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Abstract : The main goal of this paper is to define the best 

location for the STATCOM to improve voltage stability in 

59-bus power system network. In daily operation where 

there are all kinds of disturbances such as voltage 

fluctuations, voltage sags, swells, voltage unbalances and 

harmonics, STATCOM is modelled as a controllable 

voltage source. The Newton-Raphson method algorithm 

was implemented to solve power flow equations. Particle 

Swarm Optimization (PSO) and Harmony Search (HS) 
methods are used to find the optimal location of 

STATCOM. 
 
 Keywords: Optimal allocation, Power flow, STATCOM, 

Newton-Raphson algorithm, PSO, HS. 
     
1. Introduction 
    In recent years, increased demands on electric 
energy transmission and the need to provide access 
to generating companies and customers have created 
tendencies toward lower security and reduced 
quality of supply. The FACTS technology is 
promising to reduce some of these difficulties by 
enabling utilities to get more performance from their 
transmission facilities and to enhance grid reliability 
[1]. FACTS devices increases power handling 
capacity of the line and improve transient stability as 
well as damping performance of the power system 
[2-3]. According to the specialized literature we find 
several types of FACTS [4-5], in our work we 
limited to the study a great disturbance, so the 
FACTS element used for reactive power 
compensation both assuring the low cost and high 
efficiency is STATCOM. The static synchronous 
compensators (STATCOM) consist of shunt 
connected voltage source converter through coupling 
transformer with the transmission line. STATCOM 
can control voltage magnitude and the phase angle 
in a very short time and therefore, has ability to 
improve the system [2-3]. There are some of 
conventional method i.e. gauss seidal method, 
newton raphson method for analysis the load flow 
study but due to continues growth and complexity of 
power system network soft computing techniques 
are better than conventional method in which the 

speed of operation and accuracy are the main 
advantages. With the advent of artificial intelligence 
in last recent years. Neural network, fuzzy logic and 
decision tree like methodology have been applied to 
the power system problems. Among all the soft 
computing techniques have shown great promises in 
power system engineering due to their ability to 
synthesize the complex mapping, accurately and 
rapidly. The computational intelligence algorithms 
have drawn researcher’s attention to the area of 
artificial intelligence as they have become more 
interested in focusing into the application of these 
algorithms in Electrical Engineering themes. Among 
these techniques, Particle Swarm Optimization (PSO) 
is an optimization method based on swarm 
intelligence concept. This method can look for more 
solutions simultaneously. PSO generates random 
initial particles in the first step and then it applies 
velocity vectors to update the particles until a process 
stop condition is satisfied. It requires the test function 
calculation to determine how a reached solution is 
good [6]. PSO has been used for solving many power 
engineering tasks, e.g. UPFC placement and its 
parameters optimization for possible load increasing, 
distributed generation placement and sizing 
optimization with respect to customers’ electricity 
cost or economic dispatch [7-8,9].  During several 
past years a great effort has been devoted to the 
research of the optimal STATCOM design and its 
appropriate placement by means of the PSO strategy 
[10-11]. PSO algorithms are used in function 
optimization and are currently applied in several 
themes related to electrical power system like 
optimal power flow, power system restoration and 
load flow study etc. 

Recently, another phenomenon-based algorithm, 
harmony search (HS), which mimics music 
improvisation process has been proposed [12]. The 
HS algorithm like other meta-heuristic algorithms 
employs high level techniques for exploration and 
exploitation of the huge solution space. Since the 
discovery of HS algorithm, it has been used 
extensively with positive results. Its applicability is 
universal, which is the reason for its high appeal. The 



 

HS algorithm can be considered as universally 
acceptable, and has many advantages. It is different 
from other similar algorithms as it can utilize more 
than one search point at the same time. It is 
independent of the objective function derivative and 
can achieve optimum values of such objective 
functions, both at global or near-global optimization. 
It can take up high dimensional domains in this 
regard. 
   The major objective of this paper is to compare the 
computational effectiveness and efficiency between 
two meta-heuristic optimization techniques such as 
particle swarm optimization (PSO) and Harmony 
Search (HS) algorithms for analysis the load flow 
study, find the optimal location of STATCOM in 
order to improve voltage in power networks. The 
remainder of the paper is organized as follows. In 
Section 2, 3 and 4, power flow equation derives the 
mathematical model of STATCOM based on 
switching functions. Then the mathematical model is 
linearized using the method of Jacobian and the 
controllability for arbitrary operating point of 
STATCOM is proved, In Section 5, the basic 
concepts of PSO are explained along with the 
original formulation of the algorithm in the real 
number space, as well as the discrete number space,  
  In Section 6, a brief introduction of the HS is given 
and the original formulation of the algorithm. 
Section 7 application and discussions on the 
experimental results. Finally, the paper is concluded 
in Section 8. 
 
