 

iterative gain matrix KP and the derivative iterative 

gain matrix KD can be computed by solving the 

LMI (13), there are given by: 

 
1

1 1robK N w ,
1

2 2PK N w  and KD can be 

determined directly from the resolution of the LMI 

(13).   

A feasible solution of the LMI (13) is given by 

0.0172DK  , 
53.8135 10PK   and 

 57.5418 0.1515 11.5087 0.6139robK   

 

The simulation results are obtained for the initial 

state vector zero. Fig.2, Fig.3 and Fig.4 demonstrate 

the simulation results of the desired trajectory and 

the output trajectory at the first iteration, second 

iteration and the iteration number 20 respectively. 

Fig.5 and Fig.6 show the errors trajectories at the 

first iteration and the iteration number 20. Fig.7 

shows the error norm trajectory and the maximum 

error norm trajectory during the 100 iterations. 

 

Fig.2. Simulation result of the first scheme to the 

system: desired trajectory and the output trajectory at the 

first iteration.  

 

 

Fig.3. Simulation result of the first scheme to the 

system: desired trajectory and the output trajectory at the  

second iteration.  

 

Fig.4. Simulation result of the first scheme to the 

system: desired trajectory and the output trajectory at the 

iteration number 20. 

 

Fig.5. Simulation result of the first scheme to the 

system:  error trajectory at the first iteration. 
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Fig.6. Simulation result of the first scheme to the 

system: error trajectory at the iteration number 20. 

 

Fig.7. Simulation result of the first scheme to the 

system: output error norm 
2

( , )e t k  and maximum 

output error norm ( , )e t k  versus iteration k. 

Now, we will add an uncertainty in the parameter 

of the system in which it will be described by the 

state space model defined in (17). 

Suppose that: 

0 0 (1 )m m m mJ J J J      

With  

/ (1 )     

0 0 0 0

0 0 0 0

0 0 0 0

334.29 0.88 66.86 3.57

A

   

 
 
  
 
 
    

 0 0 0 5.81
T

B  
  

For 0.1   applying the decomposition 

procedure given by (22), we get

 1 0 0 0 47.62
T

H    

2 47.62H  ,

 1 7.02 0.0185 1.4040 0.0750E    ,  

2 0.122E    and F  .  

Then a feasible solution of the LMI (23) is given 

by
42.5345 10   , 

40.0172, 3.7420 10D PK K     and 

 57.5484 0.1497 11.5095 0.5948robK    . 

Fig.8, Fig.9 and Fig.10 demonstrate the 

simulation results of the desired trajectory and the 

output trajectory at the first iteration, fifth iteration 

and tenth iteration. Fig.11 and Fig.12 show the 

errors trajectories at the first iteration and the 

iteration number 20. Fig.13 shows the error norm 

trajectory and the maximum error norm trajectory 

during the 20 iterations. 

 

Fig.8. Simulation result of the second scheme to the 

system:  desired trajectory and the output trajectory at the 

first iteration 

 

Fig.9. Simulation result of the second scheme to the 

system:  desired trajectory and the output trajectory at the 

fifth iteration 
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Fig.10. Simulation result of the second scheme to the 

system:  desired trajectory and the output trajectory at the 

tenth iteration 

Fig.11. Simulation result of the second scheme to the 

system:  error trajectory at the first iteration. 

 

Fig.12. Simulation result of the second scheme to the 

system:  error trajectory at the iteration number 20. 

 

Fig.13. Simulation result of the second scheme to the 

system: output error norm 
2

( , )e t k  and maximum 

output error norm ( , )e t k  versus iteration k. 

In the next simulation, we will add an uncertainty 

in the parametric of the disturbance where the 

system will be described by the state model defined 

in (26). 

With: 
3 0.122E   .  

Then a feasible solution of the LMI (32) is given by
4 42.5023 10 , 0.0172, 4.6798 10D PK K      

and  57.5484 0.1497 11.5094 0.5947K    . 

Fig.14, Fig 15 and Fig.16 demonstrate the 

simulation results of the desired trajectory and the 

output trajectory at the first iteration, fifth iteration 

and the tenth iteration. Fig.17 and Fig.18 show the 

errors trajectories at the first iteration and the 

iteration number 20. Fig.19 shows the error norm 

trajectory and the maximum error norm trajectory 

during the 20 iterations. 

 

Fig.14. Simulation result of the third scheme to the 

system:  desired trajectory and the output trajectory at the 

first iteration 
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Fig.15. Simulation result of the third scheme to the 

system:  desired trajectory and the output trajectory at the 

fifth iteration 

 

Fig.16. Simulation result of the third scheme to the 

system:  desired trajectory and the output trajectory at the 

tenth iteration 

 

Fig.17. Simulation result of the third scheme to the 

system:  error trajectory at the first iteration. 

 

Fig.18. Simulation result of the third scheme to the 

system:  error trajectory at the iteration number 20. 

 

 

Fig.19. Simulation result of the third scheme to the 

system: output error norm 
2

( , )e t k  and maximum 

output error norm ( , )e t k  versus iteration k. 

It’s very clear that the system follows the model 

along the pass. In the first scheme, the maximum 

error is very largest but it quickly converges to zero 

at the iteration number 2 (fig. 7). In the second and 

third schemes, we add an uncertainty in the system 

parametric; the monotonic convergence is also 

demonstrated (Fig 13 and Fig. 19). The error 

decrease from iteration to iteration until becomes 

zero at the iteration number 10. The example shows 

that the proposed algorithms are robust with respect 

to disturbances of system parameters and the 

tracking error is very small after little trials. The 

proposed controller guarantees system stability and 

monotonic convergence along the pass and provides 

that the H norm bound is never greater than  .   

6. Conclusion 

In this paper, the guaranteed monotonic 

convergence problem for differential iterative 
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systems with the presence of norm-bounded 

uncertainty has been solved. Important new results 

on the relatively open problem of the control of 

iterative processes which are a distinct class of 2D 

linear systems have been developed. These results 

are physically based ILC laws in an H norm 

bound setting where the required computations are 

LMI based. Furthermore, the proposed control 

methodology formulated in terms of LMI gives 

perfect tracking performance of reference model 

based on H  setting. The simulation results, 

carried out on a servo flexible model, have clearly 

exhibited the excellent output-tracking performance 

and the efficiency of the designed approach. 
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