2. Power Flow Equation  
    Basically load flow problem involves solving the 
set of non-linear algebraic equations which represent 
the network under steady state conditions. The 
reliable solution of real life transmission and 
distribution networks is not a trivial matter and 
Newton-type methods, with their strong 
convergence characteristics, have proved most 
successful. To illustrate the power flow equations, 
the power flow across the general two-port network 
element connecting buses k and m shown in Figure 1 
is considered and the following equations (1) to (4) 
are obtained. 
    The injected active and reactive power at bus-k  

(P k and Q k) is: 

mkkmkmkmkmkkkk VVBGVP )sincos(G
2 δδ ++=
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    Where:  

Pk : Real power injection at bus k. 

Qk : Reactive power injection at bus k. 

Vk  : Magnitude of voltage at bus k. 

Vm : Magnitude of voltage at bus k. 

δkm: Phasor angle of an element of the network 

admittance matrix. 

Gkm:Element of the real part of network admittance 

matrix. 

Bkm: Element of the imaginary part of the network 

admittance matrix. 

δkm= δk - δm = - δm 

Ykk= Ymm = Gkk + jBkk = Yko + Ykm 

Ykm= Ymk = Gmk + jBkm = - Ymk 
     The nodal power flow equations: 

      P = f (V, θ, G, B) 

 

                                                                                 (5) 

     Q = g (V, θ, G, B) 

 

 

 

 

 
                               

 

 

 
Fig. 1.General two-port network. 
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     Where, P and Q are vectors of real and reactive 
nodal power injections as a function of nodal voltage 
magnitudesV and angles θ and network conductances 
G and suceptances B. 

Δ P = P spec – P cal is the real power mismatch vector, 

Δ Q = Q spec – Q cal is the reactive power mismatch 

vector, Δθ and ΔV are the vectors of incremental 

changes in nodal voltage magnitudes and angles, J is 

the matrix of partial derivatives of real and reactive 

power with respect to voltage magnitudes and angle i 

indicates the iteration number. 
     Incorporation of FACTS devices in an existing 
load flow algorithm results in increased complexity 
of programming due to the following reasons:  

New terms owing to the contributions from the 
FACTS devices need to be included in the existing 
power flow equations of the concerned buses. These 
terms necessitate modification of existing power flow 
codes;  
     New power flow equations related to the FACTS 
devices come into the picture, which dictate 
formulation of separate subroutine(s) for computing 
them; 
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    The system Jacobian matrix contains entirely new 
Jacobian sub-blocks exclusively related to the 
FACTS devices. Therefore, new codes have to be 
written for computation of these Jacobian sub-
blocks. 
    The increase in the dimension of Jacobian matrix, 
compared with the case when there are no power 
system controllers, is proportional to the number and 
kind of such controllers.  
    The simultaneous equations for the networks and 
power system state variables are: 

f (X nsys, R nf )  

                                                      (7)  

g (X nsys, R nf ) 
     Where: X nsys = Network state variables i. e. 
(voltage magnitudes and phase angles); R nf = Power 
system controller variables. 
 
3. The Structure of STATCOM 
3.1. The voltage converter 
    The simplest structure of STATCOM is given in 
Fig.2. 
 
 

 
Fig. 2.The model of STATCOM. 

 
    The STATCOM consists of a coupling 
transformer, a voltage converter, and a source of 
storage for the DC side [13- 14]. The coupling 
transformer has two roles [13]: 
- Linking the system AC with STATCOM  

-The link inductor has the advantage that the source 

DC is not short-circuited 
    The STATCOM can consist of a power inverter 
"CSI: current source inverter", but for cost and 
current is unidirectional, it is preferable to use a 
voltage converter; virtually is the most used [13- 
14]. 
    The inverter constituting the STATCOM can be 
composed of GTO or the IGBT. 

3.2. The static characteristic of STATCOM 
     Fig.3 shows the static characteristic of 
STATCOM. It is capable of controlling its current 
estimated maximum regardless of system voltage AC 
is a medium voltage in case of major system 
disturbances. Fig. 3 shows the ability of STATCOM 
to maintain as the capacitive current at voltages very 
low system [15-16]. The estimated value of the 
current spike in the inductive side is greater than the 
rated capacitive switching is the natural GTO used in 
the inductive side, it is limited by the current of the 
diode, but in the side this capacitive current is 
determined by switching drilled GTO used [17- 18]. 
 
 

 
Fig. 3.The static characteristic of STATCOM. 

 
4. Power System with STATCOM 
    Fig. 4 shows the circuit model of a STATCOM 
connected to Bus k of an N-Bus power. The 
STATCOM is modeled as a controllable voltage 
source (Estat) in series with impedance. The real part 
of this impedance represents the ohmic losses of the 
power electronics devices and the coupling 
transformer, while the imaginary part of this 
impedance represents the leakage reactance of the 
coupling transformer. Assume that the STATCOM is 
operating in voltage control mode. This means that 
the STATCOM absorbs proper amount of reactive 
power from the power system to keep│Vk│constant 
for all power system loading within reasonable range.     
    The ohmic loss of the STATCOM is accounted by 
considering the real part of Ystat in power flow 
calculations. The net active/reactive power injection 
at Bus k including the local load, before addition of 
the STATCOM, is shown by Pk+jQ k. 
    The power flow equations of the system with 
STATCOM connected to Bus k, can be written as: 
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( )statstatkstatstatkkstat YEVVP θδδ −−−+= cosG 2

stat
(10) 

 

( )statstatkstatstatkkstat YEVVBQ θδδ −−−+= sin
2

stat  
(11) 

  
    Where, │Estat│, δ stat, │Ystat│and θ stat are shown 
in Fig. 4. 
     Addition of STATCOM introduces two new 
variables │Estat│ and δ stat; however, │Vk│ is now 
known. Thus, one more equation is needed to solve 
the power flow problem. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Steady state model of STATCOM 
 
     Equation (11) is found using the fact the power 
consumed by the source Estat(PEstat ) must be zero in 
steady state. Thus the equation for PEstat is can 
written as: 

[ ] ( ) 0cos.Re
2

=−−+−== ∗

statjkstatstatkstatstatstatstatE YEVEGIEalp
stat

θδδ

                                                                          

                                                                  (12) 
     Using these power equations, the linearized 
STATCOM model is given below: 
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5. Particle swarm optimization (PSO) 
    Two scientists namely Dr. Kennedy and Dr. 
Eberhart developed a PSO algorithm based on the 
behavior of individuals (i.e., particles or agents) of a 
swarm in the year 1995 [19]. PSO has its roots in 
artificial life and social psychology as well as in 
engineering and computer science. It utilizes a 
“population” of particles that fly through the problem 
hyperspace with given velocities. At each iteration, 
the velocities of the individual particles are 
stochastically adjusted according to the historical 
best position for the particle itself and the 
neighborhood best position. Both the particle best 
and the neighborhood best are derived according to a 
user defined fitness function. The movement of each 
particle naturally evolves to an optimal or near-
optimal solution. 
 
5.1. PSO Principle 
     PSO is an iterative process. On each iteration in 
PSO, current velocity of each particle is first updated 
based on three parameters: 

i. the particle’s current velocity  
ii. the particle’s local information  
iii. global swarm information. 

    Then, each particle’s position is updated using 
particle’s new velocity. The two updated equations 
are: 
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     In equation (14), index 
( )k

i
x is current position 

of particle i at iteration k, which has velocity 
( )k

i
v

 

and 
( )

maxmin vvv k

i
≤≤

 
and the pbesti  is the 

historical best position of 
( )k

i
x  and gbesti is the 

global best position in the population’s history. The 
parameter ω is the inertia weight factor, c1 and c2 are 
acceleration constants and r1 and r2 are uniform 
random numbers between 0 and 1. The parameter 
vmax determines the resolution with which region 
between the present position and target position is 

SIstat=Pstat+JQstat 

 

Ystat=[Tstat] ∟θstat 

= Gstat+ jBstat Pk+JQK 

Estat∟δstat 

Istat 

Vk δ 

+ 

- 



 

searched. If vmax is too high, particles may fly past 
the good solutions. If vmax is too small, particles may 
not explore sufficiently beyond local solutions. The 
constants c1 and c2 represent the weighting of the 
stochastic acceleration terms that pull each particle 
toward pbest and gbest positions. Low values makes 
particles to roam far from target regions before 
being tugged back. On the other hand, high values 
result in abrupt movements toward, or past, the 
target regions. It can be proved that for convergence 
c1+c1 must be less than or equal to 4. The inertia 
weight ω provides a balance between global and 
local exploration and exploitation, and on average 
results in less iterations required to find a 
sufficiently good solution. It is typically set 
according to the following equation: 

( )
k

k
×

−
−=

max

minmax
max

ωω
ωω  (16) 

maxmin , ωω :  initial and final inertia factor 

weights.  

kmax: maximum iteration number. 
k: current iteration number. 
 
5.2. PSO Algorithm 
 
     In the flowing, the basic steps of PSO: 

 
Step1: Initialization the swarm i.e position, and 

velocity, maximum number of iterations (itermax) 

 
Step2: Identify the pbest among .The pbest is also 
gbest. Initialize iteration counter, iter=1. 

 
Step3: If iter>itermax, go to step 6 otherwise for 

each particle update velocity, update position. 

Compute objective function. Update the pbest. 

 
Step4: Update the gbest. 

 
Step5: Increment iter=iter+1 and go to step3. 

 
Step6: Print the optimal solution of gbest. 
 
    The basic steps of the PSO algorithm are shown in 
Fig. 5. 

    
 

 

Fig. 5. Flowchart of the Basic PSO 
 

6. Harmony search (HS) 
    Harmony search it is one of the most recent 
heuristic methods. Since it was introduced in 2001 
and due to its simplicity, harmony search has been 
implemented to solve different optimization 
problems. The algorithm was originally developed in 
2005 for discrete optimization and later expanded for 
continuous optimization [20]. 
    Harmony Search (HS) is based on improvising 
musicians search for good sounding harmonies [21].  
    The design parameters of the HS algorithm are: 
1. Harmony is the set of the values of all the 

variables of the objective function. Each harmony is 

a possible solution vector. 
2. Harmony memory (HM) is the location where 

harmonies are stored. 

3. Harmony memory size (HMS) is the number of 
solution vectors in the harmony memory. 
4. Harmony memory considering rate (HMCR) is the  

probability of selecting a component from the HM  

members. 
5. Pitch adjusting rate (PAR) determines the 

probability of selecting a candidate from the HM. 
 
6.1. HS Algorithm 
    The general steps of the procedure of HSA are 
follows as [22]: 
Step 1: Initialize the optimization problem and 
algorithm parameters 
     In this step the optimization problem is specified 
as follows: 
 



 

             Minimize   f(x) 

            Subject to  xi∈ Xi, i= 1, 2, ..., N  

where f(x) is the objective function; x is a candidate 

solutions consisting of N decision variables (xi); Xi is 
the set of possible range of values for each decision 
variable, that is, L xi≤ Xi≤ U xi for continuous decision 

variables where L xi and U xi are the lower and upper 
bounds for each decision variable, respectively and 

N is the number of decision variables.  

Step 2: Initialize the Harmony Memory (HM) 
     In this Step, the HM matrix is filled with as many 
randomly generated solution vectors as the HMS. 
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Step 3: Improvise a new harmony from the HM 
     A New Harmony vector is generated from the 
HM based on memory considerations, pitch 
adjustments, and randomization. For instance, the 
value of the first decision variable for the new vector 
can be chosen from any value in the specified HM 
range Values of the other decision variables can be 
chosen in the same manner. There is a possibility 
that the new value can be chosen using the HMCR 
parameter, which varies between 0 and 1 as follows: 

{ }






−∈

∈
=

)1(

,,

'

21'

'

HMCRyprobabilitWithXx

HMCRyprobabilitWithxxx
x

ii

iii

i

LL

 
       The HMCR sets the rate of choosing one value 
from the historic values stored in the HM and (1-
HMCR) sets the rate of randomly choosing one 
feasible value not limited to those stored in the HM. 
For example, a HMCR of 0.9 indicates that the HS 
algorithm will choose the decision variable value 
from historically stored values in the HM with the 
90% probability or from the entire possible range 
with the 10% probability. Each component of the 
new Harmony vector is examined to determine 
whether it should be pitch adjusted. This procedure 
uses the PAR parameter that sets the rate of 
adjustment for the pitch chosen from the HM as 
follows: 
        Pitch adjusting decision for 


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−
=

)1(

'

HMCRyprobabilitWith

HMCRyprobabilitWith
x i

 

A PAR of 0.3 indicates that the algorithm will choose 

a neighboring value with 30% × HMCR probability. 

Step 4: Update harmony memory 
     For each new value of harmony the value of 
objective function, f(x' )  is calculated. If the new 
harmony vector is better than the worst harmony in 
the HM, the new harmony is included in the HM and 
the existing worst harmony is excluded from the HM. 
Step 5: Check stopping criterion 
     If the stopping criterion (maximum number of 
improvisations) is satisfied, computation is 
terminated. Otherwise, Steps 3 and 4 are repeated. 
Finally the best harmony memory vector is selected 
and is considered as best solution. 
     The steps in the procedure of algorithm harmony 
search are shown in Fig. 6. 
 

 

 
Fig. 6. Flowchart of HS 

 
6. Application 
    The test system consists of 59 buses, 83 branches 
(lines and transformers) and 10 generators. The 
apparent power Sbase is 100MVA. 
     For each possible location of the STATCOM, a 

power flow based on the Newton-Raphson method is 
calculated. 
    The objective function Fobj  is calculated as the 
square root of the sum of all voltage deviations 
squared as follows. 
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       Where: 
Vi : is the value of the voltage at bus i in p.u. 
Nbus: Number of bus. 
 
6.1. Different types of inertia weight in PSO 
       In theory, three approaches are considered for 
the inertia constant: 
i. Fixed inertia weight: as in standard PSO 

definition. 
ii. Linearly decreased inertia weight: the purpose is 

to improve the convergence of the swarm by 

reducing the inertia weight from 0.9 to 0.1 in even 
steps over the maximum number of iterations. 
iii. Randomly decreased inertia weight: introduces 
a random factor in the previous approach to avoid 
the swarm to get trapped in a local minimum  
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       Where: 
rand is a random number between 0 and 1. 

iter is the iteration number. 

max_iter is the maximum number of iterations. 
       In our study we have use this last approach in 
optimization process. 
       Table1presents the best location of STATCOM 
(optimal location) found by both optimization 
method (PSO and HSA). 
      The STATCOM is connected at 19th bus and 
injects reactive power given in table 2 to improve 
voltage profile of the system and avoids future 
voltage collapse. 

 
Table2 
STATCOM parameters (size and location). 

STATCOM 
Bus 

Vstat 
pu 

Angle 
Degree 

Qstat 
pu 

19 0.9223 9.4417 0.7771 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table1 

The best location of STATCOM (optimal location) found 
by both optimization method (PSO and HSA) 

 
    The 59-bus test system was used to demonstrate 
the effectiveness of the proposed algorithms. The 
results of the proposed HSA algorithm were 
compared with those of PSO algorithm. Table 3 
presents optimal values found by PSO and HSA. 

 

Bus  
N° 

V(p.u.) 
without  

Statcom 

V(p.u.)  
with  

Statcom 

Bus  
N° 

V(p.u.) 
without  

Statcom 

V(p.u.)  
with 

Statcom 

1 1.0600 1.0600 31 1.0999 1.0284 

2 1.0400 1.0400 32 1.0980 1.0193 

3 1.0500 1.0500 33 1.0547 0.9921 

4 1.0283 1.0283 34 1.0978 1.0274 

5 1.0276 1.0194 35 1.0328 0.9688 

6 1.0560 1.0375 36 0.9433 0.8681 

7 0.9931 0.9959 37 1.0273 1.0273 

8 0.9848 0.9730 38 1.0072 1.0062 

9 0.9901 0.9808 39 1.0006 0.9910 

10 1.0746 1.0749 40 1.0762 1.0765 

11 0.9962 0.9883 41 1.0966 1.0966 

12 1.0139 1.0103 42 1.0340 1.0440 

13 1.0961 1.0517 43 1.0318 0.9648 

14 0.9725 0.9617 44 1.0117 1.0082 

15 1.0596 0.9907 45 1.0454 1.0440 

16 1.0917 1.0211 46 1.0040 0.9993 

17 0.9918 0.9836 47 0.9599 0.9635 

18 1.0956 1.0168 48 0.9228 0.8675 

19 1.0947 1.0000 49 0.9698 0.9746 

20 1.0438 1.0236 50 1.1035 1.0303 

21 1.0721 1.0146 51 1.1025 1.0270 

22 1.0913 1.0110 52 1.0713 1.0003 

23 1.0156 1.0137 53 1.1051 1.0313 

24 1.0105 1.0173 54 1.0585 0.9939 

25 1.0062 0.9939 55 1.0396 1.0359 

26 1.0195 1.0186 56 0.9742 0.9790 

27 1.0266 1.0266 57 1.0165 1.0233 

28 1.0195 0.9743 58 1.0329 1.0353 

29 1.0297 1.0168 59 1.0352 1.0421 

30 1.0561 1.0415    



 

Table3  
Comparison results between HSA and PSO 

 Objective 

function 

value (Fobj) 

Optimal 

location 

(bus_optim) 

Simulation 

time 

seconds 

HS 0.3110 19 473.991 

PSO 0.3110 19 1447.276 

 
       Based on several simulation studies, the optimal 
control parameters values of the proposed HSA and 
PSO are presented in Table 4. 

 
Table4  
HS and PSO algorithm parameters 

HS Parameters 

HMS maxiter HMCR PAR 
3 100 0.95 0.7 

PSO Parameters 

Number 
of particles 

maxiter c1 c2 

10 100 3.25 4-c1 

 

 
Fig. 7. The objective function history of HSA. 

 
Fig. 8. The objective function history of PSO 

 
6.2. Discussion 
       This study has shown application of the Particle 
Swarm Optimization and Harmony search algorithm 
methods to solve the problem of optimal placement 
of STATCOM in the 59-bus test system. PSO 
algorithm is easy to implement and it is able to find 
multiple optimal solutions to this constrained multi-
objective problem, giving more flexibility to take the 
final decision about the location of the STATCOM 
units. The settings of the PSO parameters are shown 
to be optimal for this type of application; the 
algorithm is able to find the optimal solutions with a 
relatively small number of iterations, therefore with a 
reasonable computational effort and the calculation 
in PSO algorithm is very simple. Harmony search 
algorithm needs a small HMS to obtain the optimal 
solutions. In recent years, HS was applied to many 
optimization problems, demonstrating its efficiency 
compared to other heuristic algorithms and other 
Meta mathematical optimization techniques. HS is 
good at identifying the high performance regions of 
the solution space at a reasonable time. From the 
simulation results presented in Table 1 show that the 
bus 19 is the best place to install STATCOM 
respectively, it was observed from the results that the 
HSA has advantages in finding the best solution over 
the PSO algorithm in this specific optimization 
problem. 

  We can conclude that installing the STATCOM 
at bus 19, the voltage stability is improved. We see 
also that HSA method is more effective than PSO 
method in term of computation time. Fig. 7 and Fig. 
8 illustrate history of the objective function (for HS 
and PSO respectively). 

 



 

8. Conclusion 
    The results are obtained with and without 
compensation using matlab/simulink environment. 
STATCOM was implemented in 59-bus system 

using Newton-Raphson load flow algorithm. 
In this paper we have used the PSO and HS 

techniques to find the optimal allocation of a 
STATCOM in a 59-bus of a power system. The 
techniques are able to find the best location for the 
STATCOM in order to optimize the system voltage 
profile. Based on a voltage source converter, the 
STATCOM regulates system voltage by absorbing 
or generating reactive power. Newton-Raphson 
algorithm was used to calculate the load flow of the 
power system. 

PSO and HS have proved themselves to be an 
effective meta-heuristics to solve the problem of 
optimal allocation of STATCOM in complex power 
system (59 buses). 

It is observed that, in terms of computational 
time, HS approach is faster and has been proven 
more effective than using the PSO. 
